Soft Ultra-Filters and Soft G-Filters of MTL-Algebras

M. Uzair Khan1,2, Raees Khan1, Imran Khan1, Zahoor Ahmad2, Zia Ur Rahman3, Shahid Ali3
1Department of Mathematics & Statistics, Bacha Khan University, Charsadda, KPK, Pakistan
2Department of Geology & Geophysics, Bacha Khan University, Charsadda, KPK, Pakistan
3Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan

Received: January 29, 2017
Accepted: May 22, 2017

ABSTRACT

The aim of this paper is to present the ideas of soft ultra filters & soft G filters in MTL Algebras, some examples are given and some results are proved using these concepts.

1. INTRODUCTION

The logic MTL, Monoidal t-norm based logic was presented by F. Estva and L. Godo and discuss several properties of MTL-algebra in [6] The Boolean logic (BL) was introduced by P. Hajek and discuss the properties in [1]. The fuzzy reasoning and implication operators was discussed by Ying in ([2],[3]). A proper logical system for fuzzy propositional calculus and a innovative arithmetical configurations (R_0-algebras) is proposed by Wang (see [4] and [5]). In ([7],[8]) Jun and Zhang deliberate the fuzzy configuration of filters and further studied the classifications of fuzzy filters in MTL-algebras. Jun and Zhang also explored the fuzzi-fication of Boolean & MV-filters. In paper [10] Moldtsov gives the idea of soft set theory. Maji-et-al further work on soft set and defines some operations on soft set (see [11]). These operations were corrected by Ali et al [12]. X.H. Zhang et al gives the concept of fuzzy ultra filters and fuzzy G-filters in [9] as a continuation of this research paper, we additional study Soft ultra filters, soft prime filters and soft G-filters in a monoidal t-norm logic (MTL) algebras. We gives some examples and prove some results.

2. PREMİLİNİRİES

We reminiscence some concepts and their significant properties, by a lattice we mean a moderatelyorderly set in which every two components has a supremum& infimum (this may be alsoidentified aassmallest upper join &highest lower meet, respectively)

By a residuated framework by mean a lattice \(E = (E, \leq, \land, \lor, \rightarrow, 0, 1) \) having the smallest component 0 and the biggestcomponent 1, &capable with the two binary processes \(\otimes \) (called product) and \(\rightarrow \) (called residuum) like,

(i) \(\otimes \) is an isotone, commutative & associative.

(ii) \(x \otimes 1 = x \) for all \(x \in E \).

(iii) The Galois correspondence grips, which is

\[x \otimes y \leq z \Rightarrow x \leq y \rightarrow z \]

for all \(z, y, x \in E \).

2.1 Definition [6]

A residuated framework \(E = (E, \leq, \land, \lor, \otimes, \rightarrow, 0, 1) \) is entitled an MTL-algebra if it fulfills the pre-linearity equation

\[(x \rightarrow y) \lor (y \rightarrow x) = 1 \]

for all \(x, y \in E \).

2.2 Proposition [6, 9]

The subsequent possessions grip in any resituated lattice \(E = (E, \leq, \land, \lor, \otimes, \rightarrow, 0, 1) \)
We describe

In MTL-algebra, the subsequent are accurate

\[\forall y \in E \quad x \not\leq (y \rightarrow x) \rightarrow x. \]

2.3 Definition [6]

Let \(E \) is MTL-algebra. A not empty subset \(F \) of \(E \) is named a filter of \(E \) if it fulfills

\[F \]

2.4 Proposition [6]

A not empty subset \(F \) of the MTL-algebra \(E \) is the filter of \(E \) if &only if it fulfills the following

\[F \]

2.5 Definition [5]

Let \(F \) be a not empty subset of an MTL-algebra \(E \). Then \(F \) is called a prime filter of \(E \) if, \(F \) is a proper filter and \(x \not\leq (y \rightarrow z) \rightarrow y \not\leq z \rightarrow x. \)

2.6 Definition [5]

Let \(F \) be a not empty subset of an MTL-algebra \(E \). Then \(F \) is called an ultrafilter of \(E \) if \(F \) is a proper filter and \(x \not\leq (y \rightarrow z) \rightarrow y \not\leq z \rightarrow x. \)

2.7 Definition [5]

Let \(F \) be a not empty subset of an MTL-algebra \(E \). So \(F \) is called a G-filter if

\[F \]

2.8 Theorem

A softset \((F, E) \) above \(U \) is a softfilter in an MTL-algebra \(E \) if it fulfills the subsequent circumstances

\[F \]
2.9 Definition [1, 7, 8]
Suppose that U is a preliminary universal set and E is all likely considerations set below consideration with reverence to U. The power set of U (i.e., the set of all sub set of U) is symbolized by $P(U)$ & A is subset of E. Typically, limitations are characteristics, qualities or possessions of an substances in U.
A couple $(F & A)$ is named a soft set above U, here F is a plotting given by

$$F : A \rightarrow P(U)$$

Additionally, a softset above U is a parameterized intimate of sub-sets of the universal set U. For $e \in A$, $F(e)$ might be measured as a set of e – estimated elements of a soft-set (F, A).

3. SOFT FILTERS

No, we describe soft filter of a MTL-algebra. Some characterizations of a soft filter are investigated. Throughout this paper E is an MTL-algebra and U is not blank set.

3.1 Definition
The softset (F, E) above U is entitled a soft filter of an MTL-algebra E if F satisfies

1. $F(x \otimes y) \supseteq F(x) \cap F(y)$ for all $x, y \in E$

2. F is order-preserving, that is, $x \leq y \Rightarrow F(x) \subseteq F(y)$, for all $x, y \in E$.

3.2 Example
Let $E = \{0, a, b, c, d, 1\}$, where $0 < b < a < 1$, $0 < d < a < 1$, and $0 < d < c < 1$.
Define \otimes and \rightarrow as follows

\[
\begin{array}{cccccccc}
\otimes & 0 & a & b & c & d & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & b & b & d & 0 & a \\
b & 0 & b & b & 0 & 0 & b \\
c & 0 & d & 0 & c & d & c \\
d & 0 & 0 & 0 & d & 0 & d \\
1 & 0 & a & b & c & d & 1
\end{array}
\]

\[
\begin{array}{cccccccc}
\rightarrow & 0 & a & b & c & d & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & d & 1 & a & c & c & 1 \\
b & c & 1 & 1 & c & c & 1 \\
c & b & a & b & 1 & a & 1 \\
d & a & 1 & a & 1 & 1 & 1 \\
1 & 0 & a & b & c & d & 1
\end{array}
\]

Then E is an MTL-algebra. Let's describe the soft sets (F_1, E), (F_2, E) and (F_3, E) over E by

$$F_1 : E \rightarrow P(U)$$

$$F_1(x) = \begin{cases} \{a\} & \text{if } x \in \{0, c, d\}, \\ \{U\} & \text{if } x \in \{a, b, 1\}, \end{cases}$$

$$F_2 : E \rightarrow P(U)$$

$$F_2(x) = \begin{cases} \{a\} & \text{if } x \in \{0, a, b, c, d\}, \\ \{U\} & \text{if } x = 1 \end{cases}$$

and

$$F_3 : E \rightarrow P(U)$$

$$F_3(x) = \begin{cases} \{a\} & \text{if } x = 0, \\ \{U\} & \text{if } x \in \{a, b, c, d, 1\}, \end{cases}$$

where $A = \{y, z\} \subset U = \{x, y, z\}$. Then F_1, F_2 and F_3 are soft filters of E.

3.3 Theorem
The softset (F, E) in E is soft-filter in E only if it fulfills
3.4 Boolean soft filter
A soft filter F of E is supposed to be a Boolean if the subsequent equality fulfills

$$F(x \lor x^*) = F(1) \quad (x \in E) \quad \text{Where} \quad x^* = x \to 0$$

3.5 Proposition
Each Boolean soft-filter F of E fulfills the subsequent situation

$$F(x \to z) \supseteq F(x \to (z^* \to y)) \cap F(y \to z).$$

3.6 Theorem
Let F be a soft filter of E then subsequent declarations are equal

1. F is Boolean.

2. $F(x \to z) \supseteq F(x \to (z^* \to y)) \cap F(y \to z)$.

3. $(\forall x, y, z \in E) F(x \to y) \equiv F((x \to y) \to x)$.

3.7 MV-soft filter
A softset (F, E) in E is said to be MV-soft filter if it is a soft filter of E that fulfills the subsequent situation

$$((\forall x, y \in E) F(x \to y) \subseteq F(((y \to x) \to x) \to y)).$$

3.8 Soft Ultra Filter
A soft filter F of a MTL-algebra E is said to be soft ultra filter of E if F fulfills the following condition

$$F(x) = F(1) \quad \text{or} \quad F(x^*) = F(1) \quad (\forall x \in E).$$

3.9 Example
Let $E = \{0, a, b, c, d, 1\}$ the residuum \to & product \otimes are well clear as

<table>
<thead>
<tr>
<th>\otimes</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>d</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\to & \otimes are well clear as

<table>
<thead>
<tr>
<th>\to</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>a</td>
<td>1</td>
<td>a</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>1</td>
<td>b</td>
<td>b</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

So $E(\land, \lor, \otimes, \to, 0, 1)$ is a MTL-algebra.

Let softset (F, E) in E is define as

$$F(x) = \begin{cases} E & \text{if } x \in \{1, a, d\}, \\ \{0\} & \text{otherwise}. \end{cases}$$

F is soft filter of E and satisfies

$$F(x) = F(1) \quad \text{or} \quad F(x^*) = F(1) \quad (\forall x \in E).$$

So F is a soft ultra filter of E.

3.10 Soft prime filter
A soft filter F of a MTL-algebra E is said to be a soft prime filter of E when F fulfills the following condition

$$((\forall x, y \in E) F(x \lor y) \subseteq F(x) \cup F(y)).$$

3.11 Theorem
Let’s (F, E) be a soft set of a MTL Algebra E. Then F is a soft ultra filter of E if and only if it satisfies:

1. F is the soft Boolean filter of E,
2. F is the soft prime filter of E.

170
Proof Let us assume that the soft set F in E is a soft Boolean & soft prime filter of E.

We know that

$\forall x \in E$ We have

$$F(1) = F(x \vee x^*)$$
Definition 3.4

$$\subseteq F(x) \cup F(x^*)$$
Definition 3.8

$$\Rightarrow F(1) \subseteq F(x) \cup F(x^*)$$

We know from Theorem 3.3

$F(x) \subseteq F(1)$ & $F(x^*) \subseteq F(1)$

We have

$F(x^*) = F(1)$ Or $F(x^*) = F(1)$

So F is a soft ultra filter of E.

Conversely Let F be a soft ultra filter of E. Since we know that $\forall x \in E$

$x \leq x \vee x^*$, $x^* \leq x \vee x^*$

by Definition 3.1,

$F(x) \subseteq F(x \vee x^*)$ and $F(x^*) \subseteq F(x \vee x^*)$.

By Definition of soft ultra filter we have $(\forall x \in E)$

$$F(x) = F(1) \text{ or } F(x^*) \subseteq F(1)$$

Thus,

$$F(1) \subseteq F(x \vee x^*)$$ \hspace{1cm} (A)

By (A) and Theorem 3.3, we get

$$F(x \vee x^*) = F(1)$$

Thus F is a soft Boolean-filter of E.

Now by Proposition 2.2 (u_z)

$$x \vee y = ((x \rightarrow y) \rightarrow y) \land ((y \rightarrow x) \rightarrow x)$$

$$\leq (x \rightarrow y) \rightarrow y \text{ \hspace{1cm} \because } a \land b \leq a$$

By Definition d3

$$F(x \vee y) \subseteq F((x \rightarrow y) \rightarrow y)$$ \hspace{1cm} (B)

Since $0 \leq y$ and By Suggestion 2.2 (u_6)

by Definition 3.1,

$$F((x \rightarrow y) \rightarrow y) \subseteq F(x^* \rightarrow y)$$

From (B) we have

$$F(x \vee y) \subseteq F(x^* \rightarrow y)$$ \hspace{1cm} (1)

For several $x, y \in E$ if

$$F(x) = F(1)$$ \hspace{1cm} (C)

Then By Theorem 3.3,

$$F(x \vee y) \subseteq F(1)$$

$$= F(x) \text{ \hspace{1cm} By (C)}$$

$$\subseteq F(x) \cup F(y) \text{ \hspace{1cm} \because } a \leq a \vee b$$

$$\Rightarrow F(x \vee y) \subseteq F(x) \cup F(y).$$
By Definition 3.8, if
\[F(x) \neq F(1)(\forall x \in E). \]
Then by Definition 3.8,
\[F(x^+) = F(1) \ldots (D), \]
thus by Theorem 3.3,
\[F(y) \supseteq F(x^+) \cap F(x^+ \rightarrow y) \]
\[= F(1) \cap F(x^+ \rightarrow y) \quad \text{By } (D) \]
\[= F(x^+ \rightarrow y) \quad \because F(x) \subseteq F(1) \]
\[\Rightarrow F(y) \supseteq F(x^+ \rightarrow y) \ldots .(2) \]
Combining (1) and (2) we have
\[F(x \lor y) \supseteq F(x^+ \rightarrow y) \]
\[\subseteq F(y) \]
\[\subseteq F(x) \cup F(y) \]
\[\Rightarrow F(x \lor y) \subseteq F(x) \cup F(y). \]
Thus \(F \) is a soft prime filter of \(E \).

This complete the proof.

3.12 Soft G-Filter
A soft filter \(F \) of MTL algebra \(E \) is said to be the soft G-filter of \(E \) if it fulfills the subsequent situation
\[(\forall x, y \in E), F(x \otimes x \rightarrow y) \subseteq F(x \rightarrow y) \]

3.13 Example
Let \(E = \{0, a, b, c, d, 1\} \) in which \(\rightarrow, \otimes \) is clear as

\[
\begin{array}{cccccc}
\otimes & 0 & a & b & c & d & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & c & c & 0 & a \\
b & 0 & c & b & c & d & b \\
c & 0 & c & c & c & 0 & c \\
d & 0 & 0 & d & 0 & 0 & d \\
1 & 0 & a & b & c & d & 1 \\
\end{array}
\quad
\begin{array}{cccccc}
\rightarrow & 0 & a & b & c & d & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & d & 1 & b & b & d & 1 \\
b & 0 & a & 1 & a & d & 1 \\
c & d & 1 & 1 & 1 & d & 1 \\
d & a & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & a & b & c & d & 1 \\
\end{array}
\]

So \(E(\wedge, \lor, \otimes, \rightarrow, 0, 1) \) is a MTL algebra. Let the soft-set \((F, E) \) in \(E \) is define as
\[F(x) = \begin{cases} E & \text{if } x \in \{1, a\}, \\ \{1\} & \text{otherwise}. \end{cases} \]
\(F \) is soft-filter of \(E \) and fulfills
\[(\forall x, y \in E), F(x \otimes x \rightarrow y) \subseteq F(x \rightarrow y) \]
So \(F \) is a soft G-filter of \(E \).

3.14 Theorem
A soft set \((F, E) \) in \(E \) is Boolean soft-filter of \(E \) if & only if it fulfills the following
a. \(F \) is soft G filter of \(E \).
\[F \text{ is soft MVfilter of } E. \]
\[F \text{ is soft MVfilter of } E. \]
\[F \text{ is soft MVfilter of } E. \]
Proof. Let us assume that the \(F \) is soft Boolean filter of \(E \).
Meanwhile
We get
\[y \leq ((y \rightarrow x) \rightarrow x) \rightarrow y \]

By means of
\[((y \rightarrow x) \rightarrow x) \rightarrow y \leq y \rightarrow x \quad \because y \leq x \Rightarrow x \rightarrow z \leq y \rightarrow z. \]

(1) \[x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z) \]

(2) \[x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \]

(3) \[y \leq x \Rightarrow x \rightarrow z \leq y \rightarrow z \]

(4) \[((y \rightarrow x) \rightarrow x) \rightarrow y \leq y \rightarrow x. \]

We get
\[x \rightarrow y \leq ((y \rightarrow x) \rightarrow x) \rightarrow ((y \rightarrow x) \rightarrow y) \]
\[= (y \rightarrow x) \rightarrow (((y \rightarrow x) \rightarrow x) \rightarrow y) \]
\[\leq (((((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow x) \rightarrow (((y \rightarrow x) \rightarrow x) \rightarrow y)) \]
\[x \rightarrow y \leq (((((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow x) \rightarrow (((y \rightarrow x) \rightarrow x) \rightarrow y)) \]

By Theorem 3.6 and Definition 3.1,
\[F(((y \rightarrow x) \rightarrow x) \rightarrow y) \supseteq F(((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow x \rightarrow (((y \rightarrow x) \rightarrow x) \rightarrow y)) \]
\[
\]
\[F(x \rightarrow y) \]
\[\Rightarrow F(x \rightarrow y) \subseteq F(((y \rightarrow x) \rightarrow x) \rightarrow y). \]

Hence verify that \(F \) is a MV-softfilter of \(E \). Let \(x, y \in E \) and by Proposition 3.5 we have,
\[F(x \rightarrow y) \supseteq F(x \rightarrow (x \rightarrow y)) \cap F(x \rightarrow x) \]
\[= F(x \rightarrow (x \rightarrow y)) \cap F(1) \quad \because (x \rightarrow x = 1) \]
\[= F(x \rightarrow (x \rightarrow y)) \quad \because (F \subseteq F(1)) \]
\[= F(x \otimes x \rightarrow y) \quad \text{By Proposition (}\ u_3 \text{)} \]
\[\Rightarrow F(x \rightarrow y) \supseteq F(x \otimes x \rightarrow y). \]

Thus \(F \) is a soft G-filter of \(E \).

Conversely

By supposition that \(F \) is a soft G-filter and soft MV-filter of \(E \).

Soby Proposition 2.2 \((u_3) \)
\[x \leq (x \rightarrow y) \rightarrow y \]

and by proposition 2.2 \((u_6) \)
\[\Rightarrow (x \rightarrow y) \rightarrow x \leq (x \rightarrow y) \rightarrow (x \rightarrow y) \rightarrow y. \]

By suggestion 2.2 \((u_5) \)
\[\Rightarrow (x \rightarrow y) \rightarrow x \leq ((x \rightarrow y) \otimes (x \rightarrow y)) \rightarrow y, \]

and by Definition 3.1 we have
\[F((x \rightarrow y) \rightarrow x) \subseteq F((x \rightarrow y) \otimes (x \rightarrow y)) \rightarrow y) \]
\[\subseteq F((x \rightarrow y) \rightarrow y) \quad \text{By Definition 3.12} \]
\[F((x \rightarrow y) \rightarrow x) \subseteq F((x \rightarrow y) \rightarrow y) \ldots \ldots (1) \]

Now by proposition 2.2 \((u_5) \)
\[(x \rightarrow y) \rightarrow y \leq (x \rightarrow (x \rightarrow y)) \rightarrow (x \rightarrow y). \]

By proposition 2.2 \((u_6) \)
By Definition 3.1,
\[
((x \rightarrow (x \rightarrow y)) \rightarrow (x \rightarrow y)) \rightarrow x \leq ((x \rightarrow y) \rightarrow y) \rightarrow x
\]
By Explanation 3.7 and Explanation 3.1 we consume
\[
F(((x \rightarrow (x \rightarrow y)) \rightarrow (x \rightarrow y)) \rightarrow x) \subseteq F(((x \rightarrow y) \rightarrow y) \rightarrow x) \quad \text{.....(A)}
\]
By Theorem 3.3,
\[
F((x \rightarrow y) \rightarrow x) \subseteq F(((x \rightarrow (x \rightarrow y)) \rightarrow (x \rightarrow y)) \rightarrow x)
\]
\[
\subseteq F(((x \rightarrow y) \rightarrow y) \rightarrow x) \quad \text{by (A)}
\]
\[
\Rightarrow F((x \rightarrow y) \rightarrow x) \subseteq F(((x \rightarrow y) \rightarrow y) \rightarrow y) \rightarrow x) \quad \text{.....(2)}
\]
From (1) and (2) we get
\[
F((x \rightarrow y) \rightarrow x) \subseteq F((x \rightarrow y) \rightarrow y) \cap F(((x \rightarrow y) \rightarrow y) \rightarrow x).
\]
By Theorem 3.3,
\[
F((x \rightarrow y) \rightarrow x) \subseteq F(x).
\]
So by Theorem 3.6 \(F \) is soft Boolean filter of \(E \).
This complete the proof.

REFERENCES