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ABSTRACT 

 

The aim of this paper is forecasting Iran crude oil with time series model. We estimated AR, MA, 
ARMA, ARCH, GARCH, TARCH, CGARCH, PARCH and EGARCH models for modeling Iran 
crude oil export.  Based on Akaike information criterion, we choice ARMA (1,1) model.  Based on 
Schwarz criterion, we choice AR (1) model because Schwarz criterion is lowest statistic rather than 
other models. Based on Hannan-Quinn criterion, we choice ARMA (1,1) model.  We have forecasted 
Iran crude oil export with ARMA(1,1) model.  Results indicate that Iran crude oil export will 
decrease to 2097.317114 thousands oil barrels in Iran. 
KEY WORDS: Forecasting, Crude Oil Export, Time Series Models, Iran. 

 
1. INTRODUCTION 

 
Iran’s economy has been highly dependent on the production and export of crude oil to finance government 

spending, and consequently is vulnerable to fluctuations in international oil prices. Although Iran has vast petroleum 
reserves, the country lacks adequate refining capacity and imports gasoline to meet domestic energy needs.  

Energy resources in Iran consist of the third largest oil reserves and the second largest natural gas reserves 
in the world.  Iran is in a constant battle to use its energy resources more effectively in the face of subsidization and 
the need for technological advances in energy exploration and production. Energy wastage in Iran amounts to six or 
seven billion dollars (2008). The energy consumption in the country is extraordinarily higher than international 
standards. Iran recycles 28 percent of its used oil and gas whereas the figure for certain countries stands at 60 
percent. Iran paid $84 billion in subsidies for oil, gas and electricity in 2008.  Iran is one of the most energy 
intensive countries of the world with per capita energy consumption 15 time that of Japan and 10 times that of 
European Union. Also due to huge energy subsidies, Iran is one of the most energy inefficient countries of the 
world, with the energy intensity three times higher than global average and 2.5 times the Middle Eastern average. 

Iran is one of the leading members of OPEC (Organization of Petroleum Exporting Countries) and the 
Organization of Gas Exporting Countries (GECF). Iran received $47 billion dollars in oil export revenues, which 
accounts for about 50% of state revenues. Natural gas and oil consumption both account for about half of Iran’s 
domestic energy consumption. With its heavy dependence on oil and gas revenues Iran continues to explore for new 
sources of natural gas and oil. Recently Iran has focused its energy sector on the exploration of the South Pars 
offshore natural gas fields in the Persian Gulf. 

Iran has become self-sufficient in designing, building and operating dams and power plants and it has won 
a good number of international bids in competition with foreign firms. 

Ye, Zyren and Shore (2002) presented a short-term monthly forecasting model of West Texas Intermediate 
crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a 
measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market 
barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed 
market behavior during the post- Persian Gulf War period, the model was developed with the objectives of being 
both simple and practical, with required data readily available. As a result, the model is useful to industry and 
government decision-makers in forecasting price and investigating the impacts of changes on price, should 
inventories, production, imports, or demand change. 

Yua, Wanga and Laib (2008) proposed empirical mode decomposition (EMD) based neural network 
ensemble learning paradigm for world crude oil spot price forecasting. For this purpose, the original crude oil spot 
price series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). Then a 
three-layer feed-forward neural network (FNN) model was used to model each of the extracted IMFs, so that the 
tendencies of these IMFs could be accurately predicted. Finally, the prediction results of all IMFs are combined with 
an adaptive linear neural network (ALNN), to formulate an ensemble output for the original crude oil price series. 
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For verification and testing, two main crude oil price series, West Texas Intermediate (WTI) crude oil spot price and 
Brent crude oil spot price, are used to test the effectiveness of the proposed EMD-based neural network ensemble 
learning methodology. Their empirical results obtained demonstrate attractiveness of the proposed EMD-based 
neural network ensemble learning paradigm. 
In this paper, we have used different time series model to forecast Iran crude oil exports until 2020 year. 
   

2. Forecasting Methods 

Let tR  be the oil export in Iran economy from time 1t  to t  and 1 t  be the past Information set 
containing the Realized value of all relevant variables up to time 1t . So the conditional mean and variance are 

)var(),( tttttt RhREy 
 respectively. Given this definition, the unexpected oil export at time t  is

ttt yR  . This paper follows Engle and Ng (1993) in treating t   as a collective measure of bad news 
(unexpected decrease in oil export) if t < 0 and good news (unexpected increase in oil export) if  t    0. Further, a 
large value of |  t | implies that the news is “significant” or “big” in the sense that it produce a large unexpected 
change in oil export.  

In order to model the effect of t  on oil export we present ARCH models. ARCH models were Introduced 
by Engle (1982) and generalized as GARCH models by Bollerslev (1986). In developing GARCH (p, q) we will 
have to provide mean and variance Equation 
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where  ,,, ji  are constant parameters and tx  contains exogenous and predetermined regressors. 

As th  is variance it must be nonnegative which impose the following conditions: 0 , 0,.......1 p  and
0,,.........1 q . The conditional variance under ARCH (p) model reflects only information from time pt  to 

1t  with more importance being placed on the most recent innovation implying ji aa  for ji  . To avoid long 

lag lengths on t  in ARCH (p) and difficulty in selecting the optional length p, and ensuring the non-negativity of 
coefficients of conditional variance equation (2), Bollerslev (1986) present GARCH(P, q). A common 
parameterization for the GARCH model that has been adopted in most applied studies is the GARCH (1, 1) 
specification under which the effect of a shock to volatility declines geometrically over time. 
 One problem with ARCH (p) and GARCH (p, q) is that good news and bad news with some absolute size have the 

same effect on th .This fact is symmetric effect. However, the market may react differently to good and bad news. It 
is important, to be able to test for and allow asymmetry in the ARCH type specification. Nelson (1991) proposes the 

exponential GARCH (EGARCH) model as a way to deal whit this problem. Under the EGARCH (1, 1) the th  is 
given as:  
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  The EGARCH news Impact differs from the GARCH new Impact in four ways: (1) it is not symmetric. (2) 
Big news can have a much greater impact than in the GARCH model. (3) Log construction of Equation 3 ensures 

that the estimated th  is strictly positive, thus non-negativity constraints used in the estimation of the ARCH and 
GARCH are not necessary. (4) Since the parameter of   typically enters equation 3 with a negative sign, bad news 
generates more volatility than good news. 

Glosten, Jagannathan and Runkle (1993 ), hereafter GJR,   Defined GJR Asymmetric Volatility model as 
follow:  
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 Where 1
ts  if 0t , and 0 otherwise.        

  The GJR model is closely related to the threshold ARCH or TARCH model of Rabemananjara and Zakoian 

(1993) and Zakoian (1994).    Provided that 0 , the GJR model generates higher values for th  given   t-1 < 0 
than for a  t> 0 of equal magnitudes.  

The Component GARCH (CGARCH) model by Engle and Lee (1993) decomposes returns uncertainty into 
a short-run and a long-run component by permitting transitory deviations of the conditional volatility around a time-

varying trend, tq , modeled as:  
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Here 
2
t  is still the volatility, while tq  takes the place of   and is the time varying long run volatility. 

The first equation describes the transitory component, tt q2  which converges to zero with powers of (   ). 

The second equation describes the long run component tq
, which converges to   with powers of  . Typically   

is between 0.99 and 1 so that tq
 approaches   very slowly. We can combine the transitory and permanent 

equations and write  
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 which shows that the component model is a (nonlinear) restricted GARCH (2, 2) model.  In addition, 

GARCH(1, 1) is a special case of the CARCH in which 0  . 
  We can include exogenous variables in the conditional variance equation of component models, either in 
the permanent or transitory equation (or both). The variables in the transitory equation will have an impact on the 
short run movements in volatility, while the variables in the permanent equation will affect the long run levels of 
volatility. The asymmetric component combines the component model with the asymmetric TARCH model. This 
specification introduces asymmetric effects in the transitory equation and estimates models of the form: 
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where z the exogenous variables and d are is the dummy variable indicating negative shocks. 0  
indicates the presence of transitory leverage effects in the conditional variance. 

Suppose information is held constant at time 2t  and before, Engle and Ng (1993) describe the 

relationship between 1t  and th  as the news impact curve. The news impact curves of GARCH and CGARCH 

models are symmetric and centered at 01 t . The news impact curves of EGARCH and TARCH are asymmetric 
with different slopes. 
 
Autoregressive Moving Average (ARMA) Models 

One of the most important models in econometrics is the random walk, which is basically an AR(1) process. 
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The above is the driftless random walk, if a constant is included it becomes the random walk with drift. To 
determine if an AR(p) process is stationary, involves examining the roots of its characteristic equation. Given the 

following AR(p) model, it can be said to be stationary if when written in the lag operator notation, the 1)( L
converge to zero: 
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  If this is the case, the autocorrelations decline to zero as the lag length is increased. For an AR(p) process to 
be stationary, the roots from the characteristic equation: 

0...1 2
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p zzz  , all need to lie outside the unit circle, i.e. are greater than 1. The random walk is 
an example of a non-stationary process, as its roots lie on the unit circle not outside: 
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  Where (1-z) is the characteristic equation and the root (z) lies on the unit circle. The same principle applies 
to higher orders too: 
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  In the above example both roots lie outside the unit circle, so the AR(2) process is stationary. The same 
applies for higher orders of lags too, although it becomes increasingly difficult to factorise these. Further 
characteristics of an AR(p) process are that the mean and variance of an AR(1) process are: 
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3. Empirical Results 
First, we estimated AR, MA and ARMA models for modeling Iran crude oil export.  Estimation results 

were shown by following Tables: 
Table 1. AR Model Estimation 

Dependent Variable: OIL   
Method: Least Squares   
Date: 10/05/11   Time: 22:55   
Sample (adjusted): 1353 1387   
Included observations: 35 after adjustments  
Convergence achieved after 4 iterations  

     Variable Coefficient Std. Error t-Statistic Prob.   
     C 1992.806 490.0320 4.066685 0.0003 

AR(1) 0.820672 0.069074 11.88097 0.0000 
     R-squared 0.810516     Mean dependent var 2419.586 

Adjusted R-squared 0.804774     S.D. dependent var 1073.831 
S.E. of regression 474.4652     Akaike info criterion 15.21770 
Sum squared resid 7428869.     Schwarz criterion 15.30658 
Log likelihood -264.3097     Hannan-Quinn criter. 15.24838 
F-statistic 141.1575     Durbin-Watson stat 1.432253 
Prob(F-statistic) 0.000000    

     Inverted AR Roots       .82   
      

746 



J. Basic. Appl. Sci. Res., 2(1)743-751, 2012 

 

Table 2. MA Model Estimation 
Dependent Variable: OIL   
Method: Least Squares   
Date: 10/05/11   Time: 22:56   
Sample: 1352 1387   
Included observations: 36   
Convergence achieved after 8 iterations  
MA Backcast: 1351   

Variable Coefficient Std. Error t-Statistic Prob.   

C 2432.595 216.2018 11.25150 0.0000 
MA(1) 0.966907 0.015877 60.89868 0.0000 

R-squared 0.687771     Mean dependent var 2500.153 

Adjusted R-squared 0.678588     S.D. dependent var 1163.549 

S.E. of regression 659.6534     Akaike info criterion 15.87526 

Sum squared resid 14794848     Schwarz criterion 15.96323 

Log likelihood -283.7547     Hannan-Quinn criter. 15.90596 

F-statistic 74.89438     Durbin-Watson stat 1.013085 

Prob(F-statistic) 0.000000    

Inverted MA Roots      -.97   

 
Table 3. ARMA(1,1) Model Estimation 

Dependent Variable: OIL   
Method: Least Squares   
Date: 10/05/11   Time: 22:58   
Sample (adjusted): 1353 1387   
Included observations: 35 after adjustments  
Convergence achieved after 10 iterations  
MA Backcast: 1352   

Variable Coefficient Std. Error t-Statistic Prob.   

C 2097.301 506.8855 4.137624 0.0002 
AR(1) 0.774291 0.097834 7.914301 0.0000 
MA(1) 0.391443 0.175449 2.231096 0.0328 

R-squared 0.828019     Mean dependent var 2419.586 
Adjusted R-squared 0.817270     S.D. dependent var 1073.831 
S.E. of regression 459.0293     Akaike info criterion 15.17792 
Sum squared resid 6742653.     Schwarz criterion 15.31124 
Log likelihood -262.6136     Hannan-Quinn criter. 15.22394 
F-statistic 77.03366     Durbin-Watson stat 2.071101 
Prob(F-statistic) 0.000000    

Inverted AR Roots       .77   

Inverted MA Roots      -.39   
 

             Then, we estimated conditional heteroskedasticity models such as ARCH, GARCH, TARCH, CGARCH, 
PARCH and EGARCH models.  Estimation results were shown as following Tables: 

 

Table 4. ARCH Model 
Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:07   
Sample: 1352 1387   
Included observations: 36   
Convergence achieved after 6 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2  

Variable Coefficient Std. Error z-Statistic Prob.   

C 2161.494 320.5815 6.742416 0.0000 
 Variance Equation   

C 864947.7 415828.6 2.080059 0.0375 
RESID(-1)^2 0.527589 0.642704 0.820890 0.4117 

R-squared -0.087135     Mean dependent var 2500.153 
Adjusted R-squared -0.153022     S.D. dependent var 1163.549 
S.E. of regression 1249.405     Akaike info criterion 16.51263 
Sum squared resid 51513416     Schwarz criterion 16.64459 
Log likelihood -294.2273     Hannan-Quinn criter. 16.55868 
Durbin-Watson stat 0.179576    
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Table 5. GARCH Model 
Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:08   
Sample: 1352 1387   
Included observations: 36   
Convergence achieved after 10 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

Variable Coefficient Std. Error z-Statistic Prob.   
C 2198.578 91.00054 24.16005 0.0000 
 Variance Equation   

C 855552.8 428986.5 1.994358 0.0461 
RESID(-1)^2 1.231406 0.068970 17.85422 0.0000 

GARCH(-1) -0.989187 0.014329 -69.03492 0.0000 
R-squared -0.069096     Mean dependent var 2500.153 
Adjusted R-squared -0.169324     S.D. dependent var 1163.549 
S.E. of regression 1258.207     Akaike info criterion 15.84007 
Sum squared resid 50658689     Schwarz criterion 16.01601 
Log likelihood -281.1212     Hannan-Quinn criter. 15.90148 
Durbin-Watson stat 0.182605    

 
Table 6. EGARCH Model 

Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:09   
Sample: 1352 1387   
Included observations: 36   
Convergence achieved after 33 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(4) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 

Variable Coefficient Std. Error z-Statistic Prob.   
C 2261.578 39.04335 57.92479 0.0000 
 Variance Equation   

C(2) 0.275641 0.984394 0.280011 0.7795 
C(3) 0.790350 0.619830 1.275107 0.2023 
C(4) 0.092057 0.288987 0.318550 0.7501 
C(5) 0.911647 0.091180 9.998341 0.0000 

R-squared -0.043243     Mean dependent var 2500.153 

Adjusted R-squared -0.177855     S.D. dependent var 1163.549 
S.E. of regression 1262.788     Akaike info criterion 15.42238 
Sum squared resid 49433627     Schwarz criterion 15.64231 
Log likelihood -272.6029     Hannan-Quinn criter. 15.49914 
Durbin-Watson stat 0.187131    

 
Table 7. PARCH Model 

Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:10   
Sample: 1352 1387   
Included observations: 36   
Failure to improve Likelihood after 13 iterations 
Presample variance: backcast (parameter = 0.7) 
@SQRT(GARCH)^C(6) = C(2) + C(3)*(ABS(RESID(-1)) - C(4)*RESID( 
        -1))^C(6) + C(5)*@SQRT(GARCH(-1))^C(6) 

Variable Coefficient Std. Error z-Statistic Prob.   
C 2167.962 85.76698 25.27735 0.0000 
 Variance Equation   

C(2) 1316238. 13761807 0.095644 0.9238 
C(3) 0.559381 0.608742 0.918913 0.3581 
C(4) -0.400236 0.258465 -1.548509 0.1215 
C(5) -0.578867 0.177186 -3.267006 0.0011 
C(6) 2.316911 1.700227 1.362706 0.1730 

R-squared -0.083838     Mean dependent var 2500.153 
Adjusted R-squared -0.264477     S.D. dependent var 1163.549 
S.E. of regression 1308.398     Akaike info criterion 15.91409 
Sum squared resid 51357196     Schwarz criterion 16.17801 
Log likelihood -280.4537     Hannan-Quinn criter. 16.00621 
Durbin-Watson stat 0.180122    
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Table 8. TARCH Model 
Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:11   
Sample: 1352 1387   
Included observations: 36   
Convergence achieved after 11 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + 
        C(5)*GARCH(-1)   

Variable Coefficient Std. Error z-Statistic Prob.   
C 2239.946 142.8934 15.67564 0.0000 
 Variance Equation   

C 855548.6 600686.9 1.424284 0.1544 
RESID(-1)^2 1.296070 0.450935 2.874183 0.0041 

RESID(-1)^2*(RESID(-1)<0) -0.671939 0.937880 -0.716445 0.4737 
GARCH(-1) -1.011483 0.162179 -6.236832 0.0000 

R-squared -0.051440     Mean dependent var 2500.153 
Adjusted R-squared -0.187110     S.D. dependent var 1163.549 
S.E. of regression 1267.739     Akaike info criterion 16.14739 
Sum squared resid 49822058     Schwarz criterion 16.36733 
Log likelihood -285.6531     Hannan-Quinn criter. 16.22416 
Durbin-Watson stat 0.185672    

 
Table 9. CGARCH Model 

Dependent Variable: OIL   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 10/05/11   Time: 23:13   
Sample: 1352 1387   
Included observations: 36   
Failure to improve Likelihood after 24 iterations 
Presample variance: backcast (parameter = 0.7) 
Q = C(2) + C(3)*(Q(-1) - C(2)) + C(4)*(RESID(-1)^2 - GARCH(-1))  
GARCH = Q + (C(5) + C(6)*(RESID(-1)<0))*(RESID(-1)^2 - Q(-1)) + C(7) 
        *(GARCH(-1) - Q(-1))   

Variable Coefficient Std. Error z-Statistic Prob.   

C 2256.066 61.70737 36.56072 0.0000 
 Variance Equation   

C(2) 1316238. 1854797. 0.709640 0.4779 
C(3) 0.968135 0.021617 44.78594 0.0000 
C(4) 0.753239 0.532684 1.414045 0.1573 
C(5) -0.095826 0.374531 -0.255856 0.7981 
C(6) 0.190507 0.563276 0.338212 0.7352 
C(7) 0.876838 0.491814 1.782864 0.0746 

R-squared -0.045264     Mean dependent var 2500.153 
Adjusted R-squared -0.261526     S.D. dependent var 1163.549 
S.E. of regression 1306.870     Akaike info criterion 15.51697 
Sum squared resid 49529400     Schwarz criterion 15.82487 
Log likelihood -272.3054     Hannan-Quinn criter. 15.62444 
Durbin-Watson stat 0.186769    

 
3.1. The Choice of Best Model 

In this section, we choice the best time series model based on Akaike information criterion,    Schwarz 
criterion and Hannan-Quinn criterion.  Based on Akaike information criterion, we choice ARMA(1,1) model.  Based 
on Schwarz criterion, we choice AR(1) model because Schwarz criterion is lowest statistic rather than other models. 
Based on Hannan-Quinn criterion, we choice ARMA(1,1) model. 

 
3.2.  Forecasting Iran Crude Oil Export with Selected Model 

The following plot indicates forecastingthe Iran crude oil export will decrease to 2097.317114 thousands 
oil barrels in Iran based on ARMA(1,1) model. 
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Table 10. crude oil export forecasts 

2000 2099.919 
2001 2099.328 
2002 2098.87 
2003 2098.516 
2004 2098.242 
2005 2098.03 

2006 2097.865 
2007 2097.738 
2008 2097.64 
2009 2097.563 
2010 2097.504 
2011 2097.458 
2012 2097.423 
2013 2097.396 

2014 2097.374 
2015 2097.358 
2016 2097.345 
2017 2097.335 
2018 2097.328 
2019 2097.322 
2020 2097.317 

 
The growth in consumption of domestically produced oil has been modest, owing to refining constraints. 

By contrast, fuel imports rose to 180,000 barrels per day (29,000 m3/d) in January 2005 from 30,000 barrels per day 
(4,800 m3/d) in 2000, and petrol consumption is estimated to have been around 1,800,000 barrels per day (286,000 
m3/d) in 2007 (before rationing), of which about one-third is imported. These imports are proving expensive, 
costing the government about US$4bn in the first nine months of 2007/08, according to parliamentary sources. 
Nearly 40% of refined oil consumed by Iran is imported from India. 

Iran contains 27 onshore and 13 offshore oil producing fields which are largely concentrated in the 
southwestern Khuzestan region near the Iraqi border. The Iranian government is heavily reliant on oil revenues and 
they have heavily subsidized the energy industries which figures out to be about 12% of Iran’s GDP. However, 
domestic oil consumption has decreased due to the alternative use of natural gas. Economic growth from these 
resources is uncertain and stunted in Iran due to these subsidies and population growth. Iran has been unable to 
reach it full production levels due to a combination of sanctions and war which has plagued the region. Iran’s oil 
fields have a natural decline rate at 8 percent for onshore wells and 10% for offshore fields. The Iranian recovery 
rate is currently approximately 27 percent which is well below the world average. Iran needs structural 
improvements made to coincide with their enhanced oil recovery efforts. 

 
4. Conclusion 

 
Iran’s economy has been highly dependent on the production and export of crude oil to finance government 

spending, and consequently is vulnerable to fluctuations in international oil prices. Although Iran has vast petroleum 
reserves, the country lacks adequate refining capacity and imports gasoline to meet domestic energy needs.  

The aim of this paper is forecasting Iran crude oil with time series model. We estimated AR, MA, ARMA, 
ARCH, GARCH, TARCH, CGARCH, PARCH and EGARCH models for modeling Iran crude oil export.  Based on 
Akaike information criterion, we choice ARMA (1,1) model.  Based on Schwarz criterion, we choice AR (1) model 
because Schwarz criterion is lowest statistic rather than other models. Based on Hannan-Quinn criterion, we choice 
ARMA (1,1) model.  We have forecasted Iran crude oil export with ARMA(1,1) model.  Results indicate that Iran 
crude oil export will decrease to 2097.317114 thousands oil barrels in Iran. 
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