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ABSTRACT 
 

In this paper, an elastoplastic FGM simply supported Euler-Bernoulli beam with rectangular section subjected to 
uniformly distributed transverse loading has been investigated by variational method. Material properties define by 
power law. The poisson’s ratio of the beam assumed to be constant. But the young’s modules vary continuously 
throughout the thickness direction symmetrically. The analytical solution illustrates stress response of the beam and 
the required moment to have fully plastic beam is determined. 
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4. INTRODUCTION 

 
Functionally graded materials (FGMs) are microscopically inhomogeneous composite that are usually made 

from a mixture of metals and ceramics. FGM are regarded as one of the most promising candidates for future 
advancedcomposites in many engineering sector such as the aerospace, aircraft, automobile, and defense industries, 
and most recently the electronic and bio medical sector [1]. 

Traditional composites comprised of two different materials have been widely used to satisfy the high 
performance demands. However, stress singularities in such composites may occur at the interface between two 
different materials,due to themismatch ofmaterials. Especially, in a high-temperature environment, for example in 
the engine combustion chamber of an air vehicle or a nuclear fusion reaction container, the relatively higher 
mismatch in thermal expansion coefficients will inducehigh residual stresses. Consequently, the composite may 
incur cracking or deboning. Therefore, the concept of such material (FGM) was introduced to satisfy the demand of 
ultra-high-temperature environment and to eliminate the stress singularities [2,3]. 

An FGM can be prepared by continuously changing the constituents of multi-phase materials in a pre-
determined volume fraction of the constituent material [4–6]. Due to the continuous change in material properties of 
an FGM, the interfaces between two materials disappear but the characteristics of two or more different materials of 
the composite are preserved. Studies reveal that the thermal residual stresses can be significantly relaxed by using a 
FGM [7–8]. 

Power-law function [9–10] and exponential function [11–13] are commonly used to describe the variations of 
material properties of FGMs. However, in both power-law and exponential functions, the stress concentrations 
appear in one of the interfaces in which the material is continuous but rapidly changing. Therefore, Hung and Chi[8] 
proposed a sigmoid FGM, which is composed of two power-law functions to define a new volume fraction. Chiand 
Chung [14] indicated that the use of a sigmoid FGM can significantly reduce the stress intensity factors of a cracked 
body. Because of the wide material variations and applications of FGMs, literatures corresponding to FGMs in the 
material constituent [14–15], fracture mechanics [9,12] have been rapidly increased in the last 10 years. The FGM 
may be applied to plate and beam structures as a thermal barrier. Therefore, understanding the mechanical behavior 
of an FGM beam is very important to assess the safety of the beam structure. To design a beam, it is necessary to 
have information about stress and maximum moment to have fully plastic beam. 

The literature reveals a continued interest among the research community to develop efficient mathematical 
models to predict the static response of thin and thick beams. In this paper, the principle of virtual work (PVW) is 
used to obtain the static equilibrium equations and the boundary conditions for functionally graded beam with 
distributed transverse loading. Deflection, stress distribution and the required moment to have fully plastic beam are 
presented.  

2. ANALYSIS 
 
In FGM material, the properties define under a specific function. Here, elasticity module and yield stress define as 
follow; 

10628 



Daneshmehr et al., 2012 

1
2

n

i
yE E
h

 
  

 
(1) 

1 1
2 2

p p

i
a y yY Y
a h h
                

    (2) 

 
Which iE   and  iY  are the magnitude of E ,Y  at top and bottom of the beam, h is the beam height and ,n p  are the 
material parameters. Figure 3 shows the variation of the young’s modules along y direction. Transvers 
loadingisdefined as follow; 
  mq x ax (3)

 
The normal stress is defined by the Hook’s law; 
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Which in above relation R is curvature radius and is the axial strain. So, we can rewrite the normal stress as follow; 
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Strain energy density regarding to Euler-Bernoulli beam by neglecting the shear strain energy density can be 
express; 

 
(8) 
 
The total strain energy stored in an elastic solid occupying a region V is then given by the 

integral over the domain: 
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The work done by external forces is obtaine as follow; 
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 Therefore, according to Figure 1, the total potential energy for this beam case is given by; 
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According to calculus of variation, the first variation of this quantity must vanish; 
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Now the first integral term can be integrated by parts twice to get 

   
4

0 04
0

0
0

L Ld dk q dx M M V V
dx dx
 

  
                  
 (17) 

The integral and boundary terms must all vanish, thus implying; 
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For this integral to vanish for all variations , the fundamental lemma in the calculusof variations implies that 
integrand must be zero, giving; 
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The deflection of the beam will be determined by solving the above equation;  
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By considering the boundry condition, the constants will be obtain; 
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And the stress will be determined as follow; 
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The required moment to produce this stress in beam in Elastic region obtained; 

Fig .1. Euler-Bernoulli beam geometry and external forces. 
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We assume that up to y’ in the beam is elastic and the rest is plastic (Figure 2), the moment for this elastoplastic for 
this deformation is; 
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The moment require for a section to become fully plastic is;  

  
2

1 2P i
phM Y b

p p
 

    
(29) 

 
Fig.2.Elastic and plastic region of cross section of the beam 

 
3. RESULTS AND DISCUSSION 

 
For a simply support beam subjected to transverse loading 2q ax (݉ = 2), height 0.4h m , thickness

0.2b m ,length 2L m  and with material property 3n p  , 70iE Gpa , 95iY MPa the magnitude of critical a  to 

start yielding from top and bottom at both ends of the beam is−6.1658 × 10ହ ே
ெ

. As a increases, the yield region 
increases from top and bottom to natural axis in y direction .along x direction, the plastic region starts from the mid 
length and expands to other ends. Figure 5 shows stress in 3D space for this case and figure 6 illustrates stress 
changes in x direction respect to y at 	ݔ = 	 ௟

ଶ
, intersecting x and Y shows that yielding starts at	ݕ = ± ௛

ଶ
. The require 

moment to start yielding is equal 54.1800 10 . Figure 4 and 7illustrate the deflection and slope of the beam. For the 
above considering beam. Maximum displacement is equal 3

max 2.9055 10 m    which at 1.071x m is occurred. 
This is shown in figure 4. In this point the slop of the beam is zero. As loading is increase,(ܽ = −8 × 10ହ), the 
beam remains elastic up to y′= ± 0.153, and from y′ up to top of the beam is plastic.Figure 7, shows this state. 

10631 



J. Basic. Appl. Sci. Res., 2(10)10628-10634, 2012 
 

 
Fig.3. Distribution of Young’s modulus along Y direction 

 
Fig.4.Distribution of  deflection along  the beam 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Distribution of axial stress of  FGM beam (3D) 
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Fig.6.Comparison of axial stress versus yield stressof the beam along x axes at ݔ = ௅

ଶ
 

  
Fig.7. Distribution of  slop  along  the beam 

 

 
Fig.8.Illustration of plastic and elastic region 

 
4. Conclusion 

 
This paper shows that, for an elastoplastic FGM Euler-Bernoulli beam subjected to a transverse loading, when 

the loading starts, the beam is fully elastic,as loading increases, the beam starts becoming plastic from top and end 
and it continues till the beam become fully plastic. The plastic region along x axes starts from middle of the beam 
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length, and expand to other two ends. Also, deflection, stress, and maximum bending to have fully plastic beam has 
been determined. These parameters will be useful for designing of a FGM beam. 
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