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ABSTRACT 
 
In this paper, a general analysis of one-dimensional non-steady-state temperature distribution equation in a hollow 
thick cylinder made of functionally graded Material(FGM) with non-uniform heat generation is developed. The 
temperature distribution is assumed to be a function of radius and time, with general thermal and mechanical 
boundary conditions. The material properties are assumed to depend on variabler and they are expressed as power 
functions of r. The homotopy perturbation  method (HPM) is used to solve the temperature distribution equation. In 
this method a nonlinear and complex and partial differential equation is transformed to series of linear and nonlinear 
and almost simpler differential equations. These set of equations are then solved secularly. 
KEYWORDS: Homotopy Perturbation Method, Functionally graded material, Secular Terms, non-steady-state heat 

transfer, Nonlinear Differential Equation, non-uniformheat generation   
 
List of symbols 

 ଵInner radiusݎ
 ଶOuter radiusݎ
ܶ(଴݇) temperature distribution 
 ଴ܿ଴Material constantߩ
D, E     Constant coefficients 
FConstant coefficients 
C (kJ/kg K) Specific heat 
h(W/݉ଶ K) Heat convection coefficients 
k(W/m K) Heat conductivity 
݇଴        Material constant 
݊	ଵ, ݊ଶ  Material constant 
݊ଷ         Generated heat constant 
t(s)Time 
r(m)       Radius 
HHomotopy operator 
L            Linear operator 
NNonlinear operator 
pHomotopy parameter (real number) 
 ଴ (W/݉ଷ) Heat generation rateݍ
°ࢗ

૙(W/݉ଷ) Heat generation constant 
Greek symbols 

ɸBoundary of the domain 
θ                  Function describing the initial condition 
ΩFunction describing the boundary condition 

 
1. INTRODUCTION 

 
FGM (functionally graded materials or functional gradient materials) are materials withnon-uniform 

microstructure, i.e. with (continuous or step wise) changes of (chemical and / or phase) composition and / or 
microstructure. In contrast to conventional coatings or joined materials these changes in FGM are more gradual in 
order to improve adhesion and avoid separation at the boundary (delamination) caused by the thermal stresses 
developing due to thermal expansion mismatch, the main disadvantage of coated or joined materials. For adhesion, 
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the thermal expansion mismatch should not exceed 25 %. In FGM the sharp boundary is replaced by a smooth 
transition region.The FGM concept originated in Japan in 1984 during the space plane project, in the form of a 
proposed thermal barrier material capable of withstanding a surface temperature of 2000 K and a temperature 
gradient of 1000 K across a cross section <10 mm. Since 1984, FGM thin films have been comprehensively 
researched, and are almost a commercial reality. FGMs offer great promise in applications where the operating 
conditions are severe. For example, wear-resistant linings for handling large heavy abrasive ore particles, rocket heat 
shields, heat exchanger tubes, thermoelectric generators, heat-engine components, plasma facings for fusion 
reactors, and electrically insulating metal/ceramic joints. They are also ideal for minimizingthermo mechanical 
mismatch in metal-ceramic bonding.[1] 

Analyticaland computational studies of appointing stresses and displacements in cylindrical shell made of 
FGMhave been carried out by some of researchers as following.Temperature and stress distributions were 
determined in a stress-relief-type plate of FGMs with steady state and transient temperature distributions by 
Awaji[2].The analytical solution for the stresses of FGMs in theone-dimensional case for spheres and cylinders are 
given by Lutz and Zimmerman [3,4]. A multi-layered material model was employed to solve the transient 
temperature field in an FGM stripwith continuous and piecewise differentiable material properties by Jin [5].He 
obtained a closed form asymptotic solution of the temperature field for short times, by using an asymptotic analysis 
and an integration technique and the Laplace transform. A general analysis of one dimensional steady state thermal 
stresses in a thick hollow cylinder under axisymmetric and non-axisymmetric loads was developed by Jobberies al. 
[6, 7].These authors consider the nonhomogeneous material properties as linear function. The thermal and 
mechanical stress analyses of these types of structures are sometimes carried out using the theory 
oflaminatedcomposites [8–13].A local boundary integral equation method with the moving least squares 
approximation of physical fields was applied to transient heat conduction analysis in functionally graded materials 
by Sladek et al. [14]. They solved the initial boundary value problem in the Laplace transform domain with a 
subsequent numerical Laplace inversion to obtain time-dependent solutions. MohammadSetareh and Mohammad 
Reza Isvandzibaei have studied FGM Cylindrical Shell with Clamped-Simply Support Boundary Conditions 
[15].Tarn et al. [16] have studied the end effects of steady state heat conduction in a hollow or solid circular cylinder 
of FGM under 2D thermal loads with arbitrary end conditions. They evaluated the decay length that characterizes 
the end effects on thermal field by using matrix algebra and Eigen function expansion. Thesensitivity analysis of 
heat conduction for functionally graded materials and the steady state, transient problem treated with the direct 
method and the adjoin method were presented by Chen et al. [17]. The same authors used perturbation techniques to 
derive the thermal stress equations ofthick hollow spheres and plates made of FGMs under different assumptions of 
temperature distributions .Theprecise time integration method is employed to solve the transient problem by them. 
Transient temperature field and associated thermal stresses in functionally gradedmaterials have been determined by 
using Finitedifference method (FEM/FDM) by Wanget[18].Thermal shock fracture of a FGM plate andthe thermal 
shock resistances of FGMs wereanalyzedby them. A finite element/finite difference method(FEM/FDM) was 
developed also to solve the timedependenttemperature field in non-homogeneous materials such as functionally 
graded materials by Wang et al. [19].Methods that allow finding solutions of any type of nonlinear physical and 
technical problems have been utilized in many application, recently,these methods include, among the others: the 
Adomiandecomposition method [20–22], variational iteration method [23–25], andhomotopy perturbation method 
[26–31]. In general, a mathematical formulation ofthose methods makes it possible to solve nonlinear operator 
equations. In this type of methods a sequence or functional series is constructed,whose limit is a function which is 
the solution of discussed problem (with appropriate assumptions). Usually, due to a quite fast convergence of 
appropriate sequences or series, determining of their few first components leads to a very good approximation of 
solution searchedThehomotopy perturbation is an effective solution method for abroad class of problems. 
Applications of this method for solving nonlinear ordinary differential equations with boundary conditions or 
similarproblems are presented in papers [32, 33].Perturbation method is one of the well-known methods to solve the 
nonlinear equations which was studied by a large number of researchers such as Bellman [34], Cole [35], 
andO’Malley [36].In the literature one can also find its applications in wave and diffusion equations [37–39], 
inverse problem of diffusion equation [40], Laplace equation [41] and hyperbolic partial differential equation [42]. 
Ganjiin many works [43–47] have dealt with homotopy perturbation method used in solution of various problems 
connected with heat transfer processes.Slota [48, 49] applied the method for determination of exact (or approximate) 
solution of one- or two-phase inverse Stefan problem.Another work [50] shows a utilization of the method 
mentioned forfindingtemperature distribution in the cast-mouldheterogeneous Most of works are devoted to steady 
or transient heat conduction models. Huang and Wang [51] estimate the unknown surface heat fluxes in the solid. 
Huang and Tsai [52] employed an inverse method to determine the time-dependent local heat transfer coefficients 
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for a plate fin.N. Moallemiet al. [53] show the application of Homotopy Perturbation Technique to Analysis non-
Newtonian Fluid Flow in Collector. 

The purpose of this study is to solving the nonlinear equation of conduction heat transfer with the variable 
Physical properties in FGM thick hollow cylindersbyHPM.many methods have been developed for approximating or 
numerical solutions.Perturbation method is based on the existence of small parameters.in order to overcome the 
problems associated with finding the small parameter ,different new methods  have been proposed to eliminate the 
small parameter ,for example homotopy perturbation method(HPM),variational iteration method (VIM),Adomian's 
decomposition method (ADM)and differential transformation method (DTM),but The HPM  has the merits of 
simplicity and easy execution. Unlike the traditional numerical methods, the HPM does not needdiscretization and 
linearization. The HPM can overcome the difficulties arising in calculation of Adomian's polynomials in Adomian's 
decomposition method.TheHPM yields very rapid convergence of the solution series in most cases and usually only 
a few iterations leading to high accuracy solutions. ThusHPM is a universal one which can solve various kinds of 
nonlinear equations. 
This paper is arranged in the following manner, in Section 2, we present Problem formulation. In Section 3 we solve 
the problem and determine non-steady state   heat transfer equation in FGM thick hollowcylinders with the variable 
Physical properties. In Section 4, we define the Initial and boundary conditions.In Section 5, we present the standard 
homotopy perturbation method. In Section 6, we present the modification technique of homotopy perturbation 
method for solving heat transfer equation. In Section 7, we present test example. In the end the conclusion and 
results are presented in section 8. 
 
2. Problem formulation 

Consider a long solid tube, insulated at the outer radius r2, and cooled at the inner radiusr1, with non-uniform 
heat generation ݍ଴(W/m3) within the solid. 
 
1. Obtain the general solution for the temperature distribution in the tube. 

 

 

 

 
Fig1.three- dimentional form of problem 

 
Assumptions: 

1. Non-Steady state conditions. 
2. One-dimensional radial conduction. 
3.  Non-Constant properties. (Functionally graded material) 
4. Non-Uniform volumetric heat generation. 

3. Solving: 
The heat transfer equation in functionally graded hollow cylinder with Uniform volumetricheat generation. 

Forplane strain and axisymmetric case is: 
 
ଵ
௥
డ
డ௥
ቀ݇ × ݎ × డ்

డ௥
ቁ + αቀడ்=°ݍ

డ௥
ቁ   (1) 

α=ρc 
It is assumed that the thermal conductivity k andρc arethe power functions of r as: 
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k=݇଴ݎ௡భ     (2) 
ρc= ߩ଴ܿ଴ݎ௡మ  (3) 
 ௡య(4)ݎ°଴ݍ=°ݍ

Withintroducing Eqs.(2),(3)and( 4) inEq.(1) the followingequation is obtained: 
݇଴(݊ଵ+1)×ݎ఍ିଵ×ቀడ்

డ௥
ቁ+݇଴×ݎ఍ ቀడ

మ்
డ௥మ

ቁ+ݍ଴°×ݎఎିଵ = ߩ଴ܿ଴ ቀ
డ்
డ௧
ቁ(5) 

Where 
 ଵ-݊ଶ  (6)݊=ߞ
ߟ = ݊ଷ-݊ଶ(7) 
 
Let's start with a formulation of a mathematical model of the considered Problem. 

4. Initial and boundary conditions  
 

ɸΙ=[(r,0),r∈[ݎଵ  [[ଶݎ,
ɸΙΙ=[(ݎଵ ,t),t∈[0,t]]   (8) 
ɸΙΙΙ=[(ݎଶ ,0),t∈[0,t]] 
 

On the boundary the initialCondition ɸΙ  is defined: 
V(r,0)= θ(r)    r∈[ݎଵ  ଶ](9)ݎ ,

On boundary ɸΙΙthe Dirichlet boundary condition is assumed: 
V(ݎଵ ,t)=Ω(t)(10) 

 
5. Basic idea of homotopy perturbation method 

The homotopy perturbation method iscombination of the classical perturbation technique and homotopy 
technique. To explainthe basic idea of the HPM forsolvingnonlineardifferentialequations, weconsiderthefollowing 
nonlinear differential equation: 

 
A(u) −f (r) = 0, r∈Ω,                                (11)        
 
Subject to boundary condition 
 
B(u, ∂u/∂n) = 0, r∈Γ,(12) 

 
WhereAis a general differential operator, Ba boundary operator, f (r)is a knownanalyticalfunction,Γis the 

boundary of domainΩand ∂u/∂ndenotes differentiation along the normal drawn outwards fromΩ. The operator Acan, 
generally speaking, be dividedinto two parts: a linear part Land a nonlinear part N. Eq. (12) therefore can be 
rewritten as follows: 

 
L(u) +N(u) −f (r) = 0.(13) 
 
In case the nonlinear Eq (11) has no “small parameter”, 
We can construct the followinghomotopy, 
H(v,p) = L(v)−L(ݑ଴)+pL(ݑ଴)+ p (N(v)− f (r)) = 0(14) 
 
Where  pis called homotopyparameter. According to the homotopy perturbation method, theapproximation solution 
of Eq. (4) canbe expressed as a series of the power of p, i.e., 
 
v =݌଴ݒ଴ +݌ଵݒଵ +݌ଶݒଶ +···,                        (15) 
v= limv = ݒ଴ +ݒଵ +ݒଶ +···.                      (16) 
p→1 
When Eq. (14) corresponds to Eq. (11) and Eq. (16) becomes the approximate solution of Eq. (11). 
 
6. In our case, for heat transfer Eq. (5) we obtain: 

ቀࣔ
૛ࢂ
ࣔ࢘૛
ቁ-1/Г× ࣀି࢘ ቀࣔࢂ

࢚ࣔ
ቁ+1/r×λ/ Г×ቀࣔࢂ

ࣔ࢘
ቁ = − ࢼ

Г
× ࣒࢘ି૚(17) 
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Where: 
Г = ݇଴/ߩ଴ܿ଴(18) 
λ=݇଴(݊ଵ+1)/ ߩ଴ܿ଴(19) 
β=ݍ଴°/ ߩ଴ܿ଴(20) 
ψ=η-	(21)ߞ 
L(V)=ቀడ

మ௏
డ௥మ

ቁ(22) 

N(V)= − ଵ
Г

× ఍ିݎ ቀడ௏
డ௧
ቁ			+ ଵ

୰
× ஛

Г
× ቀడ௏

డ௥
ቁ(23) 

f(r)=− ఉ
Г

×  టିଵ(24)ݎ
Therefore: 

H(V,P)=ቀడ
మ௏
డ௥మ

ቁ − ቀడ
మ௨଴
డ௥మ

ቁ+pቀడ
మ௨଴
డ௥మ

− ଵ
Г

× ఍ିݎ ቀడ௏
డ௧
ቁ			+ ଵ

୰
× ஛

Г
× ቀడ௏

డ௥
ቁ+ 	ఉ

Г
×  టିଵቁ(25)ݎ

Changingfromݑ଴to u(r). We consider ν, as the following: 
V= ݌଴ݒ଴ +݌ଵݒଵ +݌ଶݒଶ+݌ଷݒଷ +⋯(26) 
And the best approximation for the solution is: 
u = lim (V) 
p→1 
V =ݒ଴ + ݒଵ +ݒଶ +ݒଷ+···(27) 
Comparison of the expressions with the same powers of the parameterp gives the following equations: 

 
૚:ቀࣔ࢖

૛ࢂ૚
ࣔ࢘૛

ቁ+ ቀࣔ
૛࢛૙
ࣔ࢘૛

ቁ-૚
Г

× ࣀି࢘ ቀ࢛ࣔ૙
࢚ࣔ
ቁ+૚

ܚ
× ૃ

Г
× ቀ࢛ࣔ૙

ࣔ࢘
ቁ+ࢼ

Г
× ࣒࢘ି૚(28) 

:૛࢖ ቀࣔ
૛ࢂ૛
ࣔ࢘૛

ቁ-૚
Г

× ࣀି࢘ ቀࣔ࢜૚
࢚ࣔ
ቁ+૚

ܚ
× ૃ

Г
× ቀࣔ࢜૚

ࣔ࢘
ቁ(29) 

:૜࢖ ቀࣔ
૛ࢂ૜
ࣔ࢘૛

ቁ-૚
Г

× ࣀି࢘ ቀࣔ࢜૛
࢚ࣔ
ቁ+૚

ܚ
× ૃ

Г
× ቀࣔ࢜૛

ࣔ࢘
ቁ(30) 

In the complete form: 
ቀࣔ:࢏࢖

૛࢏ࢂ
ࣔ࢘૛

ቁ-૚
Г

× ࣀି࢘ ቀࣔ࢜(ି࢏૚)
࢚ࣔ

ቁ+૚
ܚ

× ૃ
Г

× ቀࣔ࢜(ି࢏૚)
ࣔ࢘

ቁ  i≥2(31) 
The above partial differential equations must be supplemented byconditions ensuring a uniqueness of the 

solution. For Eq. (28) we assumethe following conditions: 
 
ଵݎ)ଵݒ+(ଵ, tݎ)଴ݒ , t) =Ω(t) 
(32) 
ௗݎ)଴ݒ , t)+ݒଵ(ݎଵ , t) =Ωd(t) 

Whilefor Eq. (31) conditions are in the form (for vi that i≥2): 
ଵݎ)௜ݒ ,t)=0(33) 
ௗݎ)௜ݒ ,t)=0 
In this way, the solution of problem was brought to the sequenceof easy to solve partialdifferential equations. 

Looking for the solution of the above problem, we need to define an 
Initialapproximation v0, which we can assume as the function determining the initial condition: 
 
 ଴(r,t)= θ(r)(34)ݒ

 
7. Test problem: 

The application of the homotopy perturbation method for the functionally graded thick hollowCylinder 
problems 

With non-uniformheat generationthatdescribed in the fig (2) will be illustrated in the example in whichsuppose 
that the inner surface is made ofalumina (ceramic).The alumina specifications are 

	k଴ = 46 W/m.K 
c଴ = 0.76kJ/kg.K 
 ଴ = 3800 kg/m3ߩ
Inner radius ݎଶ is 30.5cm, ݎௗ=30cm, inner radius ݎଵ  is 25cm 
݊ଵ=1.3 
݊ଶ=0.2 
݊ଷ=2 
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 ଴°=1000 watt/݉ଷݍ
Initial and boundary condition: 

⎩
⎪
⎨

⎪
⎧ θ(r) = 800rଶ + 1000r

Ω(t) 	=
1
4 tଶ + 300									

Ωd(t) = 372 +
1
4 tଶ +

1
6 t

 

We can determineГ, λ, β, ψ by replacing	ܓ૙,  .૙° at equations (6),(7),(18),(19),(20),(21)ࢗ, ૜࢔,૛࢔,	૚࢔,૙,࣋૙܋
As the initial approximationݒ଴the function that satisfies the initialcondition is taken: 
 
଴(r,t)= θ(r)ݒ = 800rଶ + 1000r 
 
Solving now Eq. (28)with boundary and initial conditions Eq.(32) that  ી(ܚ) and ષ(ܜ) and ષ(ܜ)܌ are given above: 
 
ଵ(r,t) =−800ݒ × ଶݎ − 1840.0954 × ଶݎ − 383.3532 × ݎ) × (ln	r) − −(ݎ 18.2693 × ଵ.଻ݎ + 3.33333 × ݎ × ݐ +
969.1971 × ݎ + .25 × ଶݐ − .8333 × ݐ − 304.26102 
 
 
For the functions vi(x, t), i≥2 by solving the Eq. (31) for i=2with boundary condition Eq.(33). Finally weobtain: 
 

ଶݒ (r,t)= 1840.0954 × ଶݎ + 4232.4035 × ଶݎ + 2645.252 × ݎ)) × (ln	 −(ଶ(ݎ (2 × ݎ × ln	r) + 2 × (ݎ +
60.0302 × ଵ.଻ݎ − 7.6669 × ݎ) × ln	r− (ݎ × ݐ − 2229.2502 × ݎ) × ln	r − (ݎ + 122389.5426 × ଵ.ଽݎ +
18358.61458 × ଵ.ଽݎ × ݐ − 30597.5692 × ଵ.ଽݎ − 65251.34 × ݎ − 10922.744 × ݎ × ݐ + 3580.5304 +
1408.0878 ×  ݐ

And Forthe functions vi(x, t), i≥2 by solving the Eq. (31) for i=3 with boundary condition Eq. (33). Finally 
we obtain: 
 
546 × ଶݎ − 2028.114 × ݎ)) × ଷ(ݎ݈݊ − (3 × ݎ × (lnݎ)ଶ) + (6 × ݎ × ln	r)− (ݎ6 − 197.25 × ଵ.଻ݎ + 8.8173 × ݎ) ×
ଶ(ݎ݈݊) − (2 × ݎ × ln	r) + (ݎ2 × ݐ + 2563.7491 × ݎ) × ଶ(ݎ݈݊) − 2 × ݎ × (ln	r) + 2 × −(ݎ 312786.8743 × ଵ.ଽݎ −
4692.183 × ଵ.ଽݎ × ݐ + 78197.1877 × ଵ.ଽݎ + 150084.6 × r	lnݎ) − (ݎ + 25123.472 × ݎ) ×
−r	−13967.3ln	ଷ(r,t)=ݒ (ݎ × ݐ − 281507.3298 × ଵ.ଽݎ)) × ln	r) − (( ଵ

ଵ.ଽ
) × (ଵ.ଽݎ − ((ଵ

.ଽ
) × −(ଵ.ଽݎ (ଵ.ଽݎ +

2.286904762 × 10଼ × ଼.ଶݎ − 4.010526316 × 10଼ × ଵ.ଽݎ − 9.822222222 × 10଼ × ݎ .ଽ + 1181335832 × ݎ +
35243.156 × ݎ × ݐ + 1.08234848 × 10଻ + 6499.3231 ×  ݐ
 

The four-term expansion in Eq. (25) now becomes: 
V=ݒ଴ +  ଷݒ+ଶݒ+ଵݒ
Therefore: 
,ݎ)ܸ (ݐ = 800rଶ + 1000r − 800 × ଶݎ − 1840.0954 × ଶݎ − 383.3532 × ݎ) × (ln	r) − −(ݎ 18.2693 × ଵ.଻ݎ +

3.33333 × ݎ × ݐ + 969.1971 × ݎ + .25 × ଶݐ − .8333 × ݐ − 304.26102 + 1840.0954 × ଶݎ + 4232.4035 × ଶݎ +
2645.252 × ݎ)) × (ln	 −(ଶ(ݎ (2 × ݎ × ln	r) + 2 × (ݎ + 60.0302 × ଵ.଻ݎ − 7.6669 × ݎ) × ln	r− (ݎ × ݐ −
2229.2502 × ݎ) × ln	r − (ݎ + 122389.5426 × ଵ.ଽݎ + 18358.61458 × ଵ.ଽݎ × ݐ − 30597.5692 × ଵ.ଽݎ −
65251.34 × ݎ − 10922.744 × ݎ × ݐ + 3580.5304 + 1408.0878 × ݐ − 13967.3546 × ଶݎ − 2028.114 × ݎ)) ×
ଷ(ݎ݈݊ − (3 × ݎ × (lnݎ)ଶ) + (6 × ݎ × ln	r) − −(ݎ6 197.25 × ଵ.଻ݎ + 8.8173 × ݎ) × ଶ(ݎ݈݊) − (2 × ݎ × ln	r) +
(ݎ2 × ݐ + 2563.7491 × ݎ) × ଶ(ݎ݈݊) − 2 × ݎ × (ln	r) + 2 × (ݎ − 312786.8743 × ଵ.ଽݎ − 4692.183 × ଵ.ଽݎ × ݐ +
78197.1877 × ଵ.ଽݎ + 150084.6 × −r	lnݎ) (ݎ + 25123.472 × ݎ) × ln	r− (ݎ × ݐ − 281507.3298 × ଵ.ଽݎ)) ×
ln	r) − (( ଵ

ଵ.ଽ
) × −(ଵ.ଽݎ ((ଵ

.ଽ
) × −(ଵ.ଽݎ (ଵ.ଽݎ + 2.286904762 × 10଼ × ଼.ଶݎ − 4.010526316 × 10଼ × ଵ.ଽݎ −

9.822222222 × 10଼ × ݎ .ଽ + 1181335832 × ݎ + 35243.156 × ݎ × ݐ + 1.08234848 × 10଻ + 6499.3231 ×  ݐ
Heat transfer equation ࢀ(࢘,  :࢙࢏	(࢚
,࢘)ࢀ ,࢘)ࢂ	=(࢚ ࢚) 
 

8. RESULTS& DISCUSSION 
 
In the figure 2, the Radial distribution of heat conductivity for ݊ଵ=1.3, k0 = .046 KW/m K, from inner radius 

 ଵ=.25 m andݎଶ=.305 m is shown. In the figure 3 the Radial distribution of temperature at inner radiusݎ ଵ=.25 m toݎ
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outerradius ݎଶ =.305 m is shown separately in the time interval [0,10]; In the figure 4 Radial distribution of 
temperature in the t=0 for initial condition is presented.  

Figure 5 shows the Temperature distribution for different time interval between inner radius ݎଵ = 25 cm and 
outer radius ݎଶ = 30.5 cm. This diagram is shown for functionally graded parameters ݊ଵ=1.3, ݊ଶ=.2, ݊ଷ=2, From this 
chart can be concluded that at low times effect of initial conditions is more than the heat generation parameter and 
with the time increasing the effect of heat generation surpass the initial condition and the concavity of the curve 
changes from downward to upward. 

 

Fig. 2: Radial distribution of heat conductivity for ݊ଵ=1.3, ݇଴ = .046 KW/m. K 

 

Fig 3: Radial distribution of temperature for 0≤t≤10 at r=25 cm &r=30.5 cm 
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Fig4: Radial distribution of temperature for initial condition 

 

Fig.5 History of temperature radial distribution for݊ଵ=1.3, ݊ଶ=0.2, ݊ଷ=2,ݎଵ=25 cm ,  ଶ=30.5 cmݎ
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