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ABSTRACT 
 
The adiabatic parameter dynamics of solitons due to The Gardner’s equation is very widely studied in different areas 
of Physics: Plasma Physics, Fluid Dynamics Quantum Field Theory, Solid State Physics and others. The Gardner’s 
equation is famous as the mixed KdV-mKdV equation. The objective and goal of this paper is to present the 
analytical Solution of Gardner equation, one of the newest, powerfuland easy-to-use analytical methods is the 
homotopy perturbation method (HPM), which isapplied in this paper to solve Gardner equation with high 
nonlinearity order. Then, we solve Gardner equation with the homotopy analysismethod (HAM) and Adomian’s 
decomposition method (ADM) and obtain analytical solution. In the end, we compared the results with each 
other.The homotopy analysis method (HAM)contains the auxiliary parameter ħ that provides us to adjust and control 
the convergence region of solution Series. .The study has highlighted the efficiency and capability of 
aforementioned methods in solving Gardner equation which has risen from a number of important physical 
phenomenon’s. 
KEYWORDS:homotopy perturbation Method, Adomian’s Decomposition Method, homotopy analysis method, 

Gardner equation, HPM, HAM, ADM,KdV-mKdV equation 
 

1. INTRODUCTION 
 

The mathematical theory of nonlinear evolution equations were starting from theKorteweg-de Vries (KdV) 
equation and the modified Korteweg-de Vries (mKdV)equation. These theorieswere an importantfield of research 
for researcher in the past decades [1-10]. Korteweg and Vries formodeling Russell’s phenomenon of solitons 
derived KdV equation [11] like shallow water waves with small but finite amplitudes [12]. Solitons are localized 
waves that propagate without change of its formation and velocity properties and stable versusreciprocalimpact [13]. 
It has been used to qualify important of physical phenomena such as magneto hydrodynamics waves in warm 
plasma and ion-acoustic waves [14]. The Gardner’s equation, that is known as the mixed KdV-mKdV equationis 
studied in various areas of Physics includes Plasma Physics,Fluid Dynamics, Quantum Field Theory, Solid State 
Physics and others. This Gardner equation shows up, particularly, in the basis of internal gravitywaves in a density-
stratified ocean. This is usually described by theKdV equations and its versions with small nonlinearity. However, 
there aresituations when waves with powerful nonlinearity are experienced, similarto the case ofCoastal Ocean 
Probe Experiment during 1995 in the Oregon Bay, the problemof creating ansufficient theoretical model was 
imagined necessary. This lead to the study of the Gardner equation [1],the dimensionless form of Gardner 
equationwill be studied in this paper, for real aand	b, is given by 
 

+ a×u +b× u + =0(1) 

 
Many  standard methods for solving nonlinear partial differential equations are presented [15]; for example, 

Backland transformation method [16], Lie group method [17] and Adomian’s decomposition method [18], inverse 
scattering method [19], Hirota’s bilinear method [20], homogeneous balance method [21], He's homotopy 
perturbation method (HPM) [22-27, 28]and VIM [29, 30, 31, 32];Many researchers chose the similar kinds of 
problems for study in other applications [33-37] and many strong methods have been proposed to obtain the exact 
solutions of nonlinear differential equations; for example, Backlund transformation [38],[39], Darboux 
transformation[40] and the inverse scattering method [41]. 
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The homotopy perturbation method (HPM)was established by He [42-45]. The method is a strong and effective 
technique to find the solutions of Non-linear and linear equations. The homotopy perturbation method is coupling of 
the perturbation and homotopy methods. This method can take the advantages of the conventional perturbation 
method while deleting its restrictions. HPM has been used by many authors [46-49] solve many types of linear and 
non-linear equations in science and engineering.In this paper, homotopy perturbation method (HPM) [50-52]and 
Liao's homotopy analysis method (HAM) [53] are used to conduct an analytic study on the Gardner equation and 
then compared with Adomian’s decomposition method (ADM) in order to show all the Methods above are capable 
and useful in solving a large number of Linear or nonlinear differential equations, also all the aforementioned 
methods give rapidly convergent successive approximations, approximations can be used for numerical purposes. 

 
2. Basic idea of homotopy perturbation method  

The homotopy perturbation method[54, 55, 56, 57, 58, 59, 60] is combination of the classical perturbation 
technique and homotopy technique. To explain the basic idea of the HPM for solving nonlinear differential 
equations, we consider the following nonlinear differential equation: 
 
A(u) 	− f	(r) = 	0, r ∈ Ω,                                             (2)        
 
Subject to boundary condition 
 
B(u,∂u/ ∂n) 	= 	0, r∈ Γ,(3) 
 
Where 퐀 is a general differential operator, 퐁 a boundary operator, 퐟	(퐫) is a known analytical function,  횪 is the 
boundary of domain 훀  and 훛퐮/훛퐧 denotes differentiation along the normal drawn outwards from훀. The operator 퐀 
can, generally speaking, be divided into two parts: a linear part 퐋 and a nonlinear part퐍. Eq. (3) therefore can be 
rewritten as follows: 
 
L(u) 	+ N(u) 	− f	(r) 	= 	0.  (4) 
 
In case the nonlinear Eq. (2) has no “small parameter”,We can construct the following homotopy, 
 
H(v, p) 	= 	L(v) − L(u ) + pL(u ) + 	p	(N(v) − 	f	(r)) 	= 	0(5) 
 
pis called homotopy parameter.According to the homotopy perturbation method, the approximation solution of Eq. 
(5) can be expressed as a series of the power of p, i.e. 
 
v =p v  +p v  +p v  +···,                                              (6) 
v = lim v = v  +v   +v   +···.                                     (7) 
p→1 
When Eq. (5) corresponds to Eq. (2) and Eq. (7) becomes the approximate solution of Eq. (2). 
In our case, for GardnerEq. (1) we obtain: 

+au +bu + =0            (8) 

Where:      
퐚And	퐛 are constant 
L(V) =   (9) 

N(V) =av  +bv  +   (10) 

f(r) = 0(11) 
Therefore: 

H(V, P) = - +p ( + a× v  +b× v  + − 0)  (12) 

Changing from u 	to 퐮(퐫). We consider ν, as the following: 
 
V = p v  +p v  +p v  +p v + ⋯(13) 
 
And the best approximation for the solution is: 
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u	 = 	lim	(V) 
p→1 
V	 = v 	+ 	v 	+ 	v 	+ 	v 	+···(14)                
Comparison of the expressions with the same powers of the parameter p gives the following equations: 
 

퐩ퟏ: - +a× v +b× (v )^2 + (15) 

 

퐩ퟐ: +a×( v + v )+b× (v + 2 × v × v × )+  (16) 

 

퐩ퟑ: +a×(v + v + v )+b× (v + v + 2 × v × v × + 2 × v × v × )+    (17) 

 
퐩ퟒ: +a×(v + v + v + v )+b× (v + v + 2 × v × v × + 2 × v × v × + 2 ×

v × v × + 2 × v × v × )+ (18) 

 
퐩ퟓ: +a×(v + v + v + v + v )+b× (v + v + v + 2 × v × v × + 2 × v ×

v × + 2 × v × v × + 2 × v × v × + 2 × v × v × )+  (19) 

 
퐩ퟔ: +a×(v + v + v + v + v + v )+b× (v + v + v + 2 × v × v × +

2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v ×

v × )+  (20) 

 
퐩ퟕ: +a×(v + v + v + v + v + v + v )+b× (v + v + v + v + 2 ×

v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v ×

+ 2 × v × v × + 2 × v × v × )+ (21) 

 
퐩ퟖ: +a×(v + v + v + v + v + v + v )+b× (v + v + v + v + 2 ×

v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v ×

+ 2 × v × v × + 2 × v × v × + 2 × v × v × + 2 × v × v × )+  (22) 

 
The above partial differential equations must be supplemented by conditions ensuring a uniqueness of the solution. 
For above equations we assume the following conditions in the Example 1: 
 
Application of Homotopy Perturbation Method 
Example1 
Consider the following Gardner equation with initial value problem [24]: 

 +a u  +bu  +  = 0       (23) 

 
u 	(x, 0) = x 
	u (x, 0) = 0 

u (x, 0) =0 (24) 
u (x, 0) = 0 

. 

. 
u (x, 0) = 0m>0,m = n 
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퐧is the order of 퐩in Equation[13].  
By Assuminga=-1/6, b=-1/9, n =8and above initial conditions a solution for equationssystem [15-22] is as follows: 
 
Important Point: We assume n=8 because after 8 iteration the sum of homotopy perturbation sentences converged 
 
u (푥, 푦) = xt + x t(25) 
 
u (푥, 푦) = + + (26) 
 
u (푥, 푦) = − + + + + (27) 
 
u (푥, 푦) = − − + + + + (28) 
 
u (푥, 푦) = − − − + + + + (29) 
 
u (푥, 푦) = − t − xt − x t − x t + x t + x t +

x t + x t (30) 
 
u (푥, 푦) =

t − xt − x t − x t − x t + x t +

x t + x t + x t (31) 
 
u (푥, 푦) = t + xt − x t − x t − x t −

x t + x t + x t + x t + x t (32) 
 
Having	u , i = 0, 1,…., 8, the solution u	(x, t) is as: 
 
U(x,t)=x+ xt + x t+ + + − + + + + − − + + + +

− − − + + + + − t − xt −
x t − x t + x t + x t + x t + x t +

t − xt − x t − x t − x t + x t +

x t + x t + x t + t + xt − x t −

x t − x t − x t + x t + x t +

x t + x t (33) 
 
3. Basic idea of Homotopy analysis method (HAM) 

In this section we employ the homotopy analysis method [61-66] to the discussed problem. To show the basic 
idea, 
Let us consider the following differential equations 
 
N[u(τ)] = 0(34) 
 

 Where퐍 is a nonlinear operator, 훕 denotes independent variable, 퐮(훕) is an unknown function, respectively. 
For 

 Simplicity, we ignore all boundary or initial conditions, which can be treated in the similar way. By means 
of 

Generalizing the traditional homotopy method, Liao [67] constructs the so-called zero-order deformation equation 
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(1 − 	p	)L[ϕ	(τ; 	p)−	u 	(τ)] = p	ħ	H(τ)	N[ϕ	(τ; 	p)](35) 

 
Wherep ∈ [0, 1]	is the embedding parameter, ħ	 ≠ 0 is a non-zero auxiliary parameter, H(τ) ≠ 0 is an auxiliary 
Function, L is an auxiliary linear operator, u ( τ) is an initial guess of u (τ),ϕ	(τ; 	p)is a unknown function, 
Respectively, it is important that one has great freedom to choose auxiliary things in HAM. Obviously, whenp	 = 0 
Andp	 = 1, it holds 
 
ϕ(τ; 	0) = 	u (τ) 
ϕ	(τ; 	1) = 	u	(τ)(36) 
 
Respectively, Thus as ρ increases from 0to1, the solution ϕ(τ; 	p) varies from the initial guess u (τ) to the solution u 
(τ).Expanding ϕ(τ; 	p)in Taylor series with respect to퐩, one has 
 
ϕ (τ; p) =u  (τ) +∑ u 	(τ)p∞ (37) 
 
u  (τ)= ǃ

	(τ;	 ) | (38) 
 
If the auxiliary linear operator, the initial guess, the auxiliary parameterħ,and the auxiliary function are so properly 
Chosen, the series (2) converges at p =1, one has 
 
 
u (τ)=u  (τ) +∑ u 	(τ)∞ (39) 
 
Which must be one of solutions of original nonlinear equation, as proved by Liao [67],Asħ	 = −1andH(τ) = 1,  
Eq. (35) Becomes 
 
(1 − 푝)L [ϕ (τ; p) -u  (τ)] +p N [ϕ (τ; p)] =0(40) 

 
This is mostly used in HPM, whereas the solution can be obtained directly without using Taylor series [68, 69]. 
According to Eq. (41), the governing equation can be deduced from the zero-order deformation equation (35). 
The vector is defined as 

 
={u (τ), u (τ), … , u 	(τ)}(41) 

Differentiating Eq. (35) m times with respect to the embedding parameter p, and then setting p = 0 and 
Finally dividing them by m!We will have the so-called mth-order deformation equation as 
 
L [u  (τ) -x u  (τ)] = ħ H (τ) R (u )(42) 
 
Where 
R  (u ) =

( )ǃ
	[ (τ;	 )] | 	(43) 

 
And 
 
x = 0									m ≤ 1

1									m > 1(44) 
 
It should be emphasized that u 	(τ) for m ≥ 1 is governed by the linear equation (38) with the linear boundary 
Conditions coming from the original problem, which can be easily solved using the symbolic computation Software. 
 
Application of Homotopy analysis Method 
In the following, we apply HAM to solve Gardner equation in the example 1: 
 
L(V) = Ѳ(45) 
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N(V) =a× ѳ Ѳ
τ
 +bѳ ѳ

τ
 + ѳ

τ
(46) 

Review: a=-1/6, b=-1/9 
Initial conditions: 
 
Ѳ  (τ, 0)=	τ 
Ѳ  (τ, 0)=0 
Ѳ (τ, 0)=0(47) 
Ѳ  (τ, 0)=0 
      . 
      . 
Ѳ  (τ, 0)=0                            
To obey both the rule of solution expression and the rule of the coefficient ergodicity, the corresponding 
Auxiliary function can be determined uniquelyH(τ) 	= 	1.Then 
 
(1 − p	)L[ϕ	(τ; 	p)−	u 	(τ)] = p	ħ	N[ϕ	(τ; 	p)](48) 

 
Following the homotopy analysis method 

 
Ѳ (τ,t)= (−3hτ− 2hτ )t(49) 

 
				Ѳ (τ,t)= h τt + h τ t + h τ t (50) 

 
Ѳ (τ,t)= h t − τh t − τ h t − τ h t − τ h t (51) 
 
Ѳ (τ,t)=	− h t − τh t + τ h t + τ h t + τ h t + τ h t (52) 
 

Ѳ (τ,t)=	−h ( (− − τ− τ + τ + τ + τ + τ )t +

τ (− − τ + τ + τ + τ + τ )t τ)(53) 
 

Ѳ (τ,t)=h ( (− − τ− τ − τ + τ + τ + τ +

τ )t + 2( − τ− τ − τ − τ + τ + τ +

τ + τ )t τ)    (54) 
 

Ѳ (τ,t)=	−h t (15τ(− − τ− τ + τ + τ +

τ + τ )t + 4h (( − τ− τ − τ −

τ + τ + τ + τ + τ )t + 7( +

τ− τ − τ − τ − τ + τ +

τ + τ + τ )tτ)) (55) 
 
After trying higher iterations with the unique and proper assignment ofħ, the results will be converged. 
 
Ѳ(τ,t)=Ѳ (τ,t)+Ѳ (τ,t)+Ѳ (τ,t)+Ѳ (τ,t)+…..+Ѳ (τ,t)(56) 
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Ѳ(τ,t)=	τ + 	 (−3hτ − 2hτ )t + h τt + h τ t + h τ t + h t − τh t − τ h t −
τ h t − τ h t − h t − τh t + τ h t + τ h t + τ h t +

τ h t −

h − − τ − τ + τ + τ + τ + τ t +

τ − − τ + τ + τ + τ + τ t τ + h ( (− −

τ − τ − τ + τ + τ + τ + τ )t + 2( −

τ − τ − τ − τ + τ + τ + τ +

τ )t τ)− h t (15τ(− − τ − τ + τ + τ +

τ + τ )t + 4h (( − τ − τ − τ −
τ + τ + τ + τ + τ )t + 7( +

τ − τ − τ − τ − τ + τ +

τ + τ + τ )tτ)) (57) 
 

4. Description of the Adomian decomposition method  
For the sake of generality, the Adomian’s method is described as applied to a nonlinear differential equation 
Fu = g	, WhereF represents a nonlinear differential operator. The technique consists on decomposing the linear part 
of FintoL + R, where	L	is an operator easily invertible and R is the remaining part. Representing the nonlinear term 
byN, the equation in canonical form is 
 
Lu + Ru + Nu = g(58) 
 
Representing the inverse of the operator L asL , one gets the following equivalent equation: 
 
L Lu = g − L Ru− L Nu(59) 
 
Being L the operator derivative of order n, one representsL  as the n-fold integration operator. Thus, 
 
L Lu = u + a(60) 
 
Wherea is the term emerging from the integration and one gets 
 
u = g − a− L Ru− L Nu(61) 
 

A series solution	u = ∑ u  is looked for. Identifying u asg − a, the rest of the termsu , n > 0 will further 
be settled by a recursive relation. The key of the method is to decompose the nonlinear term Nu in the equation (61), 
into a particular series of polynomials	Nu = ∑ A , being A  the so-called Adomian’s polynomials. Each 
polynomial A  depends only onu , u , … , u . Adomian introduced formulae to generate these polynomials for all 
kinds of Nonlinearities [70, 71, 72, 73]. It has also been shown that the sum of the Adomian’s polynomials is a 
generalization ofthe Taylor series in a neighborhood of a function u  rather than a point 
 
Nu = ∑ A = ∑

ǃ
(u − u ) N( )(u )(62) 

 
Tending the general term of the series to zero very fast, as ퟏ

(퐦퐪)ǃ, according to the optimal choice of the initial term, 
for m	terms and q the order of the linear operator L [15] and [27]. 
Substituting 퐮 = ∑ 퐮퐧퐧 ퟎ  and 퐍퐮 = ∑ 퐀퐧퐧 ퟎ  into Eq. (61) one gets 
 
∑ u = g − a − L R∑ u − L ∑ A (63) 
 
To determine the components u (x, t), n = 0,1,2, …, one can employ the recursive relation 
u = g − a, 
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u − L Ru − L A (64) 
u − L Ru − L A  
. 
. 
. 
u − L Ru − L A  
 
Adomian’s polynomials were formally introduced in [74, 75, 71, 72, 73], and expressed as 
 
A (u , u , … , u ) = ǃ N(∑ λ u ) (65) 
This formula is obtained by introducing, for the sake of convenience, the parameter훌, and writing 
 
u(λ) = ∑ λ u     (66) 
 
N(u(λ)) = ∑ λ A    (67) 
 
Expanding in a Taylor series 퐍(퐮(훌)) in a neighborhood of 훌 =0 one gets 
 
N u(λ) = ∑

ǃ N u(λ) 		λ (68) 
 
=∑ ǃ N(∑ λ u ) 			λ (69) 
 
From which Eq. (65) follows immediately. 
Other methods have been developed for the calculation of Adomian’s polynomials 퐀퐧 [74, 76–78]. The next 
theorem [74, 79], allows the infinite series representing the Adomian’s polynomials,퐀퐧, to be substituted by a finite 
sum, fact that allows its computation. 
Theorem Adomian’s polynomials A  may be computed by the formula 
 
A = ǃ N(∑ λ u ) (70) 
Application of Adomian decomposition method to Gardner equation 
 

 +a u  +bu  +  = 0            ,             u(x, 0) = u  (x) =x(71) 

 
Following Adomian, the linear operators expressed by Eqs. (72) Are defined. 
 

L (0) = (0),L (0) = (0)(72) 

Applying the inverse operator of  L (0) = (0)   ,L (0) = ∫ (0) dt, to both sides of Gardner equation one 
obtains 
u(x, t) = u  (x)+ L (-a u - bu - )(73) 

 
According to Adomian’s method, one assumes that the unknown function u(x, t)	can be expressed by an infinite  
Sum of components of the form 
 
u(x, t) = ∑ u (x, t)(74) 
 
The nonlinear term u  into an infinite series of Adomian’s polynomials 
 
u = ∑ A (75) 

And the nonlinear term u into an infinite series of Adomian’s polynomials 
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u = ∑ B (76) 
 
Substituting Eqs.(74) And (75) and (76) into Eq. (73) one obtains 
 
∑ u = u (x) + L (- ∑ u − a × ∑ A − b × ∑ B )(77) 

 
To determine the components of	u (x, t), n = 0, 1, 2,…, Adomian’s technique can employ the recursive 
relationdefined by 
 
u = u  (x), 

u = L (- u − aA − bB ) 

u = L (- u − aA − bB )   (78) 

. 

. 

. 

u = L (- u − aA − bB ) 

The Adomian’s polynomials depend on the particular nonlinearity. In this case, the A  polynomials are given by 

A = u
∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + +u

∂u
∂x  

A = u + u + u + u + u + u  (79) 

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x  

A = u
∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x + u

∂u
∂x  

 
The Adomian’s polynomials depend on the particular nonlinearity. In this case, the B  polynomials are given by 

B = u
∂u
∂x  

B = u
∂u
∂x  

B = u
∂u
∂x + u

∂u
∂x  

B = u + u  (80) 

B = u
∂u
∂x + u

∂u
∂x +u

∂u
∂x  

B = u
∂u
∂x + u

∂u
∂x +u

∂u
∂x  

B = u
∂u
∂x + u

∂u
∂x +u

∂u
∂x +u

∂u
∂x  

 
B = u + u +u +u  

10766 



Farshad and Farzad Ehsani, 2012 

B = u
∂u
∂x + u

∂u
∂x +u

∂u
∂x +u

∂u
∂x +u

∂u
∂x  

 
In the following, for the example 1: 
a=-1/6 
b=-1/9 
u(x, 0) = u =x 
Following the Adomian decomposition method 
 
u = t( + )(81) 
 
u = + + (82) 
 
u = − + + + + (83) 
 
u = − − + + + + (84) 
 
u = − − − + + + + (85) 
 
u =
− t ± xt − 2x t − 2x t + 24x t + 32x t +

32t x + 32t x (86) 
 
u =

t − xt − 2x t − 4x t − 32x t +

64x t + 64x t + 64x t + x t (87) 
 
u = t + xt − x t − x t − 2x t −

4x t + 16x t + 16x t + 32x t +

32x t (88) 
 
Havingu ,i = 0, 1,...8,the solution u (x, t) is as: 
 
퐮(퐱, 퐭) = x + t( + )+ + + − + + + + − − + + +

+ − − − + + + + − t +− xt −
2x t − 2x t + 24x t + 32x t + 32t x +

32t x + t − xt − 2x t − 4x t −

32x t + 64x t + 64x t + 64x t + x t +

t + xt − x t − x t − 2x t −

4x t + 16x t + 16x t + 32x t +

32x t (89) 
 

RESULT AND CONCLUSION 
 

In the figure 1, two-dimensional plot for the comparison of HPM, HAM and ADM for the solution u(x, t) for 
different values of x and t=.1, ħ=-.65is shown,then in the figure 2and 3 we change time and ħ from ħ=-.65 to ħ=-.96 
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and for t=.4 s, t=.8 showthe comparison of HPM, HAM and ADM.In the end, Figure4 shown Three-dimensional 
plot for the solution u(x, t) for 0≤t≤1, 0≤x ≤1, ħ=-.65obtained by (a) HPM, (b) ADM, (c) HAM 

 

 

Figure1. The comparison of HPM, HAM and ADM for the solution u(x, t) for different values of x and t=.1, ħ=-.65 

 

 

Figure2. The comparison of HPM, HAM and ADM for the solution u(x, t) for different values of x and t=.4, ħ=-.96 
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Figure3. The comparison of HPM, HAM and ADM for the solution u(x, t) for different values of x and t=.8, ħ=-.96 

 

 
Figure4:Three-dimensional plot for the solution obtained by (a) HPM, (b) ADM, (c) HAM 

 
In this paper, HPM has been successfully applied to finding the solutions of Gardner Equation. The obtained 

solution is compared with Adomian’s decomposition method. The homotopy perturbation method had a little 
difference With Adomian’s decomposition method, so we Solve Gardner Equation BY homotopy analysis 
methodand by changing ħ, we could control error and observed that the accuracy of ham is more than hpm for 
solution of Gardner equation. All the figures show that the results of the homotopy analysis method arein 
approximate agreement with ADM. 

REFERENCES 
 

[1] J. A. Desanto. Mathematical and Numerical Aspects of Wave Propagation.SIAM. Philadelphia. (1998). 
[2] S. Kichenassamy. “Existence of solitary waves for water-wave models”.Nonlinearity.Vol 10, Number 1, 133-

151. (1997). 
[3] Y. Kivshar& B. A. Malomed.“Dynamics of solitons in nearly integrablesystems”. Reviews of Modern Physics 

Vol 61, No 4, 763-915. (1989) 
[4] Y. Kodama & M. J. Ablowitz.“Perturbations of solitons and solitary waves”. Studies in Applied Mathematics 

Vol 64, 225-245. (1981). 
[5] E. Mann. “The perturbed Korteweg de-Vries equation considered anew”. Journal of Mathematical Physics.Vol 

38, Number 7, 3772-3785. (1997). 

10769 



J. Basic. Appl. Sci. Res., 2(10)10758-10772, 2012 

[6] T. R. Marchant& N. F. Smyth.“Soliton interaction for the extended Korteweg-de Vries equation”.IMA Journal of 
Applied Mathematics.Vol 56, Number 2, 157-176. (1996). 

[7] A. R. Osborne. “Approximate Asymptotic Integration of a higher order water-wave equation using the inverse 
scattering transform”. Nonlinear Processes in Geophysics.Vol 4, No 1, 29-53. (1997). 

[8] E. J. Parkes& B. R. Duffy.“An automated tanh function method for finding solitary wave solutions to non-linear 
evolution equations”.Computer Physics Communications.Vol 98, Issue 3, 288-300. (1996). 

[9] A. M. Wazwaz. “New solitons and kink solutions for the Gardner equation”.Communications in Nonlinear 
Science and Numerical Simulation.Vol 12, Number 1395-1404. (2007). 

 [10] P. E. Zhidkov. Korteweg-de Vries and Nonlinear Schr¨odinger’s Equations: Qualitative Theory. Springer 
Verlag. New York, NY. (2001). 

[11] D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a 
new type of long stationary wave, Philos. Mag. Vol.39, 1895, pp. 422–443. 

[12] LuwaiWazzan, A modified tanh–coth method for solving the KdV and the KdV–Burgers equations, Journal of 
Communication in nonlinear science and numerical simulation, (2007) 

[13] A.J. Khattak, Siraj-ul-Islam, A comparative study of numerical solutions of a class of KdV equation , Journal of 
Computnational Applied Mathematical, Vol. 199, 2008 , pp.425–434. 

[14] T. Ozis, S. Ozer S, A simple similarity-transformation-iterative scheme applied to Korteweg-de Vries equation, 
Journal of Applied Mathematical Compution, Vol. 173, 2006, pp.19–32. 

[15] N. Bildik, A. Konuralp. The Use of Variational Iteration Method, Differential Transform Method and 
Adomian’s Decomposition Method for Solving Different Types of Nonlinear Partial Differential Equations, 
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION. 

[16] Rogers C and Shadwich WF. Bäcklund Transformations and Their Application. New York: Academic Press, 
1982. 

[17] Olver PJ. Applications of Lie Groups to Differential Equations. Berlin: Springer, 1986. 
[18] Adomian G. A review of the decomposition method in applied mathematics. Math.Anal.Appl, 1988; 135:501–

544. 
[19] Gardner CS, Green JM, Kruskal MD, Miura RM. Method for solving the Korteweg-de Vries equation. Phys 

Rev Lett 1967; 19: 1095–7. 
[20] Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons.Phys Rev Lett 

1971; 27: 1192–4. 
[21] Wang ML. Exact solutions for a compound KdVBurgers equation.PhysLettA 1996; 213: 279–87. 
[22] He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Mathematics 

and Computation, 2004; 151: 287– 292. 
[23] He JH. Comparison of homotopy perturbation method and homotopy analysis method.Applied Mathematics 

and Computation, 2004; 156: 527–539. 
[24] He JH. Asymptotology by homotopy perturbation method. Applied Mathematics and Computation, 2004; 

156(3): 591-596. 
[25] He JH. Homotopy perturbation method for bifurcation of nonlinear problems. International Journal of Non-

linear Science Numerical Simulation,2005;6(2):207-208. 
[26] He JH. Application of homotopy perturbation method to nonlinear wave equations.Chaos ,Solitons and 

Fractals, 2005; 26: 695–700. 
[27] D. D. Ganji, "The application of He's Homotopy Perturbation Method to nonlinear equations arising in heat 

transfer", Phys. Lett. A, (in press). 
[28] He JH. Non-Perturbative Methods for Strongly Nonlinear Problems, Berlin: dissertation.de-Verlagim Internet 

GmbH, 2006 6. He JH.Some asymptotic methods for strongly nonlinear equations, International Journal of 
Modern Physics B, 2006 (10) (06) 1141-1199. 

[29] He JH. Variational iteration method for autonomous ordinary differential systems.Applied Mathematics and 
Computation, 2000; 114: 115-123. 

[30] He JH. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput 
Meth ApplMechEng 1998; 167: 57–68. 

[31] He JH. Approximate solution of nonlinear differential equations with convolution product 
nonlinearities.Comput Meth ApplMechEng 1998; 167: 69–73. 

[32] He J.H., Wu XH. Construction of solitary solution and compaction-like solution by variational iteration 
method, Chaos, Solitons & Fractals, Volume 29, Issue 1, July 2006, Pages 108-113. 

[33] M.A. Abdou, A.A. Soliman, Variational iteration method for solving Burger's and coupled Burger's equation, 
Journal in Computensional Applied Mathematical, Vol.181, 2005, pp.245-251 

10770 



Farshad and Farzad Ehsani, 2012 

[34] E.M. Aboulvafa, M.A. Abdou, A.A. Mahmoud, The solution of nonlinear coagulation problem with mass loss, 
Chaos Solitons And Fractals Vol.29, 2006, pp.313-330 

[35] J.H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear Science and Numereical 
Simulation, Vol.2, No.4, 1997, pp.203-205. 

[36] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis 
Shanghai Jiao Tong University, 1992 

[37] N. Tolou. I. Khatami. B. Jafari. D.D. Ganji. Analytical Solution of Nonlinear Vibrating Systems.American 
journal of applied Sciences, Vol.5, No.9, 2008, pp.1219-1224. 

[38] M.J. Ablowitz, P.A. Clarkson, Solitions, Nonlinear Evolution Equations and Inverse Scattering, Cambridge 
University Press, 1991 

[39] A. Coely, (Eds.), Backlund and Darboux Transformations, American Mathematical Society, Providence, Rhode 
Island, 2001 

[40] M. Wadati, H. Sanuki, K. Konno, Relationships among inverse method, backlund transformation and an infinite 
number of conservation laws, Prog. Theoret. Phys. Vol.53, 1975, pp.419–436 World Academy of Science, 
Engineering and Technology 69 2010 

 [41] C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-deVries equation, 
Phys. Rev. Lett. Vol.19, 1967, pp.1095–1097 

[42] He J. H. " A coupling method of a homotopy technique and a perturbation technique for non-linear problems ". 
Int. J. of Non-Linear Mechanics, Vol. 35, pp. 37-43, (2000). 

[43] He J. H. " Application of topological technology to construction of a perturbation system for a strongly 
nonlinear equation ". J. of the JuliuszSchauder Center, Vol. 20, pp. 77-83, (2002). 

[44] He J. H. " Homotopy perturbation method: a new nonlinear analytical technique ". Appl. Math. andComput., 
Vol. 135, pp. 73-79, (2003). 

[45] He J. H. " The homotopy perturbation method for nonlinear oscillators with discontinuities ". Appl. Math. 
andComput., Vol. 151, pp. 287-292, (2004). 

[46] Biazar J. and Ghazvini H. " Exact solutions for non-linear schrödinger equations by He’s homotopy 
perturbation method ". Phys. Letters, Vol. 366, pp. 79-84 , (2007). 

[47] Biazar J., Ansari R., Hosseini K. and Gholamin P. " Solution of the linear and non-linear schrödinger equations 
using homotopy perturbation and Adomian Decomposition methods ". Int. Math. Forum, Vol. 3(38), pp. 1891-
1897, (2008). 

[48] Biazar J. and Aminikhah H. " Study of convergence of homotopy perturbation method for systems of partial 
differential equations ". Computers and Math.with Applications, Vol. 58, pp. 2221-2230, (2009). 

[49] Ganjavi B., Mohammadi H., Ganji D. D. and Barari A. " Homotopy perturbation perturbation and variational 
iteration method for solving Zakharov-Kuznetsov equation ". American J. of Appl. Sci., Vol. 5(7), pp. 811-817, 
(2008). 

[50] M.A. Abdou, A.A. Soliman, Variational iteration method for solving Burger's and coupled Burger's equation, 
Journal in Computensional Applied Mathematical, Vol.181, 2005, pp.245-251 

[51] E.M. Aboulvafa, M.A. Abdou, A.A. Mahmoud, The solution of nonlinear coagulation problem with mass loss, 
Chaos Solitons And Fractals Vol.29, 2006, pp.313-330 

[52] J.H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear Science 
[53] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis 

Shanghai Jiao Tong University, 1992 
[54] J.H. He, J. Comput.Methods Appl. Mech. Eng. 178 (3–4) (1999) 257. 
[55] J.H. He, Int. J. Non-Linear Mech. 35 (1) (2000) 37. 
[56] J.H. He, J. Appl. Math. Comput.135 (1) (2000) 73. 
[57] J.H. He, J. Appl. Math. Comput.151 (1) (2004) 287. 
[58] J.H. He, J. Appl. Math. Comput.156 (3) (2004) 591. 
[59] J.H. He, Int. J. Nonlinear Sci. Numer.Simul.6 (2) (2005) 207. 
[60] J.H. He, Chaos Solitons Fractals 26 (3) (2005) 695. 
[61] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, 

Shanghai Jiao Tong University, 1992. 
[62] S.J. Liao, An explicit, totally analytic approximation of Blasius' viscous flow problems, Int. J. Non-Linear 

Mech. 34 (1999) 759–778. 
[63] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, 

Boca Raton, 2003. 
[64] S.J. Liao, On the analytic solution of magnetohydrodynamic flows non-Newtonian fluids over a stretching 

sheet, J. Fluid Mech. 488 (2003) 189–212. 

10771 



J. Basic. Appl. Sci. Res., 2(10)10758-10772, 2012 

[65] S.J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004) 499–513. 
[66] S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat 

Mass Transfer 48 (2005) 2529–2539. 
[67] Kern DQ, Kraus DA. Extended  surface heat transfer. New York: McGraw-Hill; 1972. 
[68] He JH. PhysLett A 2006;350:87. 
[69] He JH. Int J Mod Phys B 2006;20:1141. 
[70] G. Adomian, Explicit solutions of nonlinear partial differential equations, Appl. Math. Comput. 88 (1997) 117–126. 
[71] G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, NewYork, 1986. 
[72] G. Adomian, A new approach to nonlinear partial differential equations, J. Math. Anal. Appl. 102 (1984) 420–434. 
[73] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Boston, 1994. 
[74] Y. Cherruault, G. Adomian, Decomposition method: a new proof of convergence, Math. Comput.Modelling 18 

(12) (1993) 103–106. 
[75] K. Abbaoui,Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Comput. Math. 

Appl. 28 (5) (1994) 103–109. 
[76] K. Abbaoui,Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Math. 

Appl. 29 (7) (1995) 103–108. 
[77] K. Abbaoui, Y. Cherruault, V. Seng, Practical formulae for the calculus of multivariable Adomian polynomials, 

Math. Comput.Modelling 22 (1) (1995) 89–93. 
[78] K. Abbaoui,Y. Cherruault, The decomposition method applied to the Cauchy problem, Kybernetes 28 (1) 

(1999) 68–74. 
[79] W. Chen, Z. Lu, An algorithm for Adomian decomposition method, Appl. Math. Comput. 159 (2004) 221–235.  

10772 


