
 

J. Basic. Appl. Sci. Res., 2(10)10783-10787, 2012 

© 2012, TextRoad Publication 

ISSN 2090-4304 
Journal of Basic and Applied  

Scientific Research 
www.textroad.com 

 

*Corresponding Author: A. Jafari, Department of Physics, Azad University, Karaj branch, Karaj, Iran,  
                                                                 E-mail:jafari_82@yahoo.com  

 
 

Transport Properties of Graphene Nanoribbon Quantum Dots 
in The Presence of Disorder 

 
A. Jafari1,*; N. Hasanvad2 

 
1Department of Physics, Azad University, Karaj branch, Karaj, Iran 

2 Department of Physics, University of Isfahan, Isfahan, Iran 
 

ABSTRACT 
 

The electronic transport properties of a graphene nanoribbons quantum dot (GNRQD) are investigated by means of 
the Landauer approach using tight-binding model. We find that the transmission coefficient of the electrons 
decreases in the presence of random disorder. The presence of the random disorder causes the wave function to be 
localized. In this manner, we emphasize that when the disorder density is sufficiently high, the transmission 
coefficients and the current reduces due to multi-scattering phenomenon. Furthermore from the I-V curve we found 
the “current quantization“ in the system. These theoretical results can be considered as a base for development in 
designing graphene nanodevices. 
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1. INTRODUCTION 

 
In the last eight years, graphene has attracted much attention from the scientific community for its interesting 

fundamental properties, most of them resulting from the massless Dirac fermion nature of the electrons in such a 
material, and for its potential applications, including the development of highly integrated microelectronics [1]. The 
unusual transport properties of graphene arise from its linear E-K relation from low energies near the six corners of 
two-dimensional hexagonal Brillouin zone [2]. However, as all the other materials, real graphene device also 
includes some disorder. Unlike carbon nanotubes, graphene ribbons have edges that are vulnerable to disorder that 
could limit the localization length, and hence, the length over which ballistic transport could occur [3]. Disorder 
effects in graphene are of particular importance on the account of its two dimensional (2D) lattice structure [4]. The 
single-parameter scaling theory predicts that in 2D systems, arbitrary weak disorder leads to Anderson localization 
of the single-particle wave function [5].For graphene nanoribon, Shi-Jie et al.  investigated the Anderson 
localization of fermions at the Dirac point with different type of disorder and found that in the case disorder all 
states are localized as predicted by the scaling theory for two-dimensional [6]. Indeed, localized states in disordered 
graphene near Dirac points have been observed experimentally and numerically [7], [8]. In the following, we 
analyze the effects of disorder in graphene nanoribbons quantum dots (GNRQDs).The disorder (Anderson-type) is 
introduced via random fluctuations of the on-site energies of the π orbitals, which mimic a short range scattering 
potential that has been widely studied in the past as a generic disorder model in the framework of localization 
theory[9]. In addition, quantum dot can be realized regardless of substrate induced static disorder or irregular edges 
of the junction. This device can be used to easily design quantum dot devices. This platform can also be used to 
design zero-dimensional functional nanoscale electronic devices using graphene ribbons. 

 
2. MODELLING 

 
The GNRQD is shown in Fig. 1. The systems could be divided into three regions, left, right and the region 

between them, namely device. The tight - binding Hamiltonian of the GNRQD can be written as: [11] 
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The low energy electronic properties of 2D graphene are accurately described by the π-orbital tight-binding 
Hamiltonian, which is a first nearest neighbor two centers orthogonal pz model, with on-site energies ev00  for 
all orbitals and the hopping term evt 7.2 . To mimic short range disorder, Anderson type disorder is introduced as 
a random fluctuation of the on-site energies of the Hamiltonian )( 0  i .  The scattering potential can thus be 
characterized by a single parameter w  which defines the range of energy variations ]2/,2/[ wtwt ,and thus 
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allows us to tune the disorder strength. In what follows ]5.2,5.0[w enables the exploration of all transport regimes 
taking place in disordered 2D graphene and GNRQDs. 

 
Fig. 1. Lattice configuration of GNRQD. Central region  

is the conductor region which is attached to two leads L and R. 
 

In what follows, we show how to calculate the transmission of the system. In the absence of thermal effects 
and the charging terms, the transmission coefficient for electrons from the left lead to the right lead with energy E is 
related to Green’s functions using Caroli’s formula which provides high numerical accuracy and efficiency:[11],  
[12] 

)( a
cR

r
cL GGTrT                                                                                                                                             (2) 

Where ar
cG , are retarded and advanced Green’s functions of the conductor and LR,  are coupling matrices from 

the conductor to the leads. The systems have four leads, resulting in a conductor Green function of form:[11], [12] 
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   Where I is the identity matrix, R  denotes the self-energy due to the coupling between the conductor and lead 
R; i  is a small imaginary term added to make the Green’s function )(G non-hermitian. When there are more than 
two leads, the matrix algebra in (3) is somewhat more complex as described in the Reference [13]. The coupling 
matrices are expressed as: 

][ a
R

r
RR i                                                                                                                                                   (4) 

The function R  is called the broadening function and describes the coupling of the device to the leads, where
 )( R

a
R

r .The conductor region consists of Nc atoms (where Nc=40), making all the matrices  NcNc square 
matrices. Integrating the transmission probability over the whole energy range and for the external bias applied to 
the electrodes, one can derive the tunneling current as the form: 

  dEEfEfEVTheTVI LR )]()()[,(/2),(                                                                                                             (5) 

Where T(V,E) is transmission probability per at the energy E , f(E)  is Fermi-Dirac distribution , and  V is the bias 
voltage applied to the system and R ( L ) is the chemical potential at R(L) lead  ( R = L +eV) . The conductance 
G (E) of the GNRQD can be calculated using the Landauer formula [11], [12] 

TheG )/2( 2                                                                                                                                                                (6) 

In semiconducting materials the mean free path e  is very important quantity to assess transport efficiency of the 

system and the corresponding device performances, indeed e  is a physical lengths in mesoscopic transport. We 
note, however, that recent theoretical and experimental work have dealt with ballistic transport in mesoscopic 
graphene which show universal behavior in the regime where e > W > L, where W and L are the sample width and 
length [13].  Here, elastic mean-free paths is extracted numerically from the length scaling analysis of the quantum 
conductance by considering that, according to the considered regimes, 

)/1/( eLNT                                                                                                                                                  (7) 

Where N is the number of active conduction channels, L is the length of the central conductor region; e  is the 
mean free path. 

3. RESULTS AND DISCUSSION 
 

The problem of disorder in systems with Dirac fermions has been studied extensively in the last few years [14, 
15]. The experimental researches on graphene show that the disorder may have to be considered due to imperfect 
cutting and its natural specifications. It is well known that in a metal or semiconductor, disorder play an important 

10784 



J. Basic. Appl. Sci. Res., 2(10)10783-10787, 2012 

role: they act as scattering centers and locally modify the conduction- band. We now consider a GNRQD in the 
presence of random disorder, including impurities randomly concentrated in some atoms that influence the on-site 
energy of random atoms. It is known that electrons become localized in the presence of random disorder, a 
phenomena known as Anderson localization [6-8]. In the systems, random disorder localizes states, led the 
transmission coefficient to be decreased.  Fig. 2 shows the transmission coefficient of a pure and a disordered 
GNRQD. The fine peaks in these curves are Van- Hov singularities (VHSs) corresponding to extreme points in the 
energy bands [16].The new peaks in the transmission curve correspond to the disorder states. The disorder states are 
quasilocalized states caused by the random disorder. The injected electron will be scattered when its energy is equal 
to the energy level of the quasilocalized states.  In Fig. 3, we plot the mean free path of electron with different 
disorder density when w=0.5. In the presence of random disorder, Ni disorder are randomly distributed among Nc 
sites (where ni=Ni/Nc).  Disorder causes electron scattering. Although scattering in graphene can be suppressed 
because of the symmetries of the Dirac quasiparticles, it is shown that, when its source is atomic-scale, wave 
functions of different symmetries can mix. When the disorder density (ni) is sufficiently high, so that potential field 
induced by different disorderes overlap, and multiscattering dominates and so this multiscatterings decreases the 
conductance.The strong enhancement of e around the zero energy implies a reduced number of scattering 
processes. It is well known that scattering of electrons due to random disorder, at graphene device will decrease their 
mean free path.  
 

 
Fig. 2. The transmission coefficient of electron injected to the GNRQD; 

in the pure devices and in the presence of random disorder. 
 

 
Fig. 3. The mean free path as a function of the energy E of the electrons 

 with different disorder density when w=0.5. 
 
In fig.4. we also show the differential conductance with different disorder density when w=0.5, dI/dV, as a 

function of bias voltage. We apply external potential to the system so that lead L lies in the potential of V/2 and lead 
R lies in the potential of-V/2. The decrease of the dI/dV in some bias voltage means that a resistance effect appears 
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in this voltage. This resistance is originated from the reduced overlap between the energy bands of two leads. In 
some voltage the dI/dV increases, which means that there are conductive channels that allow the electron to pass 
through the central region from the L to the R. The physical reasons for this are that the system becomes unstable 
with bias voltage increase. 

In order to investigate the behavior of changes in current voltage from lead L to lead R, and also investigating 
the effect of disorder on current, we apply external potential to the system. The small oscillations in the curve are 
due to Van-Hov singularity and originated from the “current quantization“ in this mesoscopic system. According to 
the Fig . 5, current in the presence of disorder, decreases in comparison with the pure case, since the quasilocalized 
state produces additional band , in this way the electron has more channels for transport. 

 
 Fig.4. The conductance dI/dV as a function of bias voltage for 
the GNRQD, in pure case and with different disorder density 

          
Fig. 5. Current-voltage curves of pure and disordered GNRQD 
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