Characterization on Semicircle Distribution

Hajir Homei ${ }^{1}$, Monireh Hamel Darbandi ${ }^{2}$, AzizHamelDarbandi ${ }^{3}$
${ }^{1,2}$ Department of Statistics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
${ }^{3}$ Department of Statistics, Faculty of Science, Ankara University, Ankara, Turkey.

Abstract

A weighted average of n independent continuous random variables X_{1}, \cdots, X_{n} with random proportions is introduced. A formula between the Stieltjes transforms of the distribution functions of the weighted averages and X_{1}, \cdots, X_{n} is established. We show that, among some other distributions, the Cauchy distribution and the power semicircle distribution can be characterized in a particular way by means of this construction.

KEYWORDS: Randomly weighted averages, Schwartz theory.

1INTRODUCTION

Van Assche (1987) on identifying the distribution of a random variable S uniformly distributed between two independent random variables X and Y, Soltani and Homei (2009) considered a randomly weighted average of independent random variables X_{1}, \cdots, X_{n} defined by

$$
S_{n}=R_{1} X_{1}+\cdots+R_{n} X_{n}, \quad n \geq 2,(1.1)
$$

where random proportions are $R_{i}=U_{(i)}-U_{(i-1)}, i=1, \cdots, n-1$ and $R_{n}=1-\sum_{i=1}^{n-1} R_{i}, U_{(1)}, \cdots, U_{(n-1)}$ order statistics of a random sample U_{1}, \cdots, U_{n} from a uniform distribution on [0,1], $U_{(0)}=0$ and $U_{(n)}=1$. We refer to $R_{i}, i=1, \cdots, n$, as the cuts of $[0,1]$ by $U_{(1)}, \cdots, U_{(n)}$. Soltani and Homei (2009) express the ($n-1$) -th derivative of the Stieltjes transform of the distribution function of S_{n} as the product of the Stieltjes transforms of the distribution functions of X_{1}, \cdots, X_{n}. Their method is similar to the one of Van Assche (1987), using certain techniques in Schwartz distribution theory and the formulas for the distribution of random average of x_{1}, \cdots, x_{n}, given by Dempster and Kleyle (1968), where random proportions are cuts of $[0,1]$ by $U_{(1)}, \cdots, U_{(n-1)}$. For application refer to Soltani and Roozegar (2012). In this paper we give some examples.

2 Conditional directed power Distribution

The distribution of a linear combination of the random variables R_{1}, \cdots, R_{n-1}, say $\sum_{i=r}^{n-1} c_{i} R_{i}$ for constants c_{i} satisfying $c_{1}>c_{2}>\cdots>c_{n-1}>0$, at a point x is given by

$$
\begin{equation*}
x^{n-1}\left[\prod_{i=1}^{n-1} c_{i}\right]^{-1}-\sum_{j=t+1}^{n-1}\left(x-c_{j}\right)^{n-1}\left[c_{j} \prod_{i \neq j}\left(c_{i}-c_{j}\right)\right]^{-1} \tag{2.1}
\end{equation*}
$$

where $0 \leq x \leq c_{1}$ and t is the largest positive integer such that $x \leq c_{t}$, (Dempster and Kleyle, 1968).Let us apply (2.1) to derive the conditional distribution of S_{n} given $X_{1}=x_{1}, \cdots, X_{n}=x_{n}$ at z, denoted by $K\left(z \mid x_{1}, \cdots, x_{n}\right)$, for $x_{1}>x_{2}>\cdots>x_{n}$ and $x_{n-i}<z \leq x_{n-i-1}, i=0, \cdots, n-2$. We note that $\sum_{i=1}^{n} x_{i} R_{i}=\sum_{i=1}^{n-1}\left(x_{i}-x_{n}\right) R_{i}+x_{n}$. Thus by using (2.1) with $c_{i}=x_{i}-x_{n}, i=1, \cdots, n-1$ and $t=n-i$, we obtain that for $x_{r+1}<z \leq x_{r}, r=$ $1, \cdots, n-1, K\left(z \mid x_{1}, \cdots, x_{n}\right)$, is equal to

$$
\left(z-x_{n}\right)^{n-1}\left[\prod_{j=1}^{n-1}\left(x_{j}-x_{n}\right)\right]^{-1}-\sum_{j=r+1}^{n-1}\left(z-x_{j}\right)^{n-1}\left[\left(x_{j}-x_{n}\right) \prod_{k \neq j}\left(x_{k}-x_{j}\right)\right]^{-1}
$$

By changing variables, first $j^{*}=n-1-j$ and then $j=j^{*}+1$ in the summation, the conditional distribution for $x_{r+1}<z \leq x_{r}, r=1, \cdots, n-1$ will be equal to

$$
\left(z-x_{n}\right)^{n-1}\left[\prod_{j=1}^{n-1}\left(x_{j}-x_{n}\right)\right]^{-1}-\sum_{j=1}^{n-r-1}\left(z-x_{n-j}\right)^{n-1}\left[\left(x_{n-j}-x_{n}\right) \prod_{k \neq j}\left(x_{k}-x_{n-j}\right)\right]^{-1}
$$

Now we let $i=n-1-r$, then

[^0]\[

\left\{$$
\begin{array}{l}
K\left(z \mid x_{1}, \cdots, x_{n}\right)=\sum_{j=0}^{i} \frac{\left(z-x_{n-j}\right)^{n-1}}{C\left(x_{n-i} ; x_{1}, \cdots, x_{n}\right)} \\
x_{n-i}<z \leq x_{n-i-1}, \quad i=0, \cdots, n-2
\end{array}
$$\right.
\]

where for $j=0, \cdots, n-1$,

$$
C\left(x_{n-j} ; x_{1}, \cdots, x_{n}\right)=\prod_{k=1}^{n-j-1}\left(x_{k}-x_{n-j}\right) \prod_{k=n-j+1}^{n}\left(x_{k}-x_{n-j}\right) .
$$

By using the Heaviside function: $U(x)=0, x<0,=1, x \geq 0$, we obtain that for any given distinct values x_{1}, \cdots, x_{n}, the conditional distribution is given by

$$
\begin{equation*}
K\left(z \mid x_{1}, \cdots, x_{n}\right)=\sum_{i=0}^{n-1} \frac{\left(z-x_{n-i}\right)^{n-1} U\left(z-x_{n-i}\right)}{C\left(x_{n-i} ; x_{1}, \cdots, x_{n}\right)}, \tag{2.2}
\end{equation*}
$$

Forz $\in\left[\min \left\{x_{1}, \cdots, x_{n}\right\}, \max \left\{x_{1}, \cdots, x_{n}\right\}\right]$, together $\operatorname{with} K\left(z \mid x_{1}, \cdots, x_{n}\right)=0$ for $z<\min \left\{x_{1}, \cdots, x_{n}\right\}$ and $=1$, for $z>\max \left\{x_{1}, \cdots, x_{n}\right\}$, Thus we arrive at the following result.
Theorem 2.1. Assume S_{n} is a randomly weighted average given by (1.1). Then the conditional distribution of S_{n}, for given distinct values $X_{1}=x_{1}, \cdots, X_{n}=x_{n}$ atz, $-\infty<z<+\infty$ will be given by (2.2).

3 preliminaries and previous works

In this section we present the main results of this article. Let us first develop some basic tools. We first record the following partial fraction formula:

$$
\begin{equation*}
\frac{1}{\left(z-x_{1}\right)\left(z-x_{2}\right) \cdots\left(z-x_{n}\right)}=\sum_{i=1}^{n} \frac{a_{i}}{z-x_{i}}, \tag{3.1}
\end{equation*}
$$

where
$a_{i}=\left[\prod_{j=1, j \neq n-i}^{n}\left(x_{n-i}-x_{j}\right)\right]^{-1}, \quad i=0, \cdots, n-1$.
The second item is the following formula taken from the Schwartz distribution theory, namely,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varphi(x) \Lambda^{[n]}(d x)=\frac{(-1)^{n}}{n!} \int_{-\infty}^{\infty} \frac{d^{n}}{d x^{n}} \varphi(x) \Lambda(d x) \tag{3.2}
\end{equation*}
$$

Λ is a distribution function and $\Lambda^{[n]}$ is the n-th distributional derivative of Λ.
The conditional distribution $K\left(z \mid x_{1}, \cdots, x_{n}\right)$ given by (2.2) leads us to the following linear functional on complex-valued function f, defined on the set of real numbers \mathbb{R};

$$
K\left(f \mid x_{1}, \cdots, x_{n}\right)=\sum_{i=0}^{n-1} \frac{f\left(x_{n-i}\right)}{C\left(x_{n-i} ; x_{1}, \cdots, x_{n}\right)}, \quad f: \mathbb{R} \rightarrow \mathbb{C}
$$

It easily follows that

$$
K\left(a f+b g \mid x_{1}, \cdots, x_{n}\right)=a K\left(f \mid x_{1}, \cdots, x_{n}\right)+b K\left(g \mid x_{1}, \cdots, x_{n}\right)(3.3)
$$

for any choice of complex-valued functions f, g and of complex constants a, b. We note that $K\left(z \mid x_{1}, \cdots, x_{n}\right)=$ $K\left(f_{z} \mid x_{1}, \cdots, x_{n}\right)$, whenever $f_{z}(x)=(z-x)^{n-1} U(z-x)$. Also we note that $U(z-x)=(-1)^{n}(n-1)!\frac{d^{n-1}}{d x^{n-1}} f_{z}(x)$. ThusP $\left(S_{n} \leq z\right)=\int_{\mathbb{R}} U(z-x) d F_{S_{n}}(x)=\int_{\mathbb{R}^{n}} K\left(z \mid x_{1}, \cdots, x_{n}\right) \prod_{i=1}^{n} F_{X_{i}}\left(d x_{i}\right)$ can be viewed as:

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{d^{n-1}}{d x^{n-1}} f_{z}(x) d F_{S_{n}}(x)=\frac{(-1)^{n-1}}{(n-1)!} \int_{\mathbb{R}^{n}} K\left(f_{z} \mid x_{1}, \cdots, x_{n}\right) \prod_{i=1}^{n} F_{X_{i}}\left(d x_{i}\right) . \tag{3.4}
\end{equation*}
$$

Therefore by using linear property (3.3) along with (3.4) and a standard argument in the integration theory, we obtain that

$$
(-1)^{n-1}(n-1)!\int_{\mathbb{R}} \frac{d^{n-1}}{d x^{n-1}} f(x) d F_{S_{n}}(x)=\int_{\mathbb{R}^{n}} K\left(f \mid x_{1}, \cdots, x_{n}\right) \prod_{i=1}^{n} F_{X_{i}}\left(d x_{i}\right)
$$

for a suitable f. Now (3.5) together with (3.2) lead us to

$$
\begin{equation*}
\int_{\mathbb{R}} f(x) d F_{S_{n}}^{[n-1]}(x)=\int_{\mathbb{R}^{n}} K\left(f \mid x_{1}, \cdots, x_{n}\right) \prod_{i=1}^{n} F_{X_{i}}\left(d x_{i}\right), \tag{3.6}
\end{equation*}
$$

for a suitable f, where $F_{S_{n}}^{[n-1]}$ is the $(n-1)$-th distributional derivative of the distribution of S_{n}. Let us denote the Stieltjes transform of a distribution H by
$\delta(H, z)=\int_{\mathbb{R}} \frac{1}{z-x} H(d x)$,
for everyz in the set of complex numbers \mathbb{C} which does not belong to the support of $H, z \in \mathbb{C} \cap(\operatorname{supp} H)^{c}$. For more on the Stieltjes transform see Zayed (1996).
The following theorem indicates how the Stieltjes transforms of S_{n} and X_{1}, \cdots, X_{n} are related.
Theorem 3.1.Under the assumption that X_{1}, \cdots, X_{n} independent and continuous,

$$
\frac{(-1)^{n-1}}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \mathcal{S}\left(F_{S_{n}}, z\right)=\prod_{i=1}^{n} \delta\left(F_{X_{i}}, z\right), \quad z \in \mathbb{C} \bigcap_{i=1}^{n}\left(\operatorname{supp} F_{X_{i}}\right)^{c} .
$$

Proof. It follows from (3.6) that
$\mathcal{S}\left(F_{S_{n}}^{[n-1]}, z\right)=\int_{\mathbb{R}^{n}} K\left(g_{z} \mid x_{1}, \cdots, x_{n}\right) \prod_{i=1}^{n} F_{X_{i}}\left(d x_{i}\right)$,
for $g_{z}(x)=\frac{1}{z-x}$. But

$$
\begin{aligned}
K\left(g_{z} \mid x_{1}, \cdots, x_{n}\right) & =\sum_{i=0}^{n-1} \frac{1 /\left(z-x_{n-i}\right)}{C\left(x_{n-i} ; x_{1}, \cdots, x_{n}\right)}=\sum_{i=0}^{n-1} \frac{1 / C\left(x_{n-i} ; x_{1}, \cdots, x_{n}\right)}{\left(z-x_{n-i}\right)} \\
& =(-1)^{n-1} \sum_{i=1}^{n} \frac{a_{i}}{z-x_{i}}=(-1)^{n-1} \prod_{i=1}^{n} \frac{1}{z-x_{i}},
\end{aligned}
$$

where the last equality follows from (3.1). Thus
$\mathcal{S}\left(F_{S_{n}}^{[n-1]}, z\right)=(-1)^{n-1} \prod_{i=1}^{n} \mathcal{S}\left(F_{X_{i}}, z\right), \quad z \in \mathbb{C} \bigcap_{i=1}^{n}\left(\operatorname{supp} F_{X_{i}}\right)^{c}$.
Therefore

$$
\begin{gathered}
\frac{(-1)^{n-1}}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \delta\left(F_{S_{n}}, z\right)=\int_{\mathbb{R}} \frac{1}{(z-x)^{n}} F_{S_{n}}(d x)=\frac{1}{(n-1)!} \int_{\mathbb{R}} \frac{d^{n-1}}{d x^{n-1}} \frac{1}{z-x} F_{S_{n}}(d x) \\
=(-1)^{n-1} \int_{\mathbb{R}} \frac{1}{z-x} F_{S_{n}}^{[n-1]}(d x)=(-1)^{n-1} \mathcal{S}\left(F_{S_{n}}^{[n-1]}, z\right) \\
=\prod_{i=1}^{n} \delta\left(F_{X_{i}}, z\right),
\end{gathered}
$$

giving the result. The proof of the theorem is complete.
Now we are in a position to present the Cauchy characterization and the Arcsin result.
Theorem 3.2. Assume S_{n} is given by (1.1) and X_{1}, \cdots, X_{n} are i.i.d. continuous random variables with a common distribution function F. Then S_{n} has distribution F if and only if F is a Cauchy distribution.
Proof.The "if" part is immediate. For the "only if" part we note that if F is also the distribution of S_{n}, then it will follow from Theorem 3.1 that

$$
\frac{(-1)^{n}}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} \mathcal{S}(F, z)=[\mathcal{S}(F, z)]^{n}, \quad z \in \mathbb{C}(3.7)
$$

By an argument similar to the one given by Van Assche (1987), the solution for $\mathcal{S}(F, z)$ in (3.7) is
$\mathcal{S}(F, z)=\frac{1}{z-a+i b}, \quad \operatorname{Im}(z)>0, \quad b \neq 0$,
which is the Stieltjes transform of the Cauchy distribution. The proof is complete.
Theorem 3.3.Under the assumption that X_{1}, \cdots, X_{n} independent and continuous,

$$
\frac{(-1)^{n^{*}-1}}{\left(n^{*}-1\right)!} \frac{d^{n^{*}-1}}{d z^{n^{*}-1}} \mathcal{S}(F, z)=\prod_{i=1}^{n} \frac{(-1)^{m_{i}-1}}{\left(m_{i}-1\right)!} \frac{d^{m_{i}-1}}{d z^{m_{i}-1}} \mathcal{S}\left(F_{X_{i}}, z\right), \quad z \in \mathbb{C} \bigcap_{i=1}^{n}\left(\operatorname{supp} F_{X_{i}}\right)^{c} .
$$

Lemma 3.4. Let Z_{1} be a random variables that have a conditionally direct distribution. Suppose that random variables X_{1} and X_{2} are independent and continuous with distribution functions $F_{X_{1}}$ and $F_{X_{2}}$, respectively. Then

$$
\frac{1}{n} \mathcal{S}^{(n)}\left(F_{Z_{1}}, z\right)=-\mathcal{S}\left(F_{X_{1}}, z\right) \mathcal{S}^{(n-1)}\left(F_{X_{2}}, z\right), \quad z \in \mathbb{C} \bigcap_{i=1}^{2}\left(\operatorname{supp} F_{X_{i}}\right)^{c} .
$$

Theorem 3.4. Let X_{1} and X_{2} be i.i.d random variables on[$\left.-1,1\right]$, then
(a) if X_{1} has uniform distribution on $[-1,1]$, then Z_{1} has semicircle distribution on $[-1,1]$ if and only if X_{2} has Arcsin distribution on $[-1,1]$;
(b) if X_{1} has uniform distribution on $[-1,1]$, then Z_{1} has power semicircle distribution if and only if X_{2} has power semicircle distribution, i.e.,
$f(z)=\frac{3\left(1-z^{2}\right)}{4}, \quad-1 \leq z \leq 1 ;$
(c) if X_{1} has Beta (1,1) distribution on [0,1], then Z_{1} has Beta $\left(\frac{3}{2}, \frac{3}{2}\right)$ distribution if and only if X_{2} has Beta $\left(\frac{1}{2}, \frac{1}{2}\right)$ distribution;
(d) if X_{1} has uniform distribution on $[0,1]$, then Z_{1} has Beta $(2,2)$ distribution if and only if X_{2} has Beta(2,2)distribution.

Proof. (a) For the "if" part we note that the random variable X_{1} has uniform distribution and X_{2} has Arcsin distribution on $[-1,1]$; then
$\mathcal{S}\left(F_{X_{1}}, z\right)=\frac{1}{2}(\ln |z+1|-\ln |z-1|)$.
$\operatorname{and} \delta\left(F_{X_{2}}, z\right)=\frac{1}{\sqrt{Z^{2}-1}}$.
From Lemma 3.4 and substituting the corresponding Stieltjes transforms of distributions, we get
$\mathcal{S}^{\prime \prime}\left(F_{Z_{1}}, z\right)=\frac{2}{\left(z^{2}-1\right)^{\frac{3}{2}}}$.
The solution $\mathcal{S}\left(F_{Z_{1}}, z\right)$ is
$\mathcal{S}\left(F_{Z_{1}}, z\right)=2\left(z-\sqrt{z^{2}-1}\right)$,
which is the Stieltjes transform of the semicircle distribution on $[-1,1]$.
For the "only if" part we assume that the random variable Z_{1} has semicircle distribution. Then it follows from lemma 3.4 that
$\delta\left(F_{X_{2}}, z\right) \frac{1}{1-z^{2}}=\frac{-1}{\left(z^{2}-1\right)^{\frac{3}{2}}}$.
The proof is completed.
(b) By an argument similar to that given in (a) and solving the following differential equations,
$\mathcal{S}^{\prime \prime}\left(F_{Z}, z\right)=\frac{2}{\left(z^{2}-1\right)}\left(\frac{3 z}{2}+\frac{3}{4}\left(\left(1-z^{2}\right)(\ln |z+1|-\ln |z-1|)\right)\right)$,(for the "if" part), and
$\frac{1}{1-z^{2}} \mathcal{S}\left(F_{X_{2}}, z\right)=\frac{3}{4} \frac{2 z+\left(1-z^{2}\right)(\ln |z+1|-\ln |z-1|)}{\left(1-z^{2}\right)}$, (for the "only if" part),
the proof can be completed.
(c) By Lemma 3.4, we have
$-\frac{1}{2} \mathcal{S}^{\prime \prime}\left(F_{Z}, Z\right)=\frac{-1}{z(z-1)} \frac{1}{\sqrt{z(z-1)}}$, (for the "if" part), and
$\frac{-1}{z(z-1) \sqrt{z(z-1)}}=\frac{-1}{z(z-1)} \mathcal{S}\left(F_{X_{2}}, z\right)$,(for the "only if" part).
The proof can be completed by solving the above differential equations.
(d) By Lemma 3.4, we have
$\mathcal{S}^{\prime \prime}\left(F_{Z_{1}}, z\right)=\frac{-2}{z(z-1)}\left(6\left(z^{2}-z_{1}\right)(\ln |z|-\ln |z-1|)-6 z+3\right)$,(for the "if" part), and
$\mathcal{S}\left(F_{X_{2}}, z\right)=6\left(z-z^{2}\right)(\ln |z|-\ln |z-1|)+6 z-3$,(for the "only if" part).
Solving the differential equations, can complete the proof.

4 Some characterization

In this section, we also observe application of theorem 3.3, as:

Theorem4.1.Let $m_{1}=3, m_{2}=1, m_{3}=1$ and X_{1}, X_{2} and X_{3} be independent random variables on [$-1,1$].Thenif X_{2}, X_{3} have Arcsin distribution, then X_{3} has semicircle distribution on $[-1,1]$ if and only if S_{3} has power semicircle distribution on $[-1,1]$, i.e.,
$f(z)=\frac{8}{3 \pi}\left(1-z^{2}\right)^{\frac{3}{2}},-1 \leq z \leq 1$.
Proof. The random variable S_{3} has a power semicircle distribution on $[-1,1]$ and X_{2}, X_{3} have Arcs in distribution on $[-1,1]$, then it follows from the theorem 3.3
$\frac{1}{12} \frac{d^{4}}{d z^{4}} \mathcal{S}(F, z)=\mathcal{S}^{\prime \prime}\left(F_{X_{1}}, z\right) \mathcal{S}\left(F_{X_{2}}, z\right) \mathcal{S}\left(F_{X_{3}}, z\right)$
$\frac{2}{\left(z^{2}-1\right)^{\frac{5}{2}}}=\mathcal{S}^{\prime \prime}\left(F_{X_{1}}, z\right) \frac{1}{\sqrt{z^{2}-1}} \frac{1}{\sqrt{z^{2}-1}}$.
The solution for $\mathcal{S}\left(F_{X_{1}}, z\right)$ is
$\mathcal{S}\left(F_{X_{1}}, z\right)=2\left(z-\sqrt{z^{2}-1}\right)$,
Which is the Stie ltjes transform of the semi circled is distribution on $[-1,1]$.
Theorem4.2.Let $m_{1}=1, m_{2}=1, m_{3}=2$ and X_{1}, X_{2} and X_{3} be independent random variables on [$-1,1$], then X_{1}, X_{2} and X_{3} have Arcs in distribution on $[-1,1]$ if and only if S_{3} has a semicircle distribution on $[-1,1]$.

Proof. The random variable S_{3} has semicircle distribution on $[-1,1]$, then it follows from the theorem3.3
$\mathcal{S}\left(F_{X_{1}}, z\right) \mathcal{S}\left(F_{X_{2}}, z\right) \mathcal{S}^{\prime}\left(F_{X_{3}}, z\right)=\frac{1}{6} \frac{d^{3}}{d z^{3}} \mathcal{S}(F, z)=\frac{-z}{\left(z^{2}-1\right)^{\frac{5}{2}}}$.
Thesolutionfor $\mathcal{S}\left(F_{X_{i}}, z\right)$ is
$\mathcal{S}\left(F_{X_{i}}, z\right)=\frac{1}{\sqrt{z^{2}-1}}, \quad i=1,2,3$
Which is the Stie ltjes transform of the Arcs in distribution on $[-1,1]$.

REFERENCES

[1]Dempster. A. P., Kleyle, R. M., 1968. Distribution by cutting a simplex with hyperplanes. Ann. Math. Statist. 39, 1473-1478.
[2]Diniz, M. C., de Souza e Silva, E., Gail, H. R., 2002.Calculating the distribution of a linear combination of uniform order statistics. Informs J. Computing 14, 0124-0135.
[3] Homei, H., 2012. Randomly weightedaverageswithBetarandomproportions.Statist.Probab.Lett.82,15151520.
[4]Jagannathan. Ravi, Ma, Tongshu, 2002. Risk reduction in large portfolios: Why imposing the wrong constraints helps. NBER Working Paper No.W 8922.Available at SSRN.
[5]Johnson,N.L.,Kotz,S.,1990.Randomlyweightedaverages:someaspectsandextensions. Amer.Statist.44,245249.
[6]Soltani, A. R., Roozegar, R., 2012. On distribution of randomly ordered uniform incremental weighted averages: Divided difference approach.Statist.Probab.Lett.,82,1012-1020.
[7]VanAssche,W.,1987.A random variable uniformly distributed between two independent random variables.SankhyāSer.A49,207-211.

[^0]: *Corresponding Author: Monireh Hamel Darbandi, Department of Statistics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz 5166617766, Iran. Email:darbandi89@ms.tabrizu.ac.ir

