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ABSTRACT 
 
A weighted average of 푛  independent continuous random variables 푋 ,⋯ ,푋 with random proportions is 
introduced. A formula between the Stieltjes transforms of the distribution functions of the weighted averages 
and 푋 ,⋯ ,푋 is established. We show that, among some other distributions, the Cauchy distribution and the 
power semicircle distribution can be characterized in a particular way by means of this construction. 
KEYWORDS: Randomly weighted averages, Schwartz theory. 
 

1INTRODUCTION 
 

Van Assche (1987) on identifying the distribution of a random variable 푆 uniformly distributed between 
two independent random variables 푋and 푌 , Soltani and Homei (2009) considered a randomly weighted 
average of independent random variables 푋 ,⋯ ,푋  defined by 

 
푆 = 푅 푋 + ⋯+ 푅 푋 ,				푛 ≥ 2, (1.1) 

 
where random proportions are 푅 = 푈( ) −푈( ), 푖 = 1,⋯ ,푛 − 1  and 푅 = 1− ∑ 푅 , 푈( ),⋯ ,푈( ) 

order statistics of a random sample푈 ,⋯ ,푈  from a uniform distribution on [0,1], 푈( ) = 0 and 푈( ) = 1. We 
refer to푅 , 푖 = 1,⋯ ,푛, as the cuts of [0,1] by 푈( ),⋯ ,푈( ). Soltani and Homei (2009) express the (푛 − 1)−th 
derivative of the Stieltjes transform of the distribution function of 푆  as the product of the Stieltjes transforms 
of the distribution functions of푋 ,⋯ ,푋 . Their method is similar to the one of Van Assche (1987), using 
certain techniques in Schwartz distribution theory and the formulas for the distribution of random average of 
푥 ,⋯ , 푥 , given by Dempster and Kleyle (1968), where random proportions are cuts of [0,1] by 푈( ),⋯ ,푈( ).  
For application refer to Soltani and Roozegar (2012). In this paper we give some examples. 
 
2 Conditional directed power Distribution 
 

The distribution of a linear combination of the random variables푅 ,⋯ ,푅 , say∑ 푐 푅  for constants푐  
satisfying푐 > 푐 > ⋯ > 푐 > 0, at a point 푥 is given by 

 

푥 푐 − 푥 − 푐 푐 푐 − 푐 ,																													(2.1) 

 

where0 ≤ 푥 ≤ 푐  and 푡 is the largest positive integer such that푥 ≤ 푐 , (Dempster and Kleyle, 1968).Let us 
apply (2.1) to derive the conditional distribution of푆  given푋 = 푥 ,⋯ ,푋 = 푥 at 푧,denoted by퐾(푧|푥 ,⋯ ,푥 ), 
for 푥 > 푥 > ⋯ > 푥  and 푥 < 푧 ≤ 푥 , 푖 = 0,⋯ ,푛 − 2 . We note that∑ 푥 푅 = ∑ (푥 − 푥 )푅 + 푥 . 
Thus by using (2.1) with 푐 = 푥 − 푥 , 푖 = 1,⋯ ,푛 − 1 and 푡 = 푛 − 푖 , we obtain that for 푥 < 푧 ≤ 푥 , 푟 =
1,⋯ ,푛 − 1, 퐾(푧|푥 ,⋯ , 푥 ), is equal to 

 

(푧 − 푥 ) 푥 − 푥 − 푧 − 푥 푥 − 푥 푥 − 푥 . 

 

By changing variables, first푗∗ = 푛 − 1− 푗and then 푗 = 푗∗ + 1in the summation, the conditional distribution 
for푥 < 푧 ≤ 푥 , 푟 = 1,⋯ ,푛 − 1will be equal to 
 

(푧 − 푥 ) 푥 − 푥 − 푧 − 푥 푥 − 푥 푥 − 푥 . 

 

Now we let푖 = 푛 − 1− 푟, then 
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퐾(푧|푥 ,⋯ , 푥 ) =
푧 − 푥

퐶(푥 ;푥 ,⋯ , 푥 ) ,

푥 < 푧 ≤ 푥 ,									푖 = 0,⋯ ,푛 − 2,

 

 

where for푗 = 0,⋯ ,푛 − 1, 
 

퐶 푥 ; 푥 ,⋯ ,푥 = 푥 − 푥 푥 − 푥 . 

 

By using the Heaviside function:푈(푥) = 0, 푥 < 0, = 1, 푥 ≥ 0, we obtain that for any given distinct 
values푥 ,⋯ , 푥 , the conditional distribution is given by 
 

퐾(푧|푥 ,⋯ , 푥 ) =
(푧 − 푥 ) 푈(푧 − 푥 )

퐶(푥 ;푥 ,⋯ , 푥 ) ,																						(2.2) 

 

For푧 ∈ [푚푖푛{푥 ,⋯ , 푥 },푚푎푥{푥 ,⋯ , 푥 }], together with퐾(푧|푥 ,⋯ , 푥 ) = 0 for푧 < 푚푖푛{푥 ,⋯ , 푥 }and = 1, 
for푧 > 푚푎푥{푥 ,⋯ , 푥 }, Thus we arrive at the following result. 
 

Theorem 2.1. Assume푆  is a randomly weighted average given by (1.1). Then the conditional distribution of 
푆 , for given distinct values푋 = 푥 ,⋯ ,푋 = 푥  at푧, −∞ < 푧 < +∞ will be given by (2.2). 
 
3    preliminaries and previous works 
 

In this section we present the main results of this article. Let us first develop some basic tools. We first 
record the following partial fraction formula: 

 

1
(푧 − 푥 )(푧 − 푥 )⋯ (푧 − 푥 ) =

푎
푧 − 푥

,																														(3.1) 

 

where 

푎 = 푥 − 푥
,

,									푖 = 0,⋯ ,푛 − 1. 

 

The second item is the following formula taken from the Schwartz distribution theory, namely, 
 

휑(푥)훬[ ](푑푥) =
(−1)
푛!

푑
푑푥

휑(푥)훬(푑푥),																		(3.2) 
 

훬is a distribution function and 훬[ ] is the 푛-th distributional derivative of 훬. 
 

The conditional distribution퐾(푧|푥 ,⋯ , 푥 )  given by (2.2) leads us to the following linear functional on 
complex-valued function푓, defined on the set of real numbers ℝ; 
 

퐾(푓|푥 ,⋯ , 푥 ) =
푓(푥 )

퐶(푥 ; 푥 ,⋯ , 푥 ) ,							푓:ℝ → ℂ. 

It easily follows that 
 

퐾(푎푓 + 푏푔|푥 ,⋯ , 푥 ) = 푎퐾(푓|푥 ,⋯ , 푥 ) + 푏퐾(푔|푥 ,⋯ , 푥 )(3.3) 
 

for any choice of complex-valued functions푓,푔 and of complex constants푎, 푏. We note that 퐾(푧|푥 ,⋯ , 푥 ) =
퐾(푓 |푥 ,⋯ , 푥 ),whenever푓 (푥) = (푧 − 푥) 푈(푧 − 푥). Also we note that푈(푧 − 푥) = (−1) (푛 − 1)! 푓 (푥).  
Thus푃(푆 ≤ 푧	) = ∫ 푈(푧 − 푥)푑퐹 (푥)ℝ = ∫ 퐾(푧|푥 ,⋯ , 푥 )∏ 퐹 (푑푥 )ℝ  can be viewed as: 
 

푑
푑푥

푓 (푥)푑퐹 (푥)
ℝ

=
(−1)
(푛 − 1)!

퐾(푓 |푥 ,⋯ ,푥 ) 퐹 (푑푥 )
ℝ

.																			(3.4) 
 

Therefore by using linear property (3.3) along with (3.4) and a standard argument in the integration theory, 
we obtain that 
 

(−1) (푛 − 1)!
푑
푑푥

푓(푥)푑퐹 (푥)
ℝ

= 퐾(푓|푥 ,⋯ ,푥 ) 퐹 (푑푥 )
ℝ

(3.5) 
 

for a suitable 푓. Now (3.5) together with (3.2) lead us to 
 

푓(푥)푑퐹[ ](푥)
ℝ

= 퐾(푓|푥 ,⋯ , 푥 ) 퐹 (푑푥 )
ℝ

,														(3.6) 
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for a suitable 푓, where퐹[ ] is the(푛 − 1)–th distributional derivative of the distribution of푆 . 
Let us denote the Stieltjes transform of a distribution퐻 by 
 

풮(퐻, 푧) =
1

푧 − 푥
퐻(푑푥),

ℝ
 

for every푧 in the set of complex numbers ℂ which does not belong to the support of퐻, 푧 ∈ ℂ⋂(푠푢푝푝	퐻) . For 
more on the Stieltjes transform see Zayed (1996). 
 

The following theorem indicates how the Stieltjes transforms of푆  and푋 ,⋯ ,푋  are related. 
 

Theorem 3.1.Under the assumption that 푋 ,⋯ ,푋  independent and continuous, 
 

(−1)
(푛 − 1)!

푑
푑푧

풮 퐹 , 푧 = 풮 퐹 , 푧 ,				푧 ∈ ℂ 푠푢푝푝	퐹푋푖
푐푛

푖=1
. 

 

Proof. It follows from (3.6) that 
 

풮 퐹[ ], 푧 = 퐾(푔 |푥 ,⋯ , 푥 ) 퐹 (푑푥 )
ℝ

, 
 

for푔 (푥) = . But 
 

퐾(푔 |푥 ,⋯ , 푥 ) =
1 (푧 − 푥 )⁄

퐶(푥 ; 푥 ,⋯ , 푥 ) =
1 퐶(푥 ; 푥 ,⋯ , 푥 )⁄

(푧 − 푥 )  

																															= (−1)
푎

푧 − 푥
= (−1)

1
푧 − 푥

, 
 

where the last equality follows from (3.1). Thus 
 

풮 퐹[ ], 푧 = (−1) 풮 퐹 , 푧 ,						푧 ∈ ℂ 푠푢푝푝	퐹 . 
 

Therefore 
 

(−1)
(푛 − 1)!

푑
푑푧

풮 퐹 , 푧 =
1

(푧 − 푥) 퐹 (푑푥)
ℝ

=
1

(푛 − 1)!
푑
푑푥

1
푧 − 푥

퐹 (푑푥)
ℝ

 

																																					= (−1)
1

푧 − 푥
퐹[ ](푑푥) =

ℝ
(−1) 풮 퐹[ ] , 푧  

																																					= 풮 퐹 , 푧 , 
 

giving the result. The proof of the theorem is complete. 
 

Now we are in a position to present the Cauchy characterization and the Arcsin result. 
 

Theorem 3.2. Assume푆  is given by (1.1) and푋 ,⋯ ,푋  are i.i.d. continuous random variables with a common 
distribution function퐹. Then 푆  has distribution 퐹 if and only if퐹 is a Cauchy distribution. 
 

Proof.The "if" part is immediate. For the "only if" part we note that if 퐹 is also the distribution of 푆 , then it 
will follow from Theorem 3.1 that 
 

(−1)
(푛 − 1)!

푑
푑푧

풮(퐹, 푧) = [풮(퐹, 푧)] , 푧 ∈ ℂ(3.7) 
 

 By an argument similar to the one given by Van Assche (1987), the solution for풮(퐹, 푧)in (3.7) is 
 

풮(퐹, 푧) =
1

푧 − 푎 + 푖푏
,							퐼푚(푧) > 0,						푏 ≠ 0, 

 

which is the Stieltjes transform of the Cauchy distribution. The proof is complete. 
 

Theorem 3.3.Under the assumption that 푋 ,⋯ ,푋  independent and continuous, 
 

(−1) ∗

(푛∗ − 1)!
푑 ∗

푑푧 ∗ 풮(퐹, 푧) =
(−1)
(푚 − 1)!

푑
푑푧

풮 퐹 , 푧 ,				푧 ∈ ℂ 푠푢푝푝	퐹푋푖
푐푛

푖=1
. 

 

Lemma 3.4.Let 푍  be a random variables that have a conditionally direct distribution. Suppose that random 
variables 푋  and 푋  are independent and continuous with distribution functions 퐹 and 퐹 , respectively. Then 
 

1
푛
풮( ) 퐹 , 푧 = −풮 퐹 , 푧 풮( ) 퐹 , 푧 ,					푧 ∈ ℂ 푠푢푝푝	퐹 . 

 

Theorem 3.4. Let 푋 and 푋  be i.i.d random variables on[−1,1], then 
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(a) if 푋  has uniform distribution on [−1,1], then푍 has semicircle distribution on [−1,1] if and only if 푋 has 
Arcsin distribution on [−1,1]; 
 

(b) if푋  has uniform distribution on [−1,1], then 푍  has power semicircle distribution if and only if 푋  has 
power semicircle distribution, i.e., 

푓(푧) =
3(1− 푧 )

4 ,								− 1 ≤ 푧 ≤ 1; 
 

(c) if 푋  has Beta (1,1) distribution on [0,1] , then 푍  has Beta , distribution if and only if 푋 has 
Beta , distribution; 
 

(d) if 푋  has uniform distribution on [0,1] , then 푍  has Beta (2,2) distribution if and only if 푋  has 
Beta(2,2)distribution. 
 

Proof. (a) For the “if” part we note that the random variable 푋  has uniform distribution and 푋  has Arcsin 
distribution on [−1,1]; then 
 

풮 퐹 ,푧 =
1
2

(푙푛|푧 + 1| − 푙푛|푧 − 1|). 
 

and풮 퐹 ,푧 =
√

. 
 

From Lemma 3.4 and substituting the corresponding Stieltjes transforms of distributions, we get 
 

풮 퐹 , 푧 =
2

(푧 − 1)
. 

 

The solution풮 퐹 ,푧 is 
 

풮 퐹 , 푧 = 2 푧 − 푧 − 1 , 
 

which is the Stieltjes transform of the semicircle distribution on [−1,1]. 
 

For the “only if” part we assume that the random variable 푍  has semicircle distribution. Then it follows from 
lemma 3.4 that 
 

풮 퐹 , 푧
1

1 − 푧
=

−1

(푧 − 1)
. 

 

The proof is completed. 
 

(b) By an argument similar to that given in (a) and solving the following differential equations, 
 

풮 (퐹 ,푧) = ( ) + (1− 푧 )(푙푛|푧+ 1| − 푙푛|푧 − 1|) ,(for the “if” part), and 
 

풮 퐹 , 푧 = ( )( | | | |)
( ) , (for the “only if” part),  

 

the proof can be completed. 
 

(c) By Lemma 3.4, we have 
 

− 풮 (퐹 ,푧) = ( ) ( )
,(for the “if” part), and  

 

( ) ( )
= ( )풮 퐹 ,푧 ,(for the “only if” part). 

 

The proof can be completed by solving the above differential equations. 
 

(d) By Lemma 3.4, we have 
 

풮 퐹 , 푧 = ( )
(6(푧 − 푧 )(푙푛|푧|− 푙푛|푧 − 1|) − 6푧 + 3),(for the “if” part), and  

 

풮 퐹 ,푧 = 6(푧 − 푧 )(푙푛|푧|− 푙푛|푧 − 1|) + 6푧 − 3,(for the “only if” part). 
 

Solving the differential equations, can complete the proof.                                                                                 
 
4      Some characterization 
 

In this section, we also observe application of theorem 3.3, as: 
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Theorem4.1.Let 푚 = 3, 푚 = 1, 푚 = 1 and 푋 ,푋 and 푋 be independent random variables on 
[−1,1].Thenif푋 ,푋  have Arcsin distribution, then푋 has semicircle distribution on [−1,1]if and only if푆 has 
power semicircle distribution on [−1,1], i.e., 
 

푓(푧) =
8

3휋
(1− 푧 ) ,			− 1 ≤ 푧 ≤ 1. 

 

Proof. The random variable푆 has a power semicircle distribution on[−1,1] and푋 ,푋  have Arcs in distribution 
on [−1,1], then it follows from the theorem 3.3 
1

12
푑
푑푧

풮(퐹, 푧) = 풮 퐹 , 푧 풮 퐹 , 푧 풮 퐹 , 푧  
 

2

(푧 − 1)
= 풮 퐹 , 푧

1
√푧 − 1

1
√푧 − 1

. 
 

The solution for풮 퐹 ,푧 is 
 

풮 퐹 ,푧 = 2 푧 − 푧 − 1 , 
 

Which is the Stie ltjes transform of the semi circled is distribution on[−1,1].  
 

Theorem4.2.Let 푚 = 1, 푚 = 1, 푚 = 2 and 푋 ,푋 and 푋  be independent random variables on [−1,1] , 
then푋 ,푋 and푋  have Arcs in distribution on[−1,1]if and only if푆 has a semicircle distribution on[−1,1]. 
 

Proof. The random variable푆  has semicircle distribution on [−1,1], then it follows from the theorem3.3 
 

풮 퐹 ,푧 풮 퐹 , 푧 풮 퐹 ,푧 =
1
6
푑
푑푧 풮(퐹, 푧) =

−푧

(푧 − 1)
. 

\ 

Thesolutionfor풮 퐹 , 푧 is 
 

풮 퐹 ,푧 =
1

√푧 − 1
,						푖 = 1,2,3 

 

Which is the Stie ltjes transform of the Arcs in distribution on	[−1,1].  
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