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ABSTRACT 
 

Data envelopment analysis (DEA) is a non-parametric approach in operations research for assessing the relative 
efficiencies of a set of peer units called decision making units (DMUs) with multiple inputs and multiple outputs. 
DEA provides a fair benchmarking tool that includes a technical efficiency score for each DMU, a technical 
efficiency reference set with peer DMUs, a target for inefficient DMU, and information detailing by how much 
inputs can be decreased or outputs can be increased to the improve performance of DMUs. In this paper, we 
compare DEA models to benchmark inefficient DMUs and prove that popular models like the slack-based measure 
(SBM) and Charnes, Cooper and Rhodes (CCR) may not give the acceptable results for benchmarking inefficient 
DMUs as strong as the weighted additive (ADD) model. The study also warns applying those conventional DEA 
models for most of applications and suggests using the Kourosh and Arash Method to assess the performance 
evaluation of DMUs. 
KEYWORDS:  Data envelopment analysis, Benchmarking, Technical efficiency, Inefficiency, Arash method. 
 

INTRODUCTION 
 

Improving the performance of an organization is the most important responsibility of many managers. 
Possible inspections and detailed analysis of DMUs to understand the production process and extract useful 
information are necessary in order to improve on their efficiency. Efficiency is the ability to produce the outputs or 
services with a minimum resource level required, that is, to do the job right. Fortunately, DEA provides feasible 
simple methods for managers and economists in order to high performance in their firms and organizations. In fact, 
DEA does not require many assumptions, and it provides a number of additional opportunities in many different 
kinds of entities, activities and contexts. DEA was developed by Charnes et al. [1] based on the earlier work of 
Farrell [2]. It estimates the relative efficiencies through linear programming and considers continuous multiple 
inputs and multiple outputs of DMUs. In fact, Charnes et al. [1] described DEA as a mathematical programming 
model applied to observational data by providing a new way of obtaining empirical frontier of the production 
function which has become the cornerstones of modern economies. Production function is used in order to evaluate 
the performances of DMUs for producing maximum output for every combination of inputs.  

DEA also provides a fair benchmarking tool that includes a technical efficiency score for each DMU, a 
technical efficiency reference set with peer DMUs, a target for inefficient DMU, and information detailing by how 
much inputs can be decreased or outputs can be increased to improve its performance. Indeed, a DMU is to be rated 
as fully (100%) technical efficient on the basis of available evidence in DEA (Pareto-Koopmans definition) if and 
only if the performances of other DMUs do not show that some of its inputs or outputs can be improved without 
worsening some of its other inputs or outputs. Unfortunately, the definition of technical efficiency is wrongly 
interpreted as efficiency in DEA. Recently, Khezrimotlagh et al [3] identified the shortcomings of Pareto-Koopmans 
definition to call a DMU as efficient and proposed that an efficient DMU is a technical efficient DMU which the 
ratio of its output to its input (i.e., output/input) does not much change if a little error happen in its data. Moreover, 
the technical efficient reference set is composed by technical efficient DMUs which are used to construct the target 
or benchmarking standard for inefficient DMUs.  

There are many DEA models, and each model has its own unique capabilities and properties. Full details on 
the description of some DEA techniques and the short history of DEA in three previous decades can be found in 
Cooper et al. [4] and Cook and Seiford [5], respectively. This paper is organized into four sections. In Section 2, we 
review some popular DEA models and demonstrate some of their strengths and weaknesses for benchmarking 
inefficient DMUs. In Section 3, we clearly demonstrate how DEA models find the reference sets and the targets for 
inefficient DMUs through some simple examples. The examples are very significant in exposing some important 
shortcomings of using conventional DEA models to benchmark inefficient DMUs. The study also warns using those 
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conventional DEA models to assess the performance evaluation of decision making units and suggests the Kourosh 
and Arash Method in DEA for variety purposes and aims of evaluating DMUs. The paper is concluded in Section 4.  

 
2. Conventional DEA models and their properties 

In this section, we review some of the popular DEA models including CCR, BCC, ADD, SBM and ERM. In 
addition, we discuss some of their properties for benchmarking inefficient DMUs. Since there is no engineering 
standard and there is no available production function for defining efficient and effective performances, a production 
possibility set (PPS) is considered and its frontier is chosen for approximating the production function.  The 
production possibility set is given by ܶ = :(ݕ,ݔ)} ݔ where ,{ݕ	produce	can	ݔ ≥ 0 and ݕ ≥ 0. The following 
notations are also used in this paper: 
 

݊ number of DMUs, 
݉ number of inputs, 
݅ index of DMUs, 
݆ index of inputs, 
݇ index of outputs, 
݈ index of specific DMU whose efficiency is being assessed, 
௜௝ݔ  observed amount of input ݆ of DMU௜, 
௜௞ݕ  observed amount of output ݇ of DMU௜, 
 ,௜ multipliers used for computing linear combinations of DMUs’ inputs and outputsߣ
 ,௜௝ି non-negative slack or potential reduction of input ݆ of DMU௜ݏ
௜௞ାݏ  non-negative slack or potential increase of output ݇ of DMU௜, 
௜௝ݓ
ି positive specified weight or price for input ݆ of DMU௜, 

௜௞ݓ
ା  positive specified weight or price for output ݇ of DMU௜, 
 ,the optimal technical efficiency score of a DMU in input-oriented approach ∗ߠ
߮∗ the optimal technical efficiency score of a DMU in output-oriented approach, 
 ,the optimal technical efficiency score of a DMU by SBM ∗ߩ
ܴ௘∗ the optimal technical efficiency score of a DMU by ERM, 
݅ ,௜∗ optimal multipliers to identify the reference sets for a DMUߣ = 1,2, … , ݊, 
 ,௜௝ି∗ optimal slack to identify an excess utilization of input ݆ of DMU௜ݏ
 ,௜௞ା∗ optimal slack to identify a shortage utilization of output ݇ of DMU௜ݏ
∗௜௝ݔ  target of input ݆ of DMU௜ after evaluation, 
∗௜௞ݕ  target of output ݇ of DMU௜ after evaluation, 

 

In order to illustrate DEA models, let there be ݊ decision making units DMU௟, for ݈ = 1,2, … ,݊, such that each 
DMU consumes ݉ nonnegative inputs ݔ௜௝, for ݆ = 1,2, … ,݉ and ݌ nonnegative outputs ݕ௜௞, for ݇ = 1,2, . . ,  Assume .݌
that each DMU has at least one positive input and one positive output value. The production possibility set (PPS) called 
஼ܶ  is the set of (ݔ, (ݕ ∈ ℝஹ଴

௠ା௣ such that ∑ ௜௝௡ݔ௜ߣ
௜ୀଵ ≤ ௝ݔ , for ݆ = 1,2, … ,݉ and ∑ ௜௞௡ݕ௜ߣ

௜ୀଵ ≥ ݇ ௞, forݕ = 1,2, … ,  ,݌
where ߣ ∈ ℝஹ଴

௡  [4]. Besides, the constant returns to scale (CRS) technology yields (ݔߣ, (ݕߣ ∈ ஼ܶ  if (ݔ, (ݕ ∈ ஼ܶ . The 
frontier of ஼ܶ 	is defined as an approximation of the production function called Farrell frontier. A DMU on Farrell 
frontier is called technical efficient and otherwise it is inefficient. The radial and non-radial DEA models reflect 
inefficient DMUs to Farrell frontier to benchmark them (see Figures 1 to 9). Furthermore, by adding the convexity 
constraint to ஼ܶ , or ∑ ௜௡ߣ

௜ୀଵ = 1, it implies the variable returns to scale (VRS) PPS which suggests ௏ܶ  [6].  
Table 1 shows some previous popular DEA models in CRS. The CCR model in Table 1 becomes BCC [6] by 

replacing VRS with CRS. This means by adding the convexity constraint, or ∑ ௜௡ߣ
௜ୀଵ = 1, to CCR model, it becomes 

BCC. Also, by adding the convexity constraint to other CRS models, they become VRS models. CCR and BCC are 
radial projection constructs for characterizing the technical efficiencies and inefficiencies. This means they decrease 
the additional input usage (increase the shortages in the output production) along the radius with the same scale. In 
addition, the models in input-oriented consider only possible input that decreases while keeping at least the present 
output levels. It is also in output-oriented which maximizes the output amounts under at most the present input 
consumption. Besides, the CCR and BCC models are invariant to the units of measurement and they describe a 
technical efficiency score of between 0 and 1. The unit invariance property means the technical efficiency scores of 
DMUs are independent of the units in which the inputs and outputs are measured provided these units are the same 
in every DMU. It can also be defined by replacing (ߙ௝ݔ௜௝  ,for inputs and outputs of DMUs (௜௞ݕ,௜௝ݔ) ௜௞) withݕ௞ߚ,
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where the technical efficiency score of DMUs is not changed, for ߙ௝ > ௞ߚ ,0 > 0, ݅ = 1,2, … ,݊, ݆ = 1,2, … ,݉ and 
݇ = 1,2, …  .݌,

 
Table 1: Some of the previous common DEA Models in CRS case. 

Models Targets  
CCR  
Input  

Oriented 

∗ߠ = min  ,ߠ
Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ ≤ ݆ ௟௝, forݔߠ = 1,2, … ,݉, 

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ ≥ ݇ ௟௞, forݕ = 1,2, …  ,݌,

௜ߣ  ≥ 0, for ݅ = 1,2, … ,݊. 

൜
∗௟௝ݔ = ௟௝ݔ∗ߠ , for	݆ = 1,2, … ,݉,
∗௟௞ݕ = ௟௞ݕ , for	݇ = 1,2, … , .݌  

 
If ߠ∗ = 1, DMU௟  is CCR technical efficient. 

   
CCR  

Output 
 Oriented 

߮∗ = max ߮, 
Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ ≤ ݆ ௟௝, forݔ = 1,2, … ,݉, 

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ ≥ ݇ ௟௞, forݕ߮ = 1,2, … ,  ,݌

௜ߣ  ≥ 0, for ݅ = 1,2, … ,݊. 

൜
∗௟௝ݔ = ௟௝ݔ , for	݆ = 1,2, … ,݉,
∗௟௞ݕ = ௟௞ݕ∗߮ , for	݇ = 1,2, …  .݌,

 
If ߮∗ = 1, DMU௟  is CCR technical efficient. 

   
ADD 
CRS 

max ∑ ௝ି௠ݏ
௝ୀଵ + ∑ ௞ାݏ

௣
௞ୀଵ , 

Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ + ௝ିݏ = ݆ ௟௝, forݔ = 1,2, … ,݉, 

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ − ௞ାݏ = ݇ ௟௞, forݕ = 1,2, …  ,݌,

௜ߣ  ≥ 0, for ݅ = 1,2, … ,݊, 
௝ିݏ ≥ 0, for ݆ = 1,2, … ,݉, 
௞ାݏ ≥ 0, for ݇ = 1,2, …  .݌,

ቊ
∗௟௝ݔ = ௟௝ݔ − ,∗௝ିݏ for	݆ = 1,2, … ,݉,
∗௟௞ݕ = ௟௞ݕ + ,∗௞ାݏ for	݇ = 1,2, … .݌,

 

 
If ݏ௝ି∗ = 0,∀݆ and ݏ௞ା∗ = 0,∀݇, DMU௟  is 
ADD technical efficient. 

   
SBM  
CRS 

∗ߩ = min
ଵି(ଵ/௠)∑ (௦ೕ

ష/௫೗ೕ)೘
ೕసభ

ଵା(ଵ/௦)∑ (௦ೖ
శ/௬೗ೖ)೛

ೖసభ
, 

Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ + ௝ିݏ = ݆ ௟௝, forݔ = 1,2, … ,݉, 

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ − ௞ାݏ = ݇ ௟௞, forݕ = 1,2, …  ,݌,

௜ߣ  ≥ 0, for ݅ = 1,2, … ,݊, 
௝ିݏ ≥ 0, for ݆ = 1,2, … ,݉, 
௞ାݏ ≥ 0, for ݇ = 1,2, …  .݌,

ቊ
∗௟௝ݔ = ௟௝ݔ − ,∗௝ିݏ for	݆ = 1,2, … ,݉,
∗௟௞ݕ = ௟௞ݕ + ,∗௞ାݏ for	݇ = 1,2, … .݌,

 

 
If ߩ∗ = 1, DMU௟  is SBM technical efficient. 
In the model, the terms ݏ௝ି/ݔ௟௝ and ݏ௞ା/ݕ௟௞  
are deleted where ݔ௟௝ = 0 and ݕ௟௞ = 0, 
respectively, and ݉ and ݌ are reduced by 1. 

   
ERM 
CRS 

ܴ௘∗ = min
∑ (ఏೕ/௠)೘
ೕసభ

∑ (ఝೖ/௦)೛
ೖసభ

, 

Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ ≤ ݆ ௟௝, forݔߠ = 1,2, … ,݉, 

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ ≥ ݇ ௟௞, forݕ߮ = 1,2, … ,  ,݌

0 ≤ ௝ߠ ≤ 1, for ݆ = 1,2, … ,݉, 
߮௞ ≥ 1, for ݇ = 1,2, … ,  ,݌
௜ߣ  ≥ 0, for ݅ = 1,2, … ,݊. 

൜
∗௟௝ݔ = ௟௝ݔ∗௝ߠ , for	݆ = 1,2, … ,݉,
∗௟௞ݕ = ߮௞∗ݕ௟௞ , for	݇ = 1,2, … ,  .݌

 
If ܴ௘∗ = 1, DMU௟  is ERM technical efficient. 

 
In contrast to CCR model (also applies to BCC model), the non-radial model ADD which was introduced by 

Charnes et al. [7] considers the possibility of simultaneous input decreases and output increases. There is no weak 
technical efficiency in the targets of the ADD model, whereas the previous models may reflect weak technical 
efficiency on the Farrell frontier. The weak technical efficiency means that there are some non-zero optimal slacks 
for a DMU whereas the models show that the DMU is technical efficient. However, the ADD model does not have 
the property of units’ invariance. The model also does not give a technical efficiency score of between 0 and 1. In 
addition, if there is no weak technical efficiency in the targets of BCC model, a DMU is VRS ADD-technical 
efficient if and only if it is BCC-technical efficient [8]. This is also the case for CCR-technical efficient in relation to 
CRS ADD-technical efficient. 

In order to restrain the shortcomings of ADD model, Tone [9] proposed the slack-based measure (SBM) 
model which is a non-radial model. The SBM model also gives a technical efficiency score between 0 and 1, and it 
has the units’ invariance property. Besides, the optimal SBM technical efficiency score is not greater than the 
optimal CCR technical efficiency score and a DMU is CCR-technical efficient if and only if it is SBM-technical 
efficient [9]. In addition, if the input-oriented CCR and SBM scores of DMU௟ 	be ߠ∗ and ߩ௜௡∗ , respectively, the mix 
technical efficiency is defined by ߩ௜௡∗ ∗௜௡ߩ Besides, the equality .∗ߠ/ =  holds if and only if the input-oriented CCR ∗ߠ
model has zero input-slacks for every optimal solution [4]. 

Likewise, a non-radial model called Enhanced Russell Measure Model (ERM) was further developed 
[10,11] which escapes from the limitations in the radial measure. ERM and SBM are equivalent in their ߣ௜ values 
where the optimality in one also results in the optimality in the other [4]. However, as it is also illustrated in this 
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paper, for multiple optimal solutions the reference sets are not unique and they may sometime yield the worse 
reference sets for inefficient DMUs. Indeed, Khezrimotlagh et al. [3] proved that the meaning of technical efficiency 
should not be wrongly interpreted as efficiency similar to economics. An efficient DMU although is a technical 
efficient DMU, a technical efficient DMU may not be efficient. In order to remove this important shortcoming in 
DEA, Khezrimotlagh et al [12] proposed that an efficient DMU is a technical efficient DMU which the ratio of its 
output to its input (i.e., output/input) does not much change where a little error happens in its data. They also 
proposed a significant method to estimate the performance evaluation of decision making units [3, 12-14]. The 
proposed Arash Model based on the weighted additive model is as following where DMU௟ is evaluated for ݈ =
1,2, . . . ,݊. 
 

 :AM-ࢿ
max 	∑ ௝ି௠ݏ௝ିݓ

௝ୀଵ + ∑ ௞ାݏ௞ାݓ
௣
௞ୀଵ , 

Subject to 
∑ ௜௝௡ݔ௜ߣ
௜ୀଵ + ௝ିݏ = ௟௝ݔ +  ,݆∀,௝ିݓ/௝ߝ

∑ ௜௞௡ݕ௜ߣ
௜ୀଵ − ௞ାݏ = ,௟௞ݕ ∀݇,  

௜ߣ ≥ 0,			∀݅, 
௝ିݏ ≥ 0,			∀݆, 
௞ାݏ ≥ 0,			∀݇. 

Targets: 

ቊ
∗௟௝ݔ = ௟௝ݔ + ௝ିݓ/௝ߝ − ,݆∀,∗௝ିݏ
∗௟௞ݕ = ௟௞ݕ + ,݇∀,∗௞ାݏ

 

 
Score: 

∗ఌܣ =
∑ ௟௞ݕ௞ାݓ
௣
௞ୀଵ /∑ ௟௝௠ݔ௝ିݓ

௝ୀଵ

∑ ∗௟௞ݕ௞ାݓ
௣
௞ୀଵ /∑ ௟௝∗௠ݔ௝ିݓ

௝ୀଵ
. 

 

In Arash Model, ݓ௝ି, for ݆ = 1,2, … ,݉, and ݓ௞ା, for ݇ = 1,2, …  allow the summations in the objective be ,݌,
meaningful and they can be the user specified weights obtained through values judgment, prices or cost information. 
In addition, the epsilon in the ࢿ-AM is defined as ߝ = ,ଵߝ) ,ଶߝ … , ௝ߝ ,(୫ߝ ≥ 0, for ݆ = 1,2, … ,݉. Moreover, if the 
weights ݓ௝ି and ݓ௞ା are unknown they can be defined as 1/ݔ௟௝ 	 and 1/ݕ௟௞ where ݔ௟௝ ≠ 0 and ݕ௟௞ ≠ 0, respectively, 
and ௝ܰ and ܯ௞ where ݔ௟௝ = 0 and ݕ௟௞ = 0, respectively, for ݆ = 1,2, … ,݉ and ݇ = 1,2, …  ௞ can beܯ The ௝ܰ and .݌,
nonnegative real numbers regarding to the goals of each DMU.  

In other words, AM is able to consider the variety weights ݓ௝ି and ݓ௞ା, where they are available and otherwise 
they can be defined with diversity scale such as 1/ݔ௟௝ and 1/ݕ௟௞ or 1/ min{ݔ௜௝ : ௜௝ݔ ≠ 0, ݅ = 1,2, … , ݊}, 1/
max{ݔ௜௝ : ௜௝ݔ ≠ 0}, 1/ average{ݔ௜௝ ௜௝ݔ: ≠ 0}  and so on and similarly for outputs, too. Indeed, AM is exactly flexible 
with varieties of weights corresponding to the aims of estimating the performance evaluation of decision making 
units. Furthermore, it is generally defined that ࢿ = ,ߝ) ,ߝ … , ߝ and when ,(ߝ > 0 and ܣఌ∗ < 1 for a DMU, ࢿ-AM 
proposes the DMU to change its data to the new ࢿ-AM target and otherwise i.e., when ܣఌ∗ ≥  AM warns that the-ࢿ ,1
DMU should not change its data, because it may decrease its efficiency score.  

 

3. Comparing DEA models to benchmark inefficient DMUs 
In this section, we discuss how DEA models benchmark inefficient DMUs with two simple examples. 

Although, our examples are quite specific, the weaknesses can be generalized to other cases as well. Moreover, 
simulations have been performed with Microsoft Excel Solver and DEA-Solver software. 

First, consider Table 2 and Figure 1 which show 18 DMUs labeled as A1, A2, …, A18. Each DMU has two 
inputs and a single constant output. Assume that the inputs have the same weights and scale, for example, in dollars.  

 

Table 2: Example of two inputs and one constant output. 
DMUs Input 1 Input 2 Output 

A1 1 12 10 
A2 2 15 10 
A3 2 8 10 
A4 3 12 10 
A5 3 5 10 
A6 4 16 10 
A7 4 3 10 
A8 5 6 10 
A9 6 10 10 

A10 6 2 10 
A11 7 4 10 
A12 9 1 10 
A13 10 9 10 
A14 12 4 10 
A15 13 3 10 
A16 13 0 10 
A17 14 1 10 
A18 15 2 10 
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Table 3 and Figures 2 to 4 show the results of applying input-oriented CCR, ADD, SBM and ERM models in 
both CRS and VRS cases. There is no any weak technical efficiency in the targets of these models. In addition, there 
is no any difference between these models with regard to CRS or VRS cases as they characterize technical efficient 
DMUs. Moreover, ADD, SBM and ERM models can only consider possible input reduction like CCR and BCC 
models, because our example has a single constant output. From here, a comparison can be made on the models 
based on how they benchmark the inefficient DMUs to determine their shortcomings and powers.  

 
Table 3: The benchmarking for DMUs in Table 2 by conventional DEA models. 

Models CCR or BCC (Input Oriented) ADD (CRS or VRS) SBM or ERM (CRS or VRS) 
DMUs Input1 Input2 Output Input1 Input2 Output Input1 Input2 Output 

A1 1 12 10 1 12 10 1 12 10 
A2 1.39 10.43 10 2 8 10 1 12 10 
A3 2 8 10 2 8 10 2 8 10 
A4 2 8 10 3 5 10 1 12 10 
A5 3 5 10 3 5 10 3 5 10 
A6 2 8 10 4 3 10 1 12 10 
A7 4 3 10 4 3 10 4 3 10 
A8 3.44 4.12 10 4 3 10 4 3 10 
A9 3 5 10 4 3 10 4 3 10 
A10 6 2 10 6 2 10 6 2 10 
A11 4.67 2.67 10 4 3 10 4 3 10 
A12 9 1 10 9 1 10 9 1 10 
A13 3.79 3.41 10 4 3 10 4 3 10 
A14 6 2 10 4 3 10 9 1 10 
A15 7.09 1.64 10 4 3 10 13 0 10 
A16 13 0 10 13 0 10 13 0 10 
A17 10.11 0.72 10 9 1 10 13 0 10 
A18 8.57 1.14 10 6 2 10 13 0 10 

 
From Table 2, the technical efficient DMUs A1 and A16 are not more efficient than other technical efficient 

DMUs (the DMUs on Farrell frontier in Figure 1), especially DMUs A7, A5 and A10. In fact, according to the 
hypothesis of this example, for instance, the efficiency of A1 is 10/(1+12) i.e., 10/13 whereas, for instance, the 
efficiency of A7 is 10/7. 

 

  
Figure 1: Example of two inputs and one constant 

output. 
Figure 2: Benchmarking by Input-Oriented CCR or 
BCC model. 

 

12060 



Khezrimotlagh and Mohsenpour, 2012 

  
Figure 3: Benchmarking by ADD model (CRS or 

VRS). 
Figure 4: Benchmarking by SBM or ERM model (CRS 

or VRS). 
  

As illustrated in Figure 4, SBM model (also ERM model) presents six inefficient DMUs, namely, A2, A4, A6, 
A15, A17 and A18 which are benchmarked to A1 and A16 (the worst technical efficient DMUs in comparison with 
other technical efficient DMUs), whereas none of the ADD, CCR and BCC models map to A1 or A16 for other 
inefficient DMUs (Figures 2 and  3). In fact, the SBM model shows that A1 is the reference set for A2, A4 and A6 
with ߣଵ∗ = 1, and A16 is the reference set for A15, A17 and A18 with ߣଵ଺∗ = 1. However, ADD suggests A6 as the 
most efficient DMU (A7). This happens because of ADD gives the optimal slacks for inefficient DMUs, whereas 
SBM does not. In fact, SBM always maximizes the summation of ratios of ݏ௟௝ି/ݔ௟௝’s, while ADD maximizes the 
summation of ݏ௟௝ି’s where the weights are 1. For instance, Figure 3 suggests by applying the ADD model to A6, the 
slacks become ݏଵି∗ = 0 and ݏଶି∗ = 13, or ݏଵି∗ + ∗ଶିݏ = 13. In comparison, SBM yields ݏଵି∗ = 3 and ݏଶି∗ = 4, or 
∗ଵିݏ + ∗ଶିݏ = 7 (Figure 4). In other words, the amount of 3/4 + 4/16(= 1) is greater than the amount of 0/4 +
13/16	(= 0.8125), and SBM cannot get the maximum summation of slacks.  

Figure 5 demonstrates the differences between DEA models for benchmarking A6 and A15. In addition, the 
optimal slacks of applying DEA models are shown in Table 4. Furthermore, since the SBM and CCR models may 
not benchmark suitably the inefficient DMUs equivalent to DMUs with the same weights and scale for inputs and 
outputs, they may not be acceptable for the variety of weights and scale of DMUs. 

On the other hand, we only consider one of the reference sets for A6 by applying SBM model. This is because 
for multiple solutions, the reference set is not unique. We can, however, choose any one for our purposes, as quoted 
on page 102 of Copper et al., [4]. This means, for example, if we assume the optimal slacks of the CCR model for 
A6 which are ݏଵି∗ = 2 and ݏଶି∗ = 8 (Figure 2) the result of 2/4 + 8/16 is . Hence, SBM also suggests A3 is the 
reference set for A6. However, SBM cannot imply A7 (or even A5) for A6 as strong as ADD.  

Obviously, the above example demonstrates the SBM or ERM models over all their abilities and their 
benefits may not comprehend all the inefficiencies where ADD can identify clearly. They may also suggest the 
worst reference sets for inefficient DMUs against ADD. However, ADD does not give an efficiency score for each 
DMU which is the most important part of assessing the performance evaluation of each decision making unit. 
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Figure 5: Benchmarking by DEA models (CRS or 

VRS). 
Figure 6: Example of two inputs and one constant 

output. 
 

Table 4: The slacks of benchmarking DMUs in Table 2. 
Models CCR or BCC (Input Oriented) ADD (CRS or VRS) SBM or ERM (CRS or VRS) 
DMUs ݏଵି∗ ݏଶି∗ ݏଵି∗ ݏଶି∗ ݏଵି∗ ࢙૛ି∗ 

A1 0 0 0 0 0 0 
A2 0.61 4.57 0 7 1 3 
A3 0 0 0 0 0 0 
A4 1 4 0 7 2 0 
A5 0 0 0 0 0 0 
A6 2 8 0 13 3 4 
A7 0 0 0 0 0 0 
A8 1.56 1.88 1 3 1 3 
A9 3 5 2 7 2 7 
A10 0 0 0 0 0 0 
A11 2.33 1.33 3 1 3 1 
A12 0 0 0 0 0 0 
A13 6.21 5.59 6 6 6 6 
A14 6 2 8 1 6 2 
A15 5.91 1.36 9 0 0 3 
A16 0 0 0 0 0 0 
A17 3.89 0.28 5 0 1 1 
A18 6.43 0.86 9 0 2 2 

 
In addition, CCR model requires more caution in terms of benchmarking inefficient DMUs. For instance, 

consider Table 5 and Figure 6 which show 18 DMUs labeled A1, A2, …, A18 with a single constant input and two 
outputs for each DMU. Assume also that the outputs have the same weights and scale, for instance, in dollars. The 
results by applying CCR output-oriented, ADD, SBM in CRS and VRS cases are demonstrated in Figures 7, 8 and 
9, as well as Table 6.  

From the figures there are seven technical efficient DMUs A1, A2, A3, A5, A7, A8 and A10, which all 
models are able to characterize them. However, the benchmarking of inefficient DMUs is different. 

 
 
 

Table 5: Example of one constant input and two outputs. 
DMUs Input Output1 Output2 

A1 10 11 8 
A2 10 0 16 
A3 10 7 14 
A4 10 8 10 
A5 10 9 13 
A6 10 1 13 
A7 10 10 11 
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A8 10 12 4 
A9 10 9 4 
A10 10 5 15 
A11 10 4 11 
A12 10 9 6 
A13 10 6 4 
A14 10 2 8 
A15 10 6 2 
A16 10 5 10 
A17 10 1 9 
A18 10 3 2 

 

  
Figure 7: Benchmarking by Input-Oriented CCR or 

BCC model. 
Figure 8: Benchmarking by ADD model (CRS or 

VRS). 
 

For instance, Figure 7 demonstrates the results of applying CCR model (radial model) for benchmarking 
inefficient DMUs such as A18, A13, and A12 to a virtual efficient DMU next to A1. As it can be seen, A12 uses the 
same input in comparison with A5 and they have also the same quantity for output 1. This obviously suggests that 
A12 requires only increasing the quantity of output 2 to be the most efficient DMU in comparison with other DMUs, 
whereas CCR model benchmarks a worse efficient virtual DMU for it. In fact, the efficiency score of A5 is (9 +
13)/10 = 2.2, whereas the efficiency score of that virtual DMU is (11.14 + 7.43)/10 = 1.86. This is also for A9, 
that is, A9 needs to increase its output2, but CCR suggests it to the point with efficiency score of 16.9. These 
outcomes exactly warn users to apply those conventional DEA models in benchmarking inefficient DMUs and 
suggest only using ADD. However, ADD does not give and efficiency score for each DMU and it is not able to 
distinguish between technical efficient DMUs, too. 

Figure 10 also illustrates the differences between those models for benchmarking A17 and A15 (the 
inefficient DMUs).  
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Figure 9: Benchmarking by SBM or ERM model 

(CRS or VRS). 
Figure 10: Benchmarking by DEA models (CRS 

or VRS). 
 

Table 6: The benchmarking for DMUs in Table 5. 
Models CCR or BCC (Output Oriented) ADD (CRS or VRS) SBM or ERM (CRS or VRS) 
DMUs Input Output1 Output2 Input Output1 Output2 Input Output1 Output2 

A1 10 11 8 10 11 8 10 11 8 
A2 10 0 16 10 0 16 10 0 16 
A3 10 7 14 10 7 14 10 7 14 
A4 10 9.54 11.92 10 9 13 10 9 13 
A5 10 9 13 10 9 13 10 9 13 
A6 10 1.21 15.70 10 9 13 10 9 13 
A7 10 10 11 10 10 11 10 10 11 
A8 10 12 4 10 12 4 10 12 4 
A9 10 11.7 5.2 10 9 13 10 9 13 
A10 10 4 15 10 4 15 10 4 15 
A11 10 5.3 14.57 10 9 13 10 10 11 
A12 10 11.14 7.43 10 9 13 10 9 13 
A13 10 11.14 7.43 10 9 13 10 9 13 
A14 10 3.76 15.06 10 9 13 10 11 8 
A15 10 12 4 10 9 13 10 6 14.33 
A16 10 7 14 10 9 13 10 10 11 
A17 10 1.73 15.57 10 9 13 10 10.67 9 
A18 10 11.14 7.43 10 9 13 10 9 13 
 
From the above illustrations the following proposition is proved. 
 

Proposition: The Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC), Slack-Based Measure 
(SBM) and Enhanced Russell Measure (ERM) models may not give the acceptable results for benchmarking 
inefficient DMUs as strong as additive model (ADD). 

Therefore, it is quite obvious that additive model is more significant than other DEA models to benchmark 
inefficient DMUs. In order to remove the shortcomings of ADD to give efficiency scores and distinguish between 
technical efficient DMUs, Khezrimotlagh et al. [3] proposed a significant technique called Kourosh and Arash 
Method which is exactly flexible in any purposes in DEA. It not only gives an efficiency score for each DMU, but 
also it is able to distinguish between technical efficient DMUs which none of the CCR, BCC, ADD, SBM and ERM 
is able to do it. From their proposed methods, all those DMUs in Tables 2 and 5 are benchmarked to A7 and A5, 
respectively. The rank of all DMUs is also characterized as the same as the rank by definition of efficiency, i.e., 
output/input. 

 
4. Conclusion 

 
This paper illustrates that the previous data envelopment analysis (DEA) models are not a complete 

benchmarking tool for assessing the performance evaluation of decision making units (DMUs). In fact, the common 
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models such as CCR, BCC, SBM and ERM models for some particular examples may not benchmark inefficient 
DMUs to the acceptable level like what we can logically imagine. They may not also produce good results when 
there are many inputs and outputs for DMUs with different weights and scales. The ADD model does not also 
produce an efficiency score between 0 and 1. None of those models are able to distinguish between the technical 
efficient DMUs. Therefore, the paper suggests applying Kourosh and Arash Method for any purposes in assessing 
the performance evaluation of DMUs with diversity capabilities in selecting weights and scales. 
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