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ABSTRACT 

 
In this paper, the Adomian Decomposition Method (ADM) based on orthogonal polynomials is employed for 
solving nonlinear ordinary differential equations. Laguerre polynomials are employed to improve the Adomian 
decomposition method. The results are compared with the method of using Taylor expansion. This method can be 
applied successfully to different types of ordinary and partial differential equations. The results show that the 
Laguerre polynomials based method is better than usual Adomian Decomposition Method. 
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INTRODUCTION 
 

A numerical method based on the Adomian decomposition method which has been developed by George 
Adomian [1] and is generally used for solving differential equations. In recent years, the methods like the homotopy 
perturbation and the variational iteration method have drawn the attention of scientists and engineers. The Adomian 
decomposition method is one of these, which has been shown [1-3] to solve effectively, easily and accurately a large 
class of linear and nonlinear problems, for instance differential equations both ordinary and partial equations, linear 
and nonlinear equations with approximate solutions which converge rapidly to accurate solutions. This paper 
focuses on the modification of ADM using orthogonal polynomials. 

Recently, a lot of attention has been focused on the application of the Adomian decomposition method (ADM) 
to such diverse areas as chaos theory [4], heat and/or mass transfer [5,6], particle transport [7], nonlinear optics [8] 
and the fermentation process [9]. Hosseini [10] proposed the method of implementing ADM with chebyshev 
polynomials, where the reliability of the proposed scheme was verified to be applicable for both linear and nonlinear 
models. Just like Chebyshev polynomials, Yucheng Liu [11] employed Legendre polynomials to modify the ADM 
that interval of orthogonality of them is [-1,1]. 
The Laguerre polynomials are named after Edmond  Laguerre  (1834-1886) and they  are solutions of the following 
Laguerre’s differential equation: 
xy′′ + (1 − x)y′ + ny = 0,                                               (1) 
where n is a real number. 
These polynomials, usually denoted by l (x), l (x), ….They can be expressed by Rodrigue’s formula 
l (x) =

!
(e x ),                                                                   (2)  

which can be defined recursively by using the following recurrence relation  
l (푥) = 1,			 
l (푥) = 1 − 푥, 
l (x) = (2k + 1− x)l (x) − kl (x) ,			k ≥ 1.              (3) 

This paper applies Laguerre polynomials [12] to modify the ADM and compares with ADM on the basis of 
Taylor series expansion. We note that Laguerre polynomials are orthogonal on (0,+∞) with respect to the weight 
function w(x) = e . The obtained results are studied to show the advantage and efficiency of this modified ADM. 

In section 2, ADM is explained. ADM based on Laguerre polynomials is shown in section 3. The numerical 
examples and comparison of the solutions by different expansions of right hand side function is shown in section 4. 
Conclusion and the absolute errors between the exact solution and the approximate solution are shown in section 5. 
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2. ADOMIAN DECOMPOSITION METHOD 
 
We begin with the equation 
Lu + R(u) + F(u) = g(t),                                                           (4) 
where L is the linear operator of the highest-ordered derivative with respect to t and R is the remainder of the linear 
operator. The nonlinear term is represented by	F(u). Thus we get 
Lu = g(t)− R(u)− F(u).                                                          (5) 
The inverse operator	L  is assumed to be an integral operator given by 
L = ∫ (. )dt	.                                                                           (6) 
Operating with the operator L  on both sides of the equation (5) we have 
u = f + L g(t)− R(u)− F(u) ,                                           (7)                                              
where f  is the solution of homogeneous equation Lu = 0. 
The Adomian decomposition method assumes that the unknown function u(x, t) can be expressed by an infinite 
series of the form 
u(x, t) = ∑ u (x, t),∞                                                               (8) 
and the nonlinear operator F(u) can be decomposed by an infinite series of polynomials given by 
F(u(x, t)) = Nu(x, t) = ∑ A∞ ,                                               (9) 
There appears to be no well-defined method for constructing a definite set of polynomials for arbitrary F, but rather 
slightly different approaches are used for different specific functions one possible set of polynomials is given by 
A = F(u ),                                                                               (10) 
A = u F′(u ),                                                                          (11) 
A = u F′(u ) +

!
u F ′′(u ),                                                  (12) 

A = u F′(u ) + u u F ′′(u ) +
!
u F′′′(u ),                         (13) 

⋮ 
We can obtain u  for i = 0,1,2, …with the recurrence relation as followes 
u = L g + ∅(x),                                                                     (14) 
u = −L (Ru )− L (Nu ), 
u = −L (Ru )− L (Nu ), 
u = −L (Ru )− L (Nu ), 
              ⋮ 
and we can calculate the final u, u = ∑ u∞ , if the series converges. 
 
3. ADM based on Laguerre polynomials 

To solve differential equation by the Adomian decomposition method, for an arbitrary integer number, g(x) 
can be expressed in the Taylor series and Laguerre series, that is pointed by g , (x) and g , (x), respectively, where  

g(x) ≈ g , (x) = ∑
( )( )

!
x ,                                               (15) 

g(x) ≈ g , (x) = ∑ c l (x),                                                 (16) 
where l (x)	(n = 0,1,2, … ) are the orthogonal Laguerre polynomials [4] with equation (2), (3) that we can obtain 
them as followes 
 
                  n																l (x)                                                         (17) 
                  0															1  
                  1															1 − x 
                  2															 (x − 4x + 2)																						 
                  3															 (−x + 9x − 18x + 6) 

                  4														 (x − 16x + 72x − 96x + 24) 

                  5													 (−x + 25x − 200x + 600x − 600x + 120)		 
                  ⋯           …. 
and 
c = ∫ e . l (x). g(x)dx,					n = 0, 1, … .∞                                   (18) 
By substituting equation (16) in (14), we have 
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u = L (c l + c l +⋯+ c l ) + ∅(x),                               (19) 
u = −L (Ru )− L (Nu ), 
u = −L (Ru )− L (Nu ), 
u = −L (Ru )− L (Nu ), 
⋮   
Above equation is governing equation of modified ADM using Laguerre polynomials. The approximate u(x) is 
obtained from (19) as u(x) = ∑ u  which can be very close to the Laguerre-expansion of the exact solution u(x) 
for appropriate m. 
 

4. NUMERICAL RESULTS 
 

In this section, we solve differential equations of second order by ADM based on Laguerre polynomials. In 
order to compare the precision of ADM on the basis of Taylor and Laguerre, their absolute errors are drown in 
figures 1 , 2. 
 
Example 1: Consider the following differential equation with the exact solution u(x) = e . 
u′′ + u′ + 2xu = 2xe ,								u(0) = 1,				u′(0) = −1,           (20) 
The operator from (20) respect to Lu = g(t)− R(u) − F(u), is 

L =
d u
dx = u′′, F(u) = Nu = 2xu , R(u) = u′, g(x) = 2xe . 

Then the inverse operator L  can be regarded as the definite integral in the following form 
L = ∫ ∫ (. )dxdx.  
According (10)-(13) the Adomian polynomials are 
A = 2xu   
A = 6xu u                                                                               (21) 
A = 2x(3u u + 3u u )  
A = 2x(3u u + 6u u u + u  
     ⋮ 
In this work we expand g(x) with taylor series and Laguerre polynomials (15), (16), then we obtain u  for i =
0,1,2, … by using (19) and u(x) = ∑ u . 
By Eq. (14), u (x), u (x) can be evaluated based on g(x), u  and Adomian polynomials A  as 
   u = L g(x) + ∅(x)                                                        (22)                                                 
   u = −L − L (A ) 

   u = −L − L (A )                                                 

   u = −L − L (A ) 
      ⋮ 
   u = 퐿 − L (A ). 
 
Case (A): Let m=10, we first expand g(x) with Taylor series  

g , (x) ≈ 2x − 6x + 9x + x − x + x − x + x − x + O(x ),   
                                                       (23)        

By using Eq. (22) we obtained u (x) based on Eq. (23) as   
  u , (x) = ∑ 	u = 1− x + x − x + x − x + x − x + ⋯ . 
 
Case (B): By setting  m = 10 and from recurrence relation (3) and Eqs. (16), (17), (18) we can have 
g(x) ≈ ∑ c l (x),								0 ≤ x ≤ 2,                                       (24) 
then  
  g 	, ≈ 0.077432 + 0.83150x− 1.5266x + 1.0316x − 0.35411x + 0.069105x                  
            −0.0080389x + 0.00056267x − 0.000023038x + 0.50436 × 10 x    
            −0.45263 × 10 x ,                                                 (25) 
Similarly, placing (25) in g(x) at (22), the approximate solution based on Laguerre polynomials is  
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  u 	, (x) = ∑ u = 1 + 0.53872x − x − 0.374323 x + 0.466364x − 0.503357x       
     +0.429098x − .351646x + 0.312085x −⋯. 

The accuracy of the u , 	(x) is validated by comparing to the exact u(x).  
 
Example 2: Consider differential equation 
u′′ + u′ − uu′ = (−2 + 4x − 2x)e + 2xe( ),					      (26) 
with initial values u(0) = 1, u′(0) = 0. 
The exact solution of this equation is u(x) = e( ).  
An operator form of the above equation is  
L(u) + R(u) + N(u) = g(x), 0 ≤ x ≤ 2, 
that 

L(u) =
d

dx ,			R(u) = u′ ,			N(u) = −uu′,			g(x) = (−2 + 4x − 2x)e + 2xe( ),	 
Then the inverse operator L  can be regarded as the definite integral in the following form 
L = ∫ ∫ (. )dxdx.  
According (10)-(13) the Adomian polynomials are 
A = −u′ u  
A = −u′ u − u′ u  
A = −u′ u − u′ u − u′ u  
퐴 = −u′ u − u′ u − u′ u − u′ u

 
 

     ⋮ 
Similar to example 1 we expand g(x) with taylor series and Laguerre polynomials (15), (16), then we obtain u  for 
i = 0,1,2, … by using (19) and u(x) = ∑ u . 
By Eq. (14), u (x), u (x) can be evaluated based on g(x), u  and Adomian polynomials A  as 
   u = L g(x) + ∅(x)                                                       (27)                                                 
   u = −L − L (A ) 

   u = −L − L (A )                                                 

   u = −L − L (A ) 
      ⋮ 
   u = L − L (A ). 
 
Case (A): We first expand g(x) with Taylor series and let m=10 

g , = −2 + 6x − 2x − 5x + 3x +
7
3 x −

7
3 x −

3
4 x +

5
4 x +

11
60 x + O(x ), 

 
Case (B): We also expand g(x) using the laguerre polynomials as 
g 	, = −2.230016 + 2.415372x + 1.597006x − 2.602548x + 1.173732x  
        +⋯+ 0.213048 × 10 x ,   
Similar to explanations of previous example and replacing g(x) with g ,  and g 	,  at (27), approximate solutions 
are obtained as followes 
u , = 1− x + 0.5x − 0.166667x + 0.041666x − 0.0083333x −⋯. 
and 
u 	, = 1 − 1.115008푥 + 0.402562푥 + 0.133084푥 − 0.005803푥 − 0.035686푥 − ⋯. 

 
5. Conclusion 
 

This paper illustrates applying Laguerre polynomials and Taylor expansion for the Adomian decomposition 
method. Examples verified that the proposed method can be used to solve both linear and nonlinear problems. 
Through analyses and comparisons, it is concluded that Laguerre polynomials can be used to improve the ADM and 
the obtained approximated u(x) is more accurate than the one obtained through regular ADM. Considering presented 
examples and their figures, we conclude that solutions of Adomian decomposition method on the basis of orthogonal 
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polynomials expansion (Laguerre polynomials) is better than Taylor expansion, especially when the approximate 
interpolation is wider than [0,1] (we have considered [0,2]).  
 

ET                                                                      El 

 
 

Figure 1: Absolute errors of ADM by Taylor and Laguerre polynomials of example 1. 
 

 
ET                                                                            El 

 
 

Figure 2: Absolute errors of ADM by Taylor and Laguerre polynomials of example 2. 
ET = |u − u | and  El =|uexact − ul|. 
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