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ABSTRACT 
 
A novel algorithm based on LQR approach is presented to optimally tune the gains of a PI controller of a first order 
plus time-delay system. In this algorithm the weighting matrices Q and R of the cost function are adjusted by the 
natural frequency and damping ratio of the closed–loop system. In order to prove the optimality of this algorithm, it 
is applied to a servo-hydraulic actuator with nonlinear dynamics. In this case, in order to apply the algorithm to the 
system and obtain the PI tuning gains, the nonlinear governing system equations should be replaced by simplified 
alternative equations which are realistic as well. In the other word, high-order equations should be simplified. Then 
the simulation results of the nonlinear plant are compared to those of the related simplified model. 
KEYWORDS: Optimal control - LQR - PI control - Time delay systems. 
 

1. INTRODUCTION 
 

Linear Quadratic Regulator (LQR) design technique is well known in modern optimal control theory and it 
has been widely investigated in literature. [1] In this method the system have to be linear and time invariant and all 
state variables are supposed to be measurable and the system is supposed to be observable and linear. Therefore, 
nonlinear equations of motion have to be linearized in order to be obtained in this approach. If the system satisfies 
the mentioned requirements, the optimal control law will be obtained by solving the algebraic Riccati equation [2]. 
This theory assumes that the settings of a regulating controller which is governing a process are found by using a 
mathematical algorithm that minimizes a particular cost function with weighting factors dependant to the problem 
definition. The "cost function" is often defined as a summation of the deviations of key measurements from their 
desired values [3]. Usually, the magnitude of the control action itself is included in the summation to keep the 
energy expended by the control action limited.  

Proportional-Integral-Derivative (PID) controllers[4] is still the most widely used controller in industrial 
process and control during the last fifty years. The popularity of this method, it is mostly because of its simplicity in 
structure and its ease of implementation. In early 1940s, Ziegler and Nichols [5] proposed the first PID tuning 
method and surprisingly it is still widely used in industry. As industrial systems evolve and become more and more 
complex, their performance would become more challenging, so the Ziegler-Nichols method is insufficient in such 
applications. Therefore, during the last 70 years many methods have been proposed to determine parameters of PID 
controllers, including time response tuning [6], time domain optimization [7] frequency domain determination [8] 
the gain-phase margin method [9, 10] evolutionary algorithms [11, 12] robust and adaptive PID tuning [13, 14].  
Time delay exists in almost all industrial processes especially mechanical types and its impact on the response of the 
system is dependent directly to the nature of the system [15]; therefore, it is crucial to propose different approaches 
to control it so there are plenty of methods investigated in literature [16].  

The goal of this paper is to employ an optimal PI/PID tuning approach [17] to control a servo-hydraulic 
actuator. As the first step, in section 2, we will give a brief introduction of LQR method. In section 3, we will 
describe the employed PI/PID approach based on a low-order plus time delay model. Then, in accordance with the 
desired closed-loop natural frequency and damping ration we select the weighting matrices Q and R. As the next 
step, we model a servo-hydraulic actuator. On the other hand, our system is nonlinear, so it should be linearized in 
order to let us use the optimal control approach. As simplified time-delay model is determined, the time-delay term 
will be modeled in two manners and the results of system based on two manners will be concluded. 

An optimal PI tuning algorithm for a first order plus time delay model is derived via the LQR approach in 
section 3. Various simulations are given in section 4. Section 5 proposes the optimal PID tuning algorithm and 
section 6 concludes the paper.   

 
2. LQR solution, based on time-delay systems 
Consider a linear process with time delay described by 
 

( ) ( ),x Ax t Bu t L                (1) 
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where A, B are given matrices derived from the plant transfer function and the control performance specification in 
terms of 
 

0

1 [ ( ) ( ) ( ) ( )] ,
2

T TJ x t Q x t u t Ru t dt


   (2) 

 
where Q and R are given weighting matrices with proper dimensions. In the presented set of equations,0 Q , 

0R  and   0u t  ,when 0t  . The value of Q will be determined by natural frequency and damping ratio of the 
closed-loop system and the value of R in designing the controller has no sense[17]. 

The LQR problem goal is to find the optimal control u(t) such that J as the cost function in Eq. (2) is 
minimized. In order to achieve this goal, we decompose the dynamic process into two stages: 

(I) When 0  t L  , ( ) 0u t L  . In this stage there is no input signal to process (1) therefore: 
 

( ),x Ax t  0  .t L   (3) 
 
(II) When  L t , the process has a possible non-zero input signal. In this stage, let ˆ( ) ( )u t u t L  ,  L t then we 

have: 
 

ˆ( ) ( ),x Ax t Bu t   .L t  (4) 
 
Through this transformation,  Eqs. (3) and (4) are now both delay-free and the LQR result for delay-free 

process can then be applied. It is well known that the LQR solution to process (4) is [2] 
 

1ˆ ( ) ( ),Tu t R B Px t   ,L t  (5) 
 
where P is the positive definite solution of the Riccati equation: 
 

1 0.T TA P PA PBR B P Q      (6) 
 
Converting ˆ ( )u t  in Eq. (5) back to  ( )u t , we obtain the LQR solution to the original process (1) with the index (2) as 
 

1ˆ( )  ( ) ( ),Tu t u t L R B Px t L      0 .t  (7) 
One sees from Eq. (7) that though the control law ˆ ( )u t  given in Eq. (5) is in time horizon of L t , the 

recovered u(t) actually gives the control signal for process (1) in the whole time horizon of 0 t .  x(t+L) is not 
directly available at time t. By Eqs.(3)-(5), however, it can be expressed by the transmission of x(t) as 
 

1 1( ) ( ) ( )( ) e ( ) e e ( ),
T TA BR B P t A BR B P t A L tx t L x L x t

       (8) 
 
when 0  t L  and 
 

1 1( ) ( )( ) e ( ) e ( ),
T TA BR B P t A BR B P Lx t L x L x t

      (9) 
 
when L t ¸ If we factorize the matrix Q as TQ H H , the LQR solution to Eqs.(1) and (2) can thus be summarized 
in the following theorem. 
 
Theorem 1. For the linear process (1) with time delay, if (A, B) is controllable and (H, A) is observable, then the 
optimal control minimizing the criterion function (2) is given by 
 

11 ( ) ( )( ) e e ( )
   

TT A BP B P t A L tu t R B P x t  
0  t L  (10) 

 
and 
 

11 ( )( ) e ( )
  

TT A BP B P Lu t R B P x t  
L t  (11) 

 
where P is the positive definite solution to Eq. (6). The resultant system is also stable. 
 

It might be concluded from Eq. (7) that the current control u(t) is actually a feedback of the future state at 
time of (t+L). It implies that the controller has the prediction capability and thus may improve the closed-loop 
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performance compared with traditional LQR or PID design. It is also noticed that during the starting period of time t 
< L, the control law (10) is time varying and generates a relatively large gain required to speed up the response. 
When t=L, Eq. (10) coincides with Eq. (11) and thus the control law is continuous. After that the feedback gain 
becomes constant, as seen in Eq. (11).  
 
3. PI tuning for first-order modeling 

In industry, a large class of processes has monotonic Input-output transients whose transfer functions can be 
approximated by a first-order plus time-delay (FOPTD) one: 
 

( ) e LsbG s
s a


  

 
(12) 

 
It should be noted that Eq. (12) is not the process itself but a model of it and is used only for the purpose of 

controller design. The controller, once designed, should be applied to the process but not the model. A PI controller 
[3] 

 
1( ) ( ) ( ) ( ) ( )p p i

i

u t K e t e t dt K e t K e t dt
T

 
    

 
 

 
(13) 

 
is adequate for such a kind of processes. In this section, we will derive an optimal PI tuning algorithm via the LQR 
approach of the last section and the closed formulas for selecting Q and R in terms of the closed-loop specifications. 
 

 
Fig. 1 Feedback control system 

 
Consider a unity output feedback system shown in Fig.1. In the case of feedback design, the external set point 

does not affect the result and we put r = 0. It then follows from Fig. 1 that ( ) e Lss a e b u   , which is equivalent to 
the time-domain equation 

 
( ).e ae bu t L     (14a) 

 
We have the identity 

 

0

( )d 
td e t t e

dx  
(14b) 

 
Let 

1 0 ( )dtx e t t   and 2x e  such that T
1 2[ ]x x x . Then Eq. (14a) and (14b) can be written in the following 

equivalent form: 
 

0 1 0
( )

0
   

         
x x u t L

a b  
(15) 

 
It should be emphasized that both the variables are available (see Fig. 1) and the state feedback of Kx is simply 

(
0 dt

i pK e t K e ), i.e., PI control. As a result, the state feedback gain to be derived by LQR will give us the required 

PI parameters. 
In order to find the explicit expressions for iK  and 

pK  for ease of use, comparing Eq. (15) with Eq. (1) 

yields 0 1
0 aA      and 0

bB     .  

Let 1

2

0
0
q

qQ     . Substituting 11 12

12 22

p p
p pP      into Riccati equation (6) yields 
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11 12 11 12

12 22 12 22

11 12 11 121

12 22 12 22

1

2

0 0 0 1
1 0

0
0

0
0

0

p p p p
p p p pa a

p p p p
R b

p p p pb

q
q



      
              

    
         

 
 

 

 
(16) 

 
Its positive definite analytical solution is 

 

12 1

22 2 2
22 12 2

1 2
11 12 12 22

,

( (2 )) ,

.



    

 

p q R b

p Ra R a Rb p q b

p ap R b p p  

(17) 

 
Let 
 

 

 

11 121 T 1

12 22

1
12 22

0 



 
    

 
 

p p
F R B P R b

p p

R b p p  

(18) 

 
and 
 

 1
12 22

1 2 2 1 2
12 12 2

0 1 0
0

0 1
.

(2 ))

cA A BF R b p p
b b

R b p a R b p q



 

   
          

 
  

     

 
(19) 

 
The optimal controller in Eq. (10) and (11) then reduces to 
 

( ) ( ), 0
( ) .

( ),

c

c

A t A L t

A L

Fe e x t t L
u t

Fe x t L t

  
 

 
 (20) 

 
Remark 1. Note that given the process's A and B the optimal controller in Eq. (20) depends only on the gain F in 
Eq. (18), or only on 12p  and 22p  in the solution (17) of Riccati equation. Now, if the matrix Q in Eq. (16) is replaced 
by a general form of 1 12

12 2

q q
q qQ     then its positive definite analytical solution 

is 22 2 2
22 12 2( (2 )) ,p Ra R a Rb p q b     12 1 ,p q R b  and 1 2

11 12 12 22.p ap R b p p   Note that 12p  and 22p  remain 
the same as those in Eq. (17) though the Q matrix is non-diagonal. This shows that choosing Q with a diagonal form 
will not lose the generality in the PI optimal controller design via the LQR approach for the case in Fig. 1.  

To obtain the feedback gains in Eq. (20) explicitly, one needs to calculate exp( )cA t  and exp( ( ))A L t . It follows 
from the Laplace inverse transformation that 
 

1 1
( )exp( ( ))= ( ) |

1 (1 exp( ( )))
0 exp( ( ))

L tA L t l sI A

a L t a
a L t

 
 

   
      

(21) 

 
As for exp( ),cA t let 2 1 2

1 12 1ˆ (2 ),a a R b p q    1 2
2 12ˆ ,a R b p  1  and 2  be the roots of the equations 

2
1 2ˆ ˆ 0,s a s a    therefore those roots are 2

1 1 1 2ˆ ˆ ˆ( 4 ) 2a a a      and 2
2 1 1 2ˆ ˆ ˆ( 4 ) 2a a a     .  

 
Then we have 
 

11 121 1

21 22

( ) ( )
exp( )= ( ) ,

( ) ( )c c

f t f t
A t l sI A

f t f t
   

   
   

(22) 
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where 

1 2

1 2

1 2

1 2

11 1 1 2 1
1 2

12
1 2

2
21

1 2

22 1 2
1 2

1 ˆ ˆ( )e ( )e ,

1 e e ,

ˆ e e and

1 e e .

t t

t t

t t

t t

f a a

f

af

f

 

 

 

 

 
 

 

 

 
 

     

   
    

     

 

 
Recall that T

0[ , ][ d , ]t
i pu Kx K K e t e   . Substituting Eqs. (18), (19), (21) and (22) into Eq. (20) gives us the 

explicit expressions for the PI parameters. 
 
Theorem 2. The LQR optimal control for process (12) with state equation (15) is given in the form of a PI 
controller (13), where for0  ,t L  [1] 
 

1
12 11 22 21

1
12 11 22 21

12 12 12 11 22 21

( )
22 21

( ) [ ( ) ( )],
1 1( ) ( ) ( )

1( ) ( ) ( )

1 ( ) e

i

p

a L t

K t R b p f t p f t

K t R b p f t p f t
a a

p f t p f t p f t
a

p f t
a





 

 

 


  
  

 

(23a) 
 

(23b) 

and for ,L t   
 

 

1
12 11 22 21

1
12 12 22 22

( ) [ ( ) ( )],
( ) ( ) ( ) ,

i

p

K t R b p f L p f L
K t R b p f L p f L





 

   

(24a) 
(24b) 

 
where constants 12p and 22p are given in Eq. (17), ( )ijf t , 1,2; 1,2,i j  are given in Eq. (22), 1 2,q q  and R are tuning 
parameters. 

In an ordinary LQR design, the selection of Q and R matrix is quite technical and affects the system 
performance a lot. In order to overcome this difficulty, we now derive a direct relationship between 1q and 2q , and the 
damping ratio   and natural frequency n  of the closed-loop system. 
 
Theorem 3. When L t , the damping ratio and natural frequency n  of the LQR optimal closed-loop system in 
Eqs. (13) and (15) is 
 

1
1

2 1
1 2

1
1

,

(2 )

2

n R b q R

a R b q R q b

R b q R













 


 

(25) 

 
or equivalently, in order to have the desired and n , 1q and 2q should be chosen as 

4

1 2

2 2 2

1 2

,

(4 2)

n

n

Rq
b

a R
q

b



 



   
 

 
 

(26) 

 
Proof. When L t , the closed-loop system becomes  
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1 2 1
1 1 2

0 1
,

(2 )cx A x
R b q r a R b q r q b 

 
   

     


 
 
whose characteristic equation  
 

2 1 1
1 2 1( (2 )) .s s a R b q r q b R b q R        

 
It thus has 
 

2 1
1 ,n R b q R   

2 1
1 22 (2 ).n a R b q R q b     

 
The theorem is then obvious. 
 
Remark 2. For the system (15) with 1 2diag{ , }Q q q  with 1q  and 2q  chosen according to Eq. (26), the performance 
index (2) becomes [1] 

 
24 2 2 2

2 2
2 2

0 0

(4 2)[ ( )d ( ) ( ) ]d ,
t

n n aJ R e t t e t u t t
b b
          

   
 

 
i.e., J is proportional to R. This implies that R makes no sense in the design of controller gain F in Eq. (18) and thus 
we can always choose R=1 when Theorem 3 is applied. 

In view of the above development, an optimal PI tuning algorithm for process (12) can be summarized as 
follows for ease of reference. 
 
An optimal PI tuning algorithm 
Initialization: Obtain a, b, L and set R=1. 
Step 1. Choose the closed-loop n and . 
Step 2. Calculate 1q and 1q from (26). 
Step 3. Calculate 12p and 22p from (17), cA from (19) andexp( )cA t from (22). 
Step 4. Calculate the PI parameters from (23) and (24). 
 
Remark 3. In the proposed algorithm, and n are only user-specified parameters. To our experience, 
choosing[0.7, 0.9] and n  [10, 15] would give a satisfactory result. Normally, we can use defaults 

0.7  and 14n  . For a better performance, a better tuning procedure may be employed. 
 
 
4. Modeling studies [4] 
The PI tuning algorithm proposed in the last section will be applied to a servo-hydraulic dynamical model.  

Today, hydraulic drive systems are widely used in industry due to their many advantages. High transmitted 
power to components weight ratio, lubrication and spontaneous heating transmission due to fluid properties, the 
ability to apply large torques, very quick response, high bandwidth and high torque to inertia ratio are among these 
benefits.  

Servo-hydraulic systems include various components such as servo-valves, actuators, pumps which have very 
complex, nonlinear and time variant dynamics. For instance, by changing the operating temperature, Temperature-
sensitive parameters such as density, viscosity and balk modulus change. 

Servo-hydraulic systems have wide range of applications such as Production systems, Materials testing 
machines, Active suspension systems, Fatigue testing, Flight simulation, Paper machines, Ships, Robotic equipment. 
Also in Aircraft and Aerial industries in which power to weight ratio and controlling them is important, hydraulic 
systems are an ideal choice to mobilize flight control surfaces. 

 For hydraulic systems which work long time and have variable temperatures, changes of parameters are not 
negligible. Therefore, it is necessary to define different controllers to compensate such changes in order to ensure 
optimal system performance. 

However, electric motors are used in many of these applications, but motion control systems that require much 
force or very wide bandwidth, use effectively electro-hydraulic components. Servo-hydraulic systems are usually 
used for applications with bandwidth greater than 20 Hz or control power greater than 15 kW. 
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Besides the ability to provide high forces and quick response; servo-hydraulic systems have other benefits than 

electric systems. For example, hydraulic systems are more rigid and for a specified power level frequency, they have 
higher resonance, higher control loop gain and improved dynamic performance. Also, they have the important 
feature of self cooling. Hydraulic fluids, as cooling medium, dissipate heat effectively from actuators and control 
components. Nevertheless, such systems have several nonlinear effects which can make the modeling and parameter 
determination complicated and subsequently system control will become difficult. 

According to the mentioned points, providing an appropriate dynamic model which is not only simple but also 
realistic is very important. This model should be as simple as possible; because designing a controller for a complex 
model is one of the major problems itself. On the other hand, the model must be precise enough to describe the 
behavior of the real system in a desirable manner.  

In this paper, firstly a nonlinear dynamical model of a rotary servo-hydraulic system is provided .The resulting 
model consists of servo valve dynamics (including torque motor, valve spool and the fluid flow through orifices) 
and hydro-motor. Then the model will be approximated by a time-delay transfer function and finally, the Pi tuning 
approach will be applied to the model to control it.  
 
4.1 System Dynamics Modeling 

A rotary Servo-hydraulic system consists of the following main parts: electric motor, hydraulic pump, filter, 
safety valve, accumulators, pressure gauge, pressure transmitter, servo-hydraulic valve, rotary hydraulic motor 
(hydro-motor), one-way valve, interface board, computer and encoder. 
The components of a servo-hydraulic valve and their inter connection is shown in Figure.(2) 

 
Fig. 2 Rotary servo-hydraulic system 

 

4.2 Servo-valve modeling 
A Flapper-Nozzle servo valve consists of three major parts: electric torque motor, hydraulic booster and spool 

valve. A diagram of the double flapper nozzle is shown in Figure. (3). 

 
Fig. 3 A double flapper nozzle 

 
Supply pressure (the setting of the relief valve or the setting of a pressure compensated pump) is supplied to the 

points identified with sP  (Figure. (3)). Fluid flows across the fixed orifices and enters the center manifold. Orifices are 
formed on each side between the flapper and the opposing nozzles. As long as the flapper is centered, the orifice is the 
same on both sides and the pressure drop to the return is the same. Pressure at A equals the pressure at B, and the spool 
is in force balance. Suppose the torque motor rotates the flapper clockwise. Now, the orifice on the left is smaller than 
the orifice on the right, and the pressure at A will be greater than the pressure at B. This pressure difference shifts the 
spool to the right. As the spool shifts, it deflects a feedback spring. The spool continues to move until the spring force 
produces a torque that equals the electromagnetic torque produced by the current flowing through the coil around the 
armature. At this point, the armature is moved back to the center position, the flapper is centered, the pressure becomes 
equal at A and B, and the spool stops. The spool stays in this position until the current through the coil changes. 
Because of the feedback spring, the spool has a unique position corresponding to each current through the coil ranging 
from 0 to rated current. At rated current, the spool is shifted to its full open position.   
 

4.2.1. Torque motor dynamics 
In order to simplify the electrical modeling of the torque motor of the servo valve, it is modeled as RL series 

circuits in which the back-emf effects produced by load are neglected. 
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The transfer function of a RL series circuit is [4] 
 

( ) 1
( ) c c

I s
V s sL R




 (27) 
 
In which cL is the self inductance of the motor coil and cR is the total resistance of the motor coil and the servo 
amplifier resistant, which is provided by the manufacturer. 
 
4.2.2. Spool valve dynamics 

A servo valve is a very complex device which demonstrates a high order nonlinear response. Finding a proper 
mathematical model requires good understanding of its parameters. In fact, many parameters such as nozzle and 
orifice, springs constants, spool geometry etc which are set by the producers are not available for costumers. 

In reality, all physical systems demonstrate some nonlinear behaviors which are originated from a physical 
motion restriction or some factor such as friction, hysteresis, mechanical abrasion, erosion, looseness etc. To model 
a complex servo valve, any inherent nonlinear effect should be neglected. Then by a small disturbance, the spool 
valve dynamic is approximated by a linear model. Such models are mostly based on first order or second order 
differential equations and their coefficients are set so that they fit the frequency response of the tables provided by 
the produce or manufacturer. A simple first order or second order is just an approximation of the real behavior. 
However, servo valve is selected among different types so that the natural frequency is at least 3 times greater than 
the natural frequency of the actuator. Therefore, it is very important to model the valve response precisely in rather 
low frequency ranges. Therefore the spool valve dynamics can be approximated with an acceptable second-order 
transfer function [4]: 

 
2

2 2
( )
( ) 2

v v v

v v v v

A s K
I s s s


  


 

 (28) 

 
in which vI  is the input torque motor current and vA is the resultant opening surface of the valve.  
 
4.3. Actuator modeling consisting of servo-hydro motor 

The ratio between the mass flow of the control valve and the internal pressure of the actuator lacuna is very 
important since viscosity of the fluid varies with temperature. Leakage effects should be considered in the actuator 
dynamics too. On the other hand, compressibility of the oil makes an elastic effect inside the cylinder lacuna which 
interacts with the piston mass. This factor should be considered in analysis of all hydraulic systems which mostly 
results in restriction of available bandwidth. This effect is modeled by the mass conservation equation. The 
compressibility equation is [4] 
 

( )
2

t s L v
L d v m L L

V P P sign AP C A D C P
 


    (29) 

in which LC  is the leakage coefficient,   is the fluid balk module,   is the position angle, tV  is the net fluid 
volume under pressure and mD  is the actuator volumetric displacement. 
 
4.4. System equations: 

The proposed actuator has a nonlinear nature which can be modeled by the following set of equations [4]: 
 

1 2

2 1 3 2 2 3

3 1 3 2 3 3 2( )v s v

x x
x w x w x w

x p A P x sigma A p x p x

 


  
    






 

(30) 

in which 
 

Table 1 - Parameters of system equation coefficients  
1x   

2x      3 Lx P  

1
m

m

Dw
J

  
2

v

m

Bw
J

  
3

L

m

Tw
J

  

1
2 D

t

Cp
V



  
2

2 L

t

Cp
V
  

3
2 m

t

Dp
V
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In the mentioned set of equations, the parameter which should be controlled is 2x     , therefore Eqs.30 are 

reduced to 
 

2 1 3 2 2 3

3 1 3 2 3 3 2( )v s v

x w x w x w

x p A P x sigma A p x p x

  


   





 

(31) 

The above set of equations is a real model of servo-hydraulic valve but it is very complex even now and it is not 
capable to be transformed to a second-order transfer function, therefore it should be simplified. The following 
values are resulted from simplification, in which  

1 1w  . 

2 0w  , because the value of vB  is negligible in comparison with the value of mJ . 

3 0w  , because the value of LT  is negligible in comparison with the value of mJ . 

1 0P   , because the value of DC  is negligible in comparison with the values mJ  and  . 

2 4.5P  . 

3 0P   , because the value of mD  is negligible in comparison with the value tV . 
Therefore the results of simplification can be presented as: 
 

Table 2 - Value of parameters after applying simplifications 
1 1w   2 0w   3 0w   

1 0P   2 4.5P   3 0P   

 
On the other hand, a second-order transfer function can be introduced as [3] 
 

2
0

model 2 2( )
2

o

o o o

aG s
s s


  


 

   
(32) 

 
 
in which 1o  and 10o  are the damping ratio and natural frequency of the open-loop system. 

Transfer function in Eq. (32) can be reformulated to the following transfer function which is more familiar to 
us due to its variables: 

 

( ) 1( )( )

b
LG s

s a s
L


 

 

  
(33) 

 

 
Even now, the presented Eq. (33) is not similar to Eq. (12) and that is because of the presence of one of the 

time-delay approximations in the equation (1 )L s . Therefore this term should be replaced by the time-delay 
term: 

 
1e

1
Ls

Ls
 

  

  
(34) 

 
 
By putting Eq. (34) into Eq. (33) and reformulating the whole equation, Eq. (12) will be resulted in which 

 
Table 3 - Value of parameters for open-loop system 

( )L sec  ( / )a Rad sec  ( / )b Rad sec  

0.07 4.5 9 
 

Considering the simplification process and using the results of equation (32) and (33), an optimal control for 
the system is obtained in which the values of n , the natural frequency and n , the damping ratio of the closed-loop 
system are consequently 14 and 0.7. 
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Fig. 4 The Simulation program in Simulink 

 
5. Simulation studies 

An optimal PI tuning via LQR method is presented in section 3 and 4 and the modeling of a servo-hydraulic 
actuator is presented in section 4. 

By applying the PI optimal algorithm of sections 4 and 5 to the approximated model of section 5, PI optimal 
gains will be resulted which are used to control the model behavior in an optimal manner.  

The resulted transfer function from the model is  
 

0.079( ) e
4.5

sG s
s




 
 

(35) 

 
By applying the model parameters of Table. (3) to the PI tuning method, the following coefficients are 

obtained:   
 

 

 

 

9t
2

9t -49t
2 5

[(4.839cos( 9.997t) 

2.565sin 9.997t

2.307e cos 9.997t   

2.261e sin 9.997t ] e

pK

 
 
 

   
   
   

 





 
  
 

 

0  t L  

 

-49t
5

[(21.777cos(9.997t) -

 11.544sin(9.997t) ] e

iK
 
 
 



 
  
 

 
0  t L  

 
0.819pK   L t  

 
4.644iK   L t  

 
which are time-variant for 0 t L  and constant for L t . The trends of PI gains are shown in Figures. (7) and (8). 

All of the parameters provided up to now are simulated in the Simulink environment which is shown in Figure. 
(4).  

To see what causes different shapes of response, PI parameters for both models are shown below 
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As shown in Figure. (5), the settling times for both lines are similar and both models demonstrate a similar 

behavior against a step input. On the other hand the step input for an actuator with 0.07 sec delay time, is damped 
in0.7 sec. Such similarities between the responses of the simplified model (Eq. (33)) and its approximated model 
(Eq. (12)), demonstrate that the delay-time approximation applied to the simplified transfer function is acceptable 
and its response is reliable. 

The presented trends in Figures. (5) and (6) demonstrate that the approximation applied to the model to adapt 
Eq. (32) to the first-order transfer function in Eq. (12) is acceptable and 
 
Conclusion 
 

Time delay is a very common phenomenon in industry. In this paper, an optimal PI tuning algorithm based on 
LQR method has been used to provide an aerospace servo-hydraulic actuator controller. Therefore the gain 

The provided actuator has 0.07 sec delay-time and its behavior is settled in 0.7 sec which is acceptable for such 
actuators. 

 
Figures and Drawings 

 
Fig. 5 Tracked outputs vs. Simulation time 

 

 
Fig. 6 Control effort vs. Time 

 

 
Fig. 7 

pK vs. Time 
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Fig. 8 iK vs. Time 
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