

J. Basic. Appl. Sci. Res., 2(4) 4266-4274, 2012

© 2012, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Iman Rezazadeh, Department of Computer Engineering, Meshkin Shahr Branch, Islamic Azad
University, Meshkin Shahr, Iran. Email: i_rezazadeh@meshkin-iau.ac.ir

A Modified Particle Swarm Optimization Using FCM for
Moving Peaks Benchmark

Iman Rezazadeh2, Sajjad Ghatei2 and Ahmad Naebi3

1 Department of Computer Engineering, Meshkin Shahr Branch, Islamic Azad University, Meshkin Shahr, Iran
2,3 Department of Computer Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

ABSTRACT
Many optimization problems in real world are dynamic and they are changing over time. For
resolving these problems, many different algorithms have been proposed. One of these, is PSO
algorithm which has well supported its ability in resolving static problems. But this algorithm
has some problems in dynamic environments. In this paper, an improved PSO algorithm with
inertia parameter has been proposed for dynamic environments which increase the convergence
speed of algorithm in getting close toward optimizations. In the proposed algorithm, in order to
prevent excessive compression of groups at the end of each iteration, the distance between each
group is measured and if this distance is lower than a threshold which is adjusted by a dynamic
clustering, the worse group will be eliminated. When some changes is observed in the
environment, first the particles’ memory is evaluated, then the particles are distributed inside a
super globe with the best particle in the center to increase the group diversity. In order to
optimize the results, a local search is applied around the best particle of the group. For
evaluating the proposed algorithm, moving peaks benchmark was used. The findings showed
that the proposed method operates better than other methods.
KEY WORDS: Dynamic Environments, PSO, Moving Peaks Benchmark, FCM

1. INTRODUCTION

PSO is relatively a new heuristic search method. This algorithm has successfully been utilized in variety of
applications such as pattern recognition, image processing, machine learning, etc. PSO is an optimized
algorithm which is inspired from social and group life of animals like birds in order to get the optimum solution.
In PSO a group of particles are located in search area. Giving that each particle presents a candidate solution of
the optimization problem. Location of each particle is driven from the best location which has ever met (in terms
of self-experience) and location of the best neighborhood particles (in terms of neighborhood experience).
The applications in which the evolutionary algorithms are applied are divided in to two parts: Static and
Dynamic. Majority of the real world problems have dynamic nature and are subjected to change over the time.
For example, the new tasks that are received continuously and must be scheduled. Parameters which effect the
dynamic environment, the frequency of the change, severity of the change, predictability of the change, Cycle
length and cycle accuracy. Dynamic environments are divided in to four sections based on defined settings:
constant (identical change in each cycle), periodical, homogeneous and alternating [6].
Drawbacks of The PSO in dynamic environments are: old memory and diversity loss which are explained in
next paragraphs as bellow:
In the case of any change in environment, the particle’s memory is not true anymore and can have a very bad
effect on search process. This problem can be solved by two methods: either re-evaluating the memory or
forgetting the memory. In re-evaluating, the memory of each particle is verified in each stage. And in forgetting
the memory the current location of each particle is replaced with its memory and overall optimization is updated
accordingly. Diversity loss occurs when the swarm converges on a few peaks in the landscape and loses its
ability to find new peaks, which is required after the environment changes. There are two approaches to deal
with diversity losing problem. In the first approach, a diversity maintenance mechanism runs periodically (or
when a change is detected) and re-distributes the particles if the diversity falls below a threshold. In the second
approach, diversity is always monitored and as soon as it falls below a threshold, the swarm will be re-
diversified.
The rest of the paper is organized as follows. In Section 2, related works on dynamic environments are
reviewed, in section 3, the proposed algorithm is presented. In Section 4, presents the experimental results of the
proposed algorithm along with comparison with alternative approaches from the literature. Finally section 5
includes the conclusion of the present paper.

4266

Rezazadeh et al., 2012

2. RELATED WORKS

MPSO is suggested by Blackwell and Branke [4, 5]. The particles in MPSO are divided to M independent
groups. Each group contains a fixed number of particles. Information sharing in each group is done in global
manner. This mechanism keeps the diversity in two levels: group is divided into sub-groups which penetrate in
different sections of search area (diversity between the groups). And each sub-group contains some quantum
particles which provide diversity inside the group. In [10], the effectiveness of this algorithm is analyzed and
demonstrated that the quantum articles used in this algorithm are only useful when the environment is subject to
change and doesn’t have much efficiency in other cases.
In [11] because of less efficiency of quantum particles, two types of strategies are utilized: in the first strategy,
in the time of detecting any change in environment; the particles are divided to three parts: the first part remains
without change, the second part like quantum particles in a cloud are assigned by value of centrality of the best
particle and radius of “r”, and the third part are distributed in whole of the environment. In second strategy
useless swarms are detected using fuzzy logic and stopped in order not to waste the system’s resources. In [12] a
Cauchy Mutation is utilized for detecting the changes in environment, instead of quantum particles. Also the
small neighborhoods are used inside the groups. In this work, some of the particles are kept away from center
when the group is going to be convergent in order to keep the diversity.
SPSO [5] distributes the particles dynamically between the types. SPSO is extended based on the theory of the
types. The limitation of the types depends on parameter rs which represents the measured radiuses in Euclidean
distance from the center of types to its borders. The center of a type so called the “type’s core”, usually is a
particle with the best fitness. All of the particles within the rs radius from the core are categorized as a similar
type.
In FMSO [7], two search algorithm, one in parent group and another in child group are utilized. The global
search function is utilized in parent group in order to keep the diversity and finding the probable areas in search
environment. Mean while hand the child groups are used as local explorer. FMSO starts with a parent group
which does the search function in environment in each level if the best founded location in parent’s group is
improved a child group in centrality of the founded location and radius of rs from this location is created.
Kamosi improved this procedure in [9].
Hashemi and Meybodi introduced cellular PSO, a hybrid model of cellular automata and PSO [3]. In cellular
PSO, a cellular automaton partitions the search space into cells. At any time, in some cells of the cellular
automaton a group of particles search for a local optimum using their best personal experiences and the best
solution found in their neighborhood cells. To prevent losing the diversity, a limit on the number of particles in
each cell is imposed.
In KPSO [1], in order to divide the problem into sub-problems consecutive repetition, all particles in problem
domain are clustered and each cluster performs the search process independently. At first in this mechanism, the
grouping process is performed and stays unchanged for several repetitions. So, there will be enough time for
algorithm to do the search. Also because of utilization of the clustering, spatial location of the particles in
various groups are considered. Drawback of this approach is defining the suitable number of clusters. In [8], Lee
and Yong cluster the particles using fuzzy clustering and grouped the particles using the result of the clustering
then according to the progress of the algorithm compound the clusters. If the particles of two clusters are a few,
and near to each other, these two clusters are compound. Also in order to solve the problem of two steps forward
and two steps back in PSO, when the best particles are updating, the dimensions of that particles are updated one
by one. In [13] Lee and Yong, at first all of the particles are distributed in the environment and in each repetition
the neighboring particles make one group. This process continues until there is no single particle group in the
environment. If two groups are closer than a threshold, then they compound together. And if the number of
particles in one group is so many then the worse particles are deleted. If any changes have been made in the
environment, again a series of the particles are produced in order to keep the diversity of the particles.

3. PROPOSED METHOD

In our proposed model, the inertia weight has been adjusted adaptively. If the particles of swarm have
been improved in previous iteration, it shows that the previous movement of the particles is good and they
should continue their pervious movement. So the inertia weight must be high.

In order to improve the performance of PSO algorithm, the search type of each group is specified
according to its progress. Thus, first the groups are arranged in descending order. Then each group will have a
rating. The first group in the list has a rating of 1 and the last group at the end of the list has rating of n. The
group with minimum rating is closer to global optimization, hence it’s better to execute a local search to
optimize the results and groups with higher rating are far from global optimization so it’s better they execute
global search. An inertial parameter is used for determining a search to be local or global. The great value for
inertial parameter results in global search and small value for inertial parameter leads to local search. For
example, in figure 1, there are two different groups, one is blue and the other one is green. As it may be seen,
the blue group has a better fitting value so it may be closer to global optimization; hence, it’s better to perform a

4267

J. Basic. Appl. Sci. Res., 2(4) 4266-4274, 2012

more local search, whereas the green group has lower fitting and it is likely to be far from the global
optimization and must perform a more general search, perhaps it may find a better peak and if the optimization
found by other groups is not the global optimization, this group may have the ability to explore the global
optimization. The rating of each group is used for specifying the minimum amount of inertial weight.

FIGURE 1. Diagram of two groups on peaks

On the other hand, if a group has had a good progress in the previous movement, it indicates that the
previous movement of particles of the group was appropriate, so it is better that group particles follow more
from their previous speed. For this, the exact amount of inertial is specified according to the group rating and
progress.

The groups are divided in to free and converged. If there is no free group in the environment, a group is
added to the available groups. Since searching an area is not useful with more than a group, at the end of each
iteration, the distance between each two groups are studied to specify whether they are inside each other’s radius
or not. If two groups are inside each other’s radius, it means that the distance between their best found position
and the specified threshold, rexcl (disposal radius between groups), is less, and the group which gbest has the
lower fitting is excluded from the search space; this causes that no more than one group to be placed on an
optimization. For determining the convergence of a group, the convergence radius, rconv is used which is
considered equal to half of the disposal radius value.

For specifying the proper value of disposal radius of particles in each iteration, the available particles are
clustered, then the distance between the center of clusters are measured, then the amount of disposal radius is
adjusted through 1 and 2 formulas.

jinjiwherecentercenterdistdist jii ,,1)),,(min(min_ (1)

22
)(min_

 nexcl

distmeanr (2)

When a change is observed in the environment, the particles memories are reevaluated, then the position of each
particle in group would be equal to a random position inside a super globe with the best found position in the
group as the center and the radius of r. Then the new position of particles are evaluated and the best individual
and group experiments are updated. In this algorithm, in order to improve the results, a local search is performed
around the best particle of the best group to improve the best particle of group. The amount of inertial weight,
speed and new position will be calculated according to 3 to 6 equations.

maxmin *w
swarm

rankw
size

ii (3)

)(*)(minmaxmin
size

i
i swarm

swarminparticleimprovedofnumber
wwww (4)

)()()()1(2211 iiiiii pgbestrcppbestrctwvtv (5)

)1()()1(tvtptp iii (6)

If the particles of swarm have been failed, it shows that their previous movement isn’t good enough and it is
better that these particles don’t continue the previous movement so the inertia weight must be decreased. But if
all swarms utilize only this method, they may fall in local optimum. To prevent this, we must not let algorithm
reduce all swarms inertias weight more than enough.
The groups that have better fitness may be closer to global optimum. So these groups have to have low inertial
weight to do local search for groups that have worst fitness may be far from global optimum and therefore may
fall in local optimum. In order to avoid from local optimum and find the global optimum, they should have
bigger inertial weight to do global search. In this way, the group descending sorted and ordered with number at
first to last. First group has the order of one and the last group has the maximum order. The rank of each group

4268

Rezazadeh et al., 2012

is divided to the number of groups and selected as the minimum of group inertial weight. So this way, inertial
weight of each group is calculated according to (7), (8):

FIGURE 2. Flowchart of proposed algorithm

max*min
i

size

ii w
swarm

rankw (7)

)(*)(minmaxmin
size

iii
i swarm

swarminparticleimprovedofnumber
wwww (8)

At first the groups are generated randomly, and start the search. Each group is composed with some PSO
particles. Since small neighborhoods causes reduction of convergence’s speed, and increase in diversity,
performs well in complex environments, this algorithm utilize the small neighborhoods. The less the number of
particles for the fixed number of groups, the less the number of evaluations which is leading to keep the
environment unchanged for more iterations and effective search will be performed in environment. The groups
are categorized to two categories: Converged and Free. If the numbers of free groups in the environment are
less than a threshold, one group will be added to the existing groups, and if this number be more than a
threshold, the worst group deleted from search domain. At each iteration, velocity and position of a particle i in
each swarm is updated using its best personal position (pbesti) and the best position found by the swarm (gbest)
according to (5) and (6), respectively. If the fitness of the new position of particle i is better than its best
personal position (pbesti), pbesti will be updated to the new position. Likewise, the best position found in the
swarm (gbest) will be updated.
Since searching an area with more than one swarm is not very useful, at the end of each iteration every two
swarms are checked whether they are searching in the same area or not. Two swarms will be searching in the
same area or they are colliding, if the Euclidian distance between their attractors is less than a specified
threshold rexcl. If a collision between two swarms is detected, the swarm whose attractor is worse than the others

4269

J. Basic. Appl. Sci. Res., 2(4) 4266-4274, 2012

will be destroyed. In the proposed algorithm, when an environment change is detected, particles in the swarm
re-evaluate their best personal position (pbest) and the particles in the swarms change their behaviors in the
following iteration after a change is detected in the environment. They will set their new positions to a random
location in a hyper sphere with radius rq centered at their swarm’s attractor. Then they will update their best
personal positions (pbest) and update the swarm’s attractor.
In previous works exclusion distance adjusted without considering environment situation. In purposed algorithm
this value is adjusted with considering environment conditions and particles density. Current particles are
clustered and then mean of minimum distance between each cluster with other clusters are calculated and used
as the rexcl according to (1) and (2). For clustering we use FCM and number of clusters equal to the swarm size.

Begin
 Initialization swarms
 Repeat
 Adopt swarms number according to free swarms
 For each swarm do
 If a change is detected in the environment then
 Evaluate all pbests then regenerate particles randomly in a hyper sphere with radius r centered at
 gbest and update pbests
 Else if swarm is the best swarm
 do local search around gbest in hyper sphere with radius r and update only gbest
 End if
 For each particle in swarm do
 Update particle position according to (5) and (6)
 Update pbest and gbest
 End for
 Test for converge
 End for
 rexcl = fcm_dist
 For each pair of swarms m and n, m<>n do
 Test for conflict
 If there is delete worse swarm
 End for
 Until a maximum number of fitness evaluations is reached
End.

FIGURE 3. Pseudocode of the proposed algorithm.

Function fcm_dist
 For all particle do
 datai = position particli
 End for
 Center = FCM (data, swarmsize)
 For each center
 disti = calculate distance with nearest center
 End for
 Calculate rexcl using (2)
End.

FIGURE 4. Pseudo code of the FCM distance.

4. EXPERIMENTAL STUDYING

In this section, we first describe moving peaks benchmark [2] on which the proposed algorithms is evaluated.
Then, experimental settings are described. Finally, experimental results of the proposed algorithm are presented
and compared with alternative approaches from the literature.

4.1. MOVING PEAKS BENCHMARK
Moving peaks benchmark (Fig. 3) [2] is widely used in the literature to evaluate the performance of optimization
algorithms in dynamic environments [14]. In this benchmark, there are some peaks in a multidimensional space,
where the height, width and position of each peak alter when the environment changes. Unless stated otherwise, the
parameters of the moving peaks benchmark are set to the values presented in table 1.

4270

Rezazadeh et al., 2012

Table 1. Default settings of moving peaks benchmark
Parameter Value

number of peaks m 10
frequency of change f every 5000 FEs

height severity 7.0
width severity 1.0

peak shape cone
shift length s 1.0

number of dimensions D 5
cone height range H [30.0, 70.0]
cone width range W [1, 12]

cone standard height I 50.0
search space range A [0, 100]

In order to measure the efficiency of the algorithms, offline error that is the average fitness of the best position
found by the swarm at every point in time (Eq. 9), is used [15].

T

t
bestopterror tswarmFtglobalF

T
offline

1

))(())((1 (9)

Where T is the maximum iteration, and swarmbest(t) is best position solution by the swarm at iteration t.

FIGURE 5. Moving peaks benchmark.

4.2. EXPERIMENTAL SETTINGS
For the proposed algorithms the total of acceleration coefficients c1 and c2 are set to 1.496180 and the

inertial weight w is set to [0, 0.802828]. The number of particles in the swarm is set to 3 particles. The radius of
quantum particles (rq) is set to 0.5. The proposed algorithm is compared with Mqso [5] and FMSO [7] and
cellular PSO [3] and kamosi [9]. For mQSO we adapted a configuration 10(5+5q) which creates 10 swarms with
5 neutral (standard) particles and 5 quantum particles with rcloud = 0.5 and rexcl = rconv = 31.5, as suggested in [5].
For FMSO, there are at most 10 child swarms each has a radius of 25.0. The size of the parent and the child
swarms are set to 100 and 10 particles, respectively [7]. For cellular PSO, a 5-dimensional cellular automaton
with 105 cells and moore neighborhood with radius of two cells is embedded into the search space. The
maximum velocity of particles is set to the neighborhood radius of the cellular automaton and the radius for the
random local search (r) is set to 0.5 for all experiments. The cell capacity is set to 10 particles for every cell.
Moreover, all particles perform a local search in the iteration after a change in the environment is detected [3].
For the Kamosi algorithms the acceleration coefficients c1 and c2 are set to 1.496180 and the inertial weight w is
set to 0.729844. The number of particles in the parent swarm and the child swarms () are set to 5 and 10
particles, respectively. The radius of the child swarms (r), the minimum allowed distance between two child
swarm (rexcel) and the radius of quantum particles (rq) are set to 30.0, 30.0, and 0.5, respectively [9].

4271

J. Basic. Appl. Sci. Res., 2(4) 4266-4274, 2012

 (a) (b)
Fig. 4. (a) Comparison on FCM_Distance and previous method in environment with 10 peaks and frequency=500. (b)
Comparison on FCM_Distance and previous method in environment with 10 peaks and frequency=5000

4.3. EXPERIMENTAL RESULTS
For all algorithms we reported the average offline error and 95% confidence interval for 100 runs. Offline error
of the proposed algorithm, mQSO10(5+5q) [5], FMSO [7], cellular PSO [3] and kamosi [9] for different
dynamic environment is presented in table 2 to table 6. For each environment, result of the best performing
algorithm(s) with 95% confidence is printed in bold. As depicted in the table 2 to table 6, the proposed
algorithm outperforms other tested PSO algorithms, including FMSO, for all environments. Moreover, the
difference between offline error of the proposed algorithm and the next best algorithm decreases as the
environment changes less frequently from f = 500 (table 2) to f = 10000 (table 6). This is because the proposed
algorithm uses less number of particles and so it doesn’t waste fitness evaluation and also because the adaptation
inertia weight using purposed method, swarm converge very quickly to optimum hence quickly finds better
solutions than other algorithms after a change occurs in the environment, especially at the early iterations.
Furthermore, in the proposed algorithm the number of swarms converges to the number of peaks in the
environment. This will help the proposed algorithm to track the changes more effectively since there will be a
swarm on each peak. For adjusting exclusion distance adaptively, algorithm can adjust exclusion distance
corresponding to the environment and if peaks are near to each other doesn’t delete swarm that converged to
those peaks.

Table 2. Offline error ±Standard error for f =500
M Proposed algorithm Kamosi mQSO10(5+5q) FMSO Cellular PSO
1 4.81±0.14 5.46±0.30 33.67±3.42 27.58±0.94 13.46±0.7
5 4.95±0.11 5.48±0.19 11.91±0.76 19.45±0.45 9.63±0.49

10 5.16±0.11 5.95±0.09 9.62±0.34 18.26±0.32 9.42±0.21
20 5.81±0.08 6.45±0.16 9.07±0.25 17.34±0.30 8.84±0.28
30 6.03±0.07 6.60±0.14 8.80±0.21 16.39±0.48 8.81±0.24
40 6.10±0.08 6.85±0.13 8.55±0.21 15.34±0.45 8.94±0.24
50 5.95±0.06 7.04±0.10 8.72±0.20 15.54±0.26 8.62±0.23
100 6.08±0.06 7.39±0.13 8.54±0.16 12.87±0.60 8.54±0.21
200 6.20±0.04 7.52±0.12 8.19±0.17 11.52±0.61 8.28±0.18

Table 3. Offline error ±Standard error for f =1000
M Proposed algorithm Kamosi mQSO10(5+5q) FMSO Cellular PSO
1 2.72±0.04 2.90±0.18 18.60±1.63 14.42±0.48 6.77±0.38
5 2.99±0.09 3.35±0.18 6.56±0.38 10.59±0.24 5.30±0.32

10 3.87±0.08 3.94±0.08 5.71±0.22 10.40±0.17 5.15±0.13
20 4.13±0.06 4.33±0.12 5.85±0.15 10.33±0.13 5.23±0.18
30 4.12±0.04 4.41±0.11 5.81±0.15 10.06±0.14 5.33±0.16
40 4.15±0.04 4.52±0.09 5.70±0.14 9.85±0.11 5.61±0.16
50 4.11±0.03 4.57±0.08 5.87±0.13 9.54±0.11 5.55±0.14
100 4.26±0.04 4.77±0.08 5.83±0.13 8.77±0.09 5.57±0.12
200 4.21±0.02 4.76±0.07 5.54±0.11 8.06±0.07 5.50±0.12

4272

Rezazadeh et al., 2012

Table 4. Offline error ±Standard error for f =2500
M Proposed algorithm Kamosi mQSO10(5+5q) FMSO Cellular PSO
1 1.06±0.03 1.10±0.06 7.64±0.64 6.29±0.20 4.15±0.25
5 1.55±0.05 1.68±0.16 3.26±0.21 5.03±0.12 2.85±0.24

10 2.17±0.07 2.33±0.06 3.12±0.14 5.09±0.09 2.80±0.10
20 2.51±0.05 2.79±0.10 3.58±0.13 5.32±0.08 3.41±0.14
30 2.61±0.02 2.88±0.09 3.63±0.10 5.22±0.08 3.62±0.12
40 2.59±0.03 2.86±0.07 3.55±0.10 5.09±0.06 3.84±0.12
50 2.66±0.02 2.97±0.06 3.63±0.10 4.99±0.06 3.86±0.10
100 2.62±0.02 3.00±0.05 3.58±0.08 4.60±0.05 4.10±0.11
200 2.64±0.01 2.99±0.04 3.30±0.06 4.34±0.04 3.97±0.10

Table 5. Offline error ±Standard error for f =5000
M Proposed algorithm Kamosi mQSO10(5+5q) FMSO Cellular PSO
1 0.53±0.01 0.56±0.04 3.82±0.35 3.44±0.11 2.55±0.12
5 1.05±0.06 1.06±0.06 1.90±0.08 2.94±0.07 1.68±0.11

10 1.31±0.03 1.51±0.04 1.91±0.08 3.11±0.06 1.78±0.05
20 1.69±0.05 1.89±0.04 2.56±0.10 3.36±0.06 2.61±0.07
30 1.78±0.02 2.03±0.06 2.68±0.10 3.28±0.05 2.93±0.08
40 1.86±0.02 2.04±0.06 2.65±0.08 3.26±0.04 3.14±0.08
50 1.95±0.02 2.08±0.02 2.63±0.08 3.22±0.05 3.26±0.08
100 1.95±0.01 2.14±0.02 2.52±0.06 3.06±0.04 3.41±0.07
200 1.90±0.01 2.11±0.03 2.36±0.05 2.84±0.03 3.40±0.06

Table 6. Offline error ±Standard error for f =10000
M Proposed algorithm Kamosi mQSO10(5+5q) FMSO Cellular PSO
1 0.25±0.006 0.27±0.02 1.90±0.18 1.90±0.06 1.53±0.12
5 0.57±0.03 0.70±0.10 1.03±0.06 1.75±0.06 0.92±0.10

10 0.82±0.02 0.97±0.04 1.10±0.07 1.91±0.04 1.19±0.07
20 1.23±0.02 1.34±0.08 1.84±0.08 2.16±0.04 2.20±0.10
30 1.39±0.02 1.43±0.05 2.00±0.09 2.18±0.04 2.60±0.13
40 1.37±0.01 1.47±0.06 1.99±0.07 2.21±0.03 2.73±0.11
50 1.46±0.01 1.47±0.04 1.99±0.07 2.60±0.08 2.84±0.12
100 1.38±0.01 1.50±0.03 1.85±0.05 2.20±0.03 2.93±0.09
200 1.36±0.01 1.48±0.02 1.71±0.04 2.00±0.02 2.88±0.07

5. CONCLUSION

In this paper, we proposed a new multi-swarm PSO algorithm for dynamic environments. The proposed
PSO adjust exclusion distance considering environmental conditions. In order to do this all of the present
particles are clustered and then distances between centers of clusters are used to adjust exclusion distance. In
order to improve efficiency of algorithm we used a local search around best particle of best swarm and also
inertia weight adjusted according to the swarm progress so convergence of algorithm is accelerated. And
adjusting exclusion radius using clustering particle causes algorithm don’t delete swarms that converged to the
peaks when peaks are near of each other. To prevent redundant search in the same area if two swarms collide the
one with the worse fitness will be removed. In addition, to track the local optima after detecting a change in the
environment, particles in each swarm temporarily change their behavior to quantum particles and perform a
random search around the swarm’s attractor. Results of the experiments show that for all tested environments
the proposed algorithm outperforms all tested PSO algorithms, the previously presented multi-swarm algorithm
with the similar approach.
Results of the experiments show that for all tested environments the proposed algorithm outperforms all tested
PSO algorithms, the previously presented multi-swarm algorithm with the similar approach.

REFERENCES

1. Passaro, A. and A., Starita, 2008. Particle swarm optimization for multimodal functions: a clustering

approach. Journal of Artificial Evolution and Applications, 2008: 1-15.
2. Branke, J., 1999. Memory enhanced evolutionary algorithms for changing optimization problems. Congress

on Evolutionary Computation, 3: 1875-1882.
3. Hashemi, A.B. and M.R., Meybodi, 2009. Cellular PSO: A PSO for dynamic environments. Advances in

Computation and Intelligence, 5821: 422-433.
4. Blackwell, T., 2007. Particle swarm optimization in dynamic environments. Evolutionary Computation in

Dynamic and Uncertain Environments, Springer, Berlin, Germany, pp: 29-49.
5. Blackwell, T., J., Branke and X., Li, 2008. Particle swarms for dynamic optimization problems. Swarm

Intelligence: Introduction and Applications, Springer, Berlin, Germany, pp. 193-217.

4273

J. Basic. Appl. Sci. Res., 2(4) 4266-4274, 2012

6. Branke, J., 2001. Evolutionary optimization in dynamic environments, Springer, Berlin, Germany, pp: 1-
208.

7. Li, C. and S., Yang, 2008. Fast multi swarm optimization for dynamic optimization problems. In Fourth
International Conference on Natural Computation, 7: 624–628.

8. Li, C. and S., Yang, 2009. A clustering particle swarm optimizer for dynamic optimization. IEEE Congress
on Evolutionary Computation, pp: 439–446.

9. Kamosi, M.A., B., Hashemi and M.R., Meybodi, 2010. A new particle swarm optimization algorithm for
dynamic environments. LNCS, 6466: 129-138.

10. Ignacio, G.D.A., D.A., Pelta, J.R., Gonzalez and P., Novoa, 2010. An analysis of particle properties on a
multi-swarm PSO for dynamic optimization problems. CAEPIA'09 Proceedings of the Current topics in
artificial intelligence and 13th conference on Spanish, LNAI 5988: 32-41.

11. Novoa-Hernandez, P., D.A., Pelta and C.C., Corona, 2010. Improvement strategies for multi-swarm PSO in
dynamic environments. Nature Inspired Cooperative Strategies for Optimization, 284: 371-383.

12. Hu, C., X., Wu, Y., Wang and F., Xie, 2009. Multi-swarm particle swarm optimizer with cauchy mutation
for dynamic optimization problems. ISICA 2009, LNCS 5821: 443–453.

13. Yang, S. and C., Li, 2010. A clustering particle swarm optimizer for locating and tracking multiple optima
in dynamic environments. IEEE Transaction on Evolutionary Computation, 14(6): 959-974.

14. Moser, I., 2007. All currently known publications on approaches which solve the moving peaks problem.
Swinburne University of Technology, Melbourne, Australia.

15. Branke, J., H., Schmeck, 2003. Designing evolutionary algorithms for dynamic optimization problems.
Advances in Evolutionary Computing: Theory and Applications. Springer-Verlag New York, pp: 239-262.

4274

