

J. Basic. Appl. Sci. Res., 2(4)3323-3328, 2012

© 2012, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: S. Karim, Department of Computer Science, National University of Computer and Emerging Sciences, Block B, Faisal
Town, Lahore Pakistan. Office: +92111-128-128 Email: saira.karim@nu.edu.pk

A Fast Algorithm to Enumerate Fixed Density Bracelets

S. Karim*, Z. Alamgir and S.M. Husnine

National University of Computer and Emerging Sciences, Lahore Campus
Block B, Faisal Town Lahore

PAKISTAN

ABSTRACT

A bracelet is the lexicographically smallest k-ary string equivalent under rotation and reversal. A bracelet is said to
be of fixed density, if the number of occurrences of the symbol 0 in the string is fixed. In this work, we present a
simple recursive scheme to list bracelets with fixed density d. We claim that our scheme is optimal in terms of time
requirements, as it takes constant time on the average to list a binary bracelet with fixed density. We use
sophisticated combinatorial techniques to prove our claim.
KEY WORDS: Bracelet with fixed density, Necklace, CAT algorithm, combinatorial generation.

1. INTRODUCTION

Generation of discrete combinatorial objects is of immense importance in mathematics and computer science.

Knuth [5] and Ruskey [9] have recently compiled their books on the subject. Several schemes have been developed
for the generation of combinatorial structures such as necklaces, Lyndon words and their variants. Kevin et al. [1],
give a recursive framework to generate prenecklaces, necklaces and Lyndon words. This framework is used to list
restricted classes of this family of objects. Ruskey and Sawada [8] develop the algorithms to generate necklace with
fixed density and later Sawada [4] gives the algorithm for necklaces with fixed content using the same framework.
Recently, Vajnovszki answers the problem of generating unrestricted binary necklaces in Gray code order [12].
Later Vajnovszki and Weston give a generalized and optimized algorithm for arbitrarily large alphabet size [10]
[11]. However, no significant work is done to list restricted classes of bracelets. In [6], Lisonek proposes a linear
algorithm for generating a list of all bracelets by modifying the necklace generation algorithm of Ruskey and Wang
[7]. Sawada in [3] gives a constant amortized time (CAT) algorithm for bracelet generation. Bracelets are of great
practical significance; the exhaustive list of bracelets is used in the calibration of color printers [2]. In this paper, we
present a recursive scheme to list restricted class of bracelets, namely those with fixed density. We have designed
our algorithm such that the total number of basic operations performed is proportional to the number of bracelets
generated by our algorithm. Hence, our algorithm takes constant time on the average to list a bracelet. It is extremely
desirable in generation algorithms that the number of steps taken in listing successive object remains constant.

2. PRELIMINARIES

A necklace is a lexicographically minimal k-ary string equivalent under string rotation, i.e. a1a2 … ai … an is

equivalent to aiai+1 … ana1 … ai−1 for all i, 1 < i ≤ n. The set of all necklaces of length n on k alphabets is
represented as Nk(n) and the cardinality of Nk(n) is denoted by Nk(n). A prenecklace of length n is a prefix of some
necklace of length m where m ≥ n. The set of all prenecklaces of length n is denoted by Pk(n). The cardinality of
Pk(n) is Pk(n). Another restricted class of necklaces is an aperiodic necklace, called Lyndon words. The set of
Lyndon words of length n is denoted by Lk(n). A bracelet is a lexicographically minimal k-ary string that is
symmetric under rotation and reversal. Bk(n), represents a set of length n bracelets and its cardinality is denoted by
Bk(n). A k-ary string is said to be of fixed density, if the number of occurrences of symbol 0 is fixed. Necklaces,
prenecklaces and bracelets with fixed density are denoted in the similar manner. We add an additional parament d,
number of non-zero symbols, to denote the density of the string. We use the notations Nk(n, d), Pk(n, d), Bk(n, d) to
denote necklace with fixed density, prenecklaces with fixed density and bracelets with fixed density respectively.
Similarly Nk(n, d), Pk(n, d), and Bk(n, d) denote the cardinality of Nk(n, d), Pk(n, d) and Bk(n, d).

There are at most two necklaces in each equivalence class of the bracelet. Therefore, following relation
holds.
Nk(n, d) ≤ 2Bk(n, d) (1)

3323

Karim et al., 2012

Our recursive algorithm for generating bracelets with fixed density is based on the following theorem given
in [1].
Theorem 1: (Fundamental Theorem of Necklaces)
 Let α = a1a2 · · · an−1 ∈ Pk(n−1) and p = lyn(α). The string αb ∈ Pk(n) iff an−p ≤ b ≤ k − 1. Furthermore,

푙푦푛(훼푏) 	=
p																					if	a = b,
n																					if	a > 푏.

�

 Here, lyn(α) is the longest Lyndon prefix of α that is lyn(α) = max{1 ≤ p ≤ n − 1|(a1 · · · ap) ∈ Lk(p)}. Also, α

b is a necklaces iff n mod lyn(αb) = 0. Nk(n) is generated by recursive application of fundamental theorem of
necklaces.

3. GENERATION ALGORITHM

Now, we present the basic idea of our recursive scheme. In our scheme to list Bk(n, d), we assume that 0 < d

< n. We develop a recursive algorithm which modifies the generation of necklaces with fixed density scheme given
in [8] to list bracelets with fixed density. As defined earlier, bracelets are necklaces that are lexicographically least
among all their reverse rotations. The basic idea is to check all reverse rotations of each generated necklace and
discard all those necklaces which are smaller than any of its reverse rotations.

The algorithm in [8] to lists Nk(n, d) recursively generates prenecklaces in accordance with the fundamental
theorem of necklaces. Each recursive call appends a string to the current prenecklace. Let γ = c1c2 · · · ca(t) be the
current prenecklace generated by the algorithm. The following variables are maintained:
 t: density of γ
a(i): position of ith non-zero symbol in γ for 1 ≤ i ≤ d, and
p: density of the longest prefix of γ such that c1c2 · · · ca(p) ∈ Lk(a(p), p)}.

Each recursive call determines valid value ca(t+1)and valid position a(t+1) of next non-zero symbol such that 0
< ca(t+1) < k. We use the notation APND(γ, ca(t+1)) to denote the function which appends a string of zeros from
position a(t)+1 to a(t+1) − 1, and a non-zero symbol ca(t+1) to the current prenecklace and generates a prenecklace
of density t+1. Time to append the string of zeros is reduced to a constant factor by initializing the data structure
which holds γ to all zeros and restoring ca(t+1) to 0 before exiting the recursive function. ca(t+1) is chosen in such a
way that c1c2 · · · ca(t)0a(t+1) –a(t)−1ca(t+1) ∈ Pk(a(t+1), t + 1). In order to maintain lexicographic order, the algorithm
computes maximum possible value of a(t+1) and iterates from minimum to maximum value of ca(t+1) to generate
next prenecklace. Same procedure is performed iteratively for successive values of a(t+1) till a(t+1) = a(t) + 1. As a
necklace of positive density must not end with a zero, thus the recursion stops when current prenecklace has density
d − 1. The last non-zero symbol is appended at position n. Another test is performed in constant time to determine
the valid values for last non-zero symbol. The value of a(t+1) in γ depends on the length n and density d. For
generation of necklace with fixed density, following conditions must hold:

I. ⌊(n − 1)/d + 1⌋ ≤ a(1) ≤ n − d + 1
II. a(i) ≤ n − d + i:

Once a necklace has been generated, a naive approach to list bracelets is to compare the necklace γ = c1c2 · · ·
cn , generated by necklace with fixed density algorithm, with all its reverse strings and discard the necklace if c1c2 · ·
· cn is greater than any of its reverse rotations. We require O(n2) time test to perform such comparison. A necklace is
a bracelet, if no such case arises. Adding this test for each necklace is computationally very expensive and will not
result in a CAT algorithm.

We develop a CAT algorithm using couple of optimizations proposed in [3]. The first and simpler
optimization is that if the necklace γ is of the form cici+1 · · · cn where c≠ ci+1, then only those reverse rotations are
required to check that also begins with c. For example, we only need to check two reverse rotations for the necklace
00121101211003 i.e. 00300112101121 and 00112101121003. Also, we do not need to wait for the generation of
entire necklace. The reverse checking can be performed as soon as the prenecklace having above mentioned form is
generated. Since, we assume that d < n, so all prenecklaces must start with symbol 0 and will be of the form γ =
0ici+1ci+2 · · · ca(t) . Also note that necklace with fixed density algorithm does not generate a prenecklace that ends
with 0. We perform the reverse checking only, if γ is of the form 0ici+1ci+2 · · · ca(t)−i−10ica(t) . If 0ici+1 · · · ca(t)−i−10i >
0ica(t)−i−1 · · · ci+10i, then we terminate further computation of γ. The second optimization uses the following Theorem
in [3].

3324

J. Basic. Appl. Sci. Res., 2(4)3223-3228, 2012

Theorem 2 If c1c2 · · · cn is a necklace where c1c2 · · · cq = cqcq−1 · · · c1 and there exists an r in {q + 1 · · · n} such that
c1c2 · · · cr = crcr−1 · · · c1 and cr+1 · · · cn ≤ cncn−1 · · · cr+1, then cq+1 · · · cn ≤ cncn−1 · · · cq+1. Let r be the longest prefix
of the necklace c1c2 · · · cn such that c1c2 · · · cr = crcr−1 · · · c1.

It follows clearly from above theorem that c1c2 · · · cn is a bracelet if cr+1cr+2 · · · cn ≤ cncn−1 · · · cr+1. This
means we need an additional comparison between cr+1 · · · cn and its reverse string. In [3], additional comparison is
performed symbol by symbol in each recursive call whenever a(t) > (n−r /2) + r. However, in our algorithm this
cannot be done by a single comparison because function APND may append more than one symbol to the current
prenecklace. Hence, non-constant amount of work may be required.

This comparison can be performed efficiently using the observation that there is only one non-zero symbol in
the substring 0a(t)−a(t-1)−1ca(t). The comparison of whole substring can be answered in unit time if ca(t) ≠ cn−a(t)+r+1.
Otherwise, we determine the length of substring of zeros starting at position n – a(t) + r + 2. In order to compute the
length of substring of zeros starting at position n – a(t) + r + 2, we define the following variables
s(i): density of prenecklace c1c2 · · · ci,
l(i) : length of substring of zeros starting at position i.

Let e = n – a(t) + r + 1. We can compute l(e+1) = as(e+1) − as(e) − 1. Hence we define CMP as follows

퐶푀푃(γ, a(t), r) =
false																																																																																																																			if	c () > c ,

true																						if	c () < c ,	or	(a(t) − a(t − 1) − 1 > 푙(푒 + 1)and	c () = c),
CMP(γ, a , r)																										if	c () 	 = c 	and		a(t) − a(t − 1) − 1	 ≤ 푙(푒 + 1).

�

The default value of CMP is false and new value of CMP is computed only when a(t) > (n − r)/2 + r. If we

keep the values of CMP(γ, a(i), r) for all 1 ≤ i < t, then we can compute the function CMP(γ, a(i+1), r) in constant
number of steps. As we assume that 0 < d < n, so each bracelet should begin with symbol 0. We define u to be the
number of zeros at beginning of the current prenecklace. Let γ = 0ucu+1 · · · ca(t) be the current prenecklace. We
design a recursive scheme BFu(t, r, CMP) to list the set Bk(n, d) such that there are u number of zeros in the
beginning. The pseudo code of our scheme is shown as Algorithm: BFu(t, r, CMP(γ, a(t+1), r)). We begin with u :=
n − d and repeatedly compute BFu for successive values of u to generate Bk(n, d). The variable r is initialized to u
and is updated to one less than the length of the prenecklace, whenever the current prenecklace is equal to its
reversal during reverse checking. Furthermore, s(i) is not assigned a valid value whenever ci = 0. However, this
information is not necessary, since we only use s(i) when ci = ce≠ 0. The function CHKREV compares the current
prenecklace with its reverse string. The values return by CHKREV are given below.

퐶퐻퐾 (푐 푐 	 ·	·	· 푐) =
0			푖푓	푐 푐 	 ·	·	· 푐 () 	 < 푐 ()푐 () 	 ·	·	· 푐 ,
1			푖푓	푐 푐 	·	·	· 푐 () = 푐 ()푐 () 	 ·	·	· 푐 ,
−1	푖푓	푐 푐 	 ·	·	· 푐 () 	≥ 푐 ()푐 () 	 ·	·	· 푐 .

�

Since Bk(n, d) is a subset of Nk(n, d), we generate strings that belong to the set Nk(n, d) and we eliminate all
those necklaces whose reversed rotations are less than the necklace itself. Hence, BFu lists all bracelets with fixed
density exactly once.
Theorem 3 BFu(1, u, false) lists all elements of Bk(n, d) exactly once for all u such that (n − 1)/d ≤ u ≤ n − d in
lexicographic order.

4. ANALYSIS

In this section, we show that our algorithm takes constant time on average to generate a binary bracelet. The
computation tree is a way to represent the computational steps of a recursive algorithm. In our algorithm, each node
of the computation tree represents a recursive call to BFu(t, r, CMP(γ, a(t+1), r)) and each edge corresponds to
transition from one recursive call to the other.
The size of the computation tree of our algorithm is smaller than the computation tree of necklaces with fixed
density generation algorithm. Using the relation(1) and the fact that necklace with fixed density algorithm works in
CAT, we claim that the size of the computation tree in our algorithm is proportional to Bk(n, d). For each recursive
call, the amount of work done by APND is constant. However, there are some nodes in our computation tree where
CHKREV is executed. Thus, they perform more than constant amount of work. Figure 1 shows the computation tree
of B2(8, 4) and boxed nodes are the ones for which CHKREV is called. We prove that our algorithm works in CAT by
showing that total symbol comparisons performed by CHKREV during the entire scheme is proportional to Bk(n, d).

3325

Karim et al., 2012

The total prenecklaces generated by our scheme is proportional to Bk(n, d). Therefore, we map each
comparison in CHKREV to a unique prenecklace listed by our algorithm. Note that in case of binary bracelets we assume
d ≤ n/2. Fixed density bracelets with d > n/2 are listed by generating B2(n, n − d) and then complementing the output.
Each recursive call in the necklaces with fixed density algorithm increases the density of current prenecklace. This
means that the algorithm does not generate any prenecklace that ends with 0. Furthermore, CHKREV is computed at
most once for each prenecklace γ = 0ici+1ci+2 · · · ca(t)−i−10ica(t) of length a(t) where ci+1 = ca(t)−i−1≠ 0 and ca(t) ≥ ci+1.
CHKREV compares symbol cj with ca(t)−j for i + 1 ≤ j ≤ a(t)/2. We stop doing comparisons when either j > a(t)/2 or cj≠
ca(t)−j. Since, there is at most one unequal comparison for each prenecklace, so we count the cost of such comparison as
constant.

Figure 1: Computation Tree for B2(8, 4) from BFu(t, r, CMP(γ, a(t+1), r))

We define a mapping for the case when k = 2. Let us assume that γ and β are two different prenecklaces for

which CHKREV is computed.
γ = 0ici+1ci+2 · · · ca(t)−i−10ica(t),
β = 0ibi’+1bi’+2 · · · ba(t)−i’−10i’ba(t)

Let nk(γ, j) denote the number of occurrences of symbol k in the substring 0ici+1ci+2 · · · cj. For example,

n0(001111001011, 7) = 3 and n1(001111001011, 7) = 4. Consider the following mapping f:

푓(γ, j) =
0 (γ,)1 (γ,)c c … c 	0 c ()										if	c = 0,
0 (γ,)c c …c 	0 c ()1 (γ,)										if	c = 1.

�

For example f(001110011100111001, 3) = 001100111001110011, and f(001110011100111001, 6) =

000111011100111001. Here, γ and j are valid only if there exists a corresponding equal comparison made by
CHKREV. It is evident, that the mapping preserves both length and contents.
Lemma 1 For all valid γ and j, f(γ, j) is a prenecklace .
Proof: f(γ, j) has maximum number of zeros in the beginning for the cases when cj = 0, n0(γ, j) > i or cj+1 = 0, hence
a valid prenecklace . Now to prove that f(γ , j) is a prenecklace when cj = cj+1 = 1 and n0(γ, j) = i, let lyn(γ) = p. We
can rewrite γ = (0ici+1ci+2 · · · cp)d 0ici+1ci+2 · · · cm and f(γ, j) = 0icj+1cj+2 · · · cp(0ici+1ci+2 · · · cp) d−1 0ici+1ci+2 · · · cm1n1(γ,

j), where d is a positive integer and i < m < p. Since ci+1ci+2 · · · cj = 1j−i and cj+1 = 1, this means j < p and 0icj+1cj+2 · ·
· cp is Lyndon word. Also the following relation must hold:

 0icj+1cj+2 · · · cp < 0ici+1ci+2 · · · cp (2)
Using relation (2) and repeated application of Lemma 2.2 in [8], we can conclude that 0icj+1cj+2 · · ·

cp(0ici+1ci+2 · · · cp)d−1 is also a Lyndon word. Again, using relation (2) we claim that cj+1cj+2 · · · cj+m−i ≤ ci+1ci+2 · · · cm.
This implies that 0icj+1cj+2 · · · cp(0ici+1ci+2 · · · cp) d−1 0ici+1ci+2 · · · cm is a prenecklace. Since 1 is the largest symbol, so
by Theorem 1 0icj+1cj+2 · · · cp(0ici+1ci+2 · · · cp

 d−1 0ici+1ci+2 · · · cm1n1(γ, j) is a prenecklace. □

Now, we prove that total comparisons made by all CHKREV calls is proportional to the total prenecklaces
generated. We claim that f(γ, j) is 1 − 1, for all γ valid and j.
Lemma 2. For all valid γ and j such that γ is a binary prenecklace, the mapping f(γ, j) is 1 − 1.
Proof: It is clear from the mapping that f(γ, j) ≠ f(β, j′) whenever j ≠ j′. Now, let γ and β be two prenecklaces of
same length. Suppose f(γ, j) = f(β, j′) where γ ≠ β. Observe that f(γ, j) ends with 01 when cj = 0 and ends with 11

3326

J. Basic. Appl. Sci. Res., 2(4)3223-3228, 2012

when cj = 1. Furthermore, the substring cj+1cj+2 · · · ca(t)−i−10ica(t) is not affected by the mapping f. Since, f(γ, j) = f(β,
j′) for j, j′ ≤ t/2. This implies that cj = bj′ and the second half of γ and β must be equal that is

ca(t)/2+1ca(t)/2+2 · · · ca(t)−i−10ica(t) = ba(t)/2+1ba(t)/2+2 · · · ba(t)−i′−10i′ ba(t).

Similarly, the trailing number of zeros in both strings must be equal that is i = i ′. Now assume that q is the

minimum index such that cq ≠ bq where q ≤ a(t)/2. For all i + 1 ≤ j, j′ < q clearly f(γ, j) ≠ f(β, j′). When j = j ′ = q,
either cj≠ ca(t)−j or bj ≠ ba(t)−j because ca(t)−j lies in the second half of γ and ca(t)−j = ba(t)−j. So either j or j′ is invalid, a
contradiction. □
Let P′k(n, d) be the number of prenecklaces generated by necklace with fixed density algorithm, and Ck(n) be the
number of equal comparisons made by CHKREV function on all prenecklaces of length n. The total number of equal
comparisons made by our algorithm are

퐶 (푖)

Following theorem proves that our algorithm works in CAT.

Theorem 4. ∑ 퐶 (푖) ≤ 푐퐵 (푛, 푑), where c is a constant.
Proof: In our algorithm, we stop recursion when a prenecklace of density d−1 has been generated and the last non-
zero character is appended at position n such that the generated string is a necklace. This means that the algorithm
does not generate prenecklaces of length n and by Lemma 2, the following bound holds.

퐶 (푖) ≤ 푃′ (푛,푑).

From [8] one can show that the number of prenecklaces of length n and density d that does not end with a
zero is less than 2Nk(n, d). This implies that Ck(n) ≤ 2Nk(n, d). Also P′k(n, d) ≤ c′Nk(n, d). Hence, we obtain the
following relation

퐶 (푖) ≤ (푐 ′ + 	2)푁 (푛, 푑)	

																		≤ 2(푐 ′ + 2)퐵 (푛,푑)
		= 푐퐵 (푛,푑)

As mentioned earlier, if the total number of comparisons made by CHKREV are proportional to the total
number of bracelets Bk(n, d) then our algorithm is CAT.

5. SUMMARY

In this paper, we develop an efficient scheme to generate binary bracelets with fixed density. We prove that
in case of binary bracelets our algorithm works in constant amortized time and takes asymptotic linear space. As a
future work, we aim to prove theoretically that our algorithm works in CAT for arbitrarily large alphabet size.
Furthermore, we also want to develop schemes for listing other restricted classes of bracelets. The scheme has been
implemented in C and can be obtained from the authors upon request.

ACKNOWLEDGEMENTS

This work is partially funded by FAST-NU under the grant 11L-270/NU-R/11. The authors would like to
thank Dr. J. Sawada for his useful comments in the analysis part of this paper.

REFERENCES

[1] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. Robert Miers. Fast algorithms to generate necklaces, unla-

beled necklaces, and irreducible polynomials over GF(2). Journal of Algorithms, 37:267 – 282, (2000).
[2] P. Emmel and R. Hersch. Exploring ink spreading. In Proceedings of the 8th IS and T/SID Color Imaging

Conference: Color Science and Engineering, (2000).
[3] J. Sawada. Generating bracelets in constant amortized time. SIAM J. Computing, 31:259 – 268, (2001).

3327

Karim et al., 2012

[4] J. Sawada. A fast algorithm to generate necklaces with fixed content. Theoretical Computer Science, 301:447 –
489, (2003).

[5] D. E. Knuth. The Art of Computer Programming Volume 4A. Addison-Wesley, (2011).
[6] P. Lisonek. Computer assisted studies in algebraic combinatorics. Dissertation, (1994).
[7] F. Ruskey, C. Savage, and T. Wang. Generating necklaces. Journal of Algorithms, 13:3247–3259, (1992).
[8] F. Ruskey and J. Sawada. An efficient algorithm for generating necklaces of fixed density. SIAM J. Computing,

29:671 – 684, (1999).
[9] F. Ruskey. Combinatorial Generation. Working version, (2003).
[10] V. Vajnovszki. Gray code order for Lyndon words. Discrete Mathematics and Theoratical Computer Science,

9:145 – 152, (2007).
[11] V. Vajnovszki. More restrictive Gray codes for necklaces and Lyndon words. Information Processing Letters,

106:96 – 99, (2008).
[12] M. Weston and V. Vajnovszki. Gray codes for necklaces and Lyndon words of arbitrary base. Pure Math. Appl.

(PU.M.A), 17:175–182, (2006).
APPENDIX - PSEUDO CODES

Algorithm: Initialize
− Initialize c1c2 · · · cn = 0n and s1s2 · · · sn = 0n
− Initialize a(d) := n; s(n) := d and j := n − d

− repeat untill j ≥ (n − 1)/d
− Initialize u := j; a(1) := u + 1; s(u+1) = 1 and i := 1
− Repeat k − 1 times

− c(u+1) := i
− BFu(1, u, false)
− c(u+1) := 0
− increment i by 1

− increment j by 1 and s(u+1) := 0

Algorithm: BFu(t, r, CMP(γ, a(t+1), r))

− if a(t) > (n − r)/2 + r then

− Compute CMP(γ, a(t), r)
− if t = d − 1 then

− Compute value for ca(d) and APND(γ, ca(d))
− if u = ad − ad−1 − 1 then

− Compute CHKREV (γ)
− if CHKREV (γ) = −1 then return
− Compute CMP(γ, a(d), r)
− if CMP(γ, a(d), r) = false then γ ∈ Bk(n, d)
− ca(d) := 0 and return

− Compute valid ca(t+1) and APND(γ, ca(t+1))
− sa(t+1) := a(t+1)
− if u = a(t+1) – a(t) − 1 then

− Compute CHKREV (γ)
− CASE 1: CHKREV (γ) = 0

− compute BFu(t + 1, r, CMP(γ, a(t), r))
− CASE 2: CHKREV (γ) = 1

− r := a(t+1) − 1 and Compute BFu(t + 1, r, false)
− CASE 3: CHKREV (γ) = −1

− return
− else Compute BFu(t + 1, r, CMP(γ, a(t), r))
− ca(d) := 0

3328

