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ABSTRACT 

 
Considering the influence of sending signals in detection error, in this paper it is attempted to reduce error 
probability by global optimization methods and increase correct decision making in the receiver. To do this by 
mathematical relations and considering receiving signal as a vector, designing signal is an optimization problem 
solution. To solve the related optimization problem, three famous global optimization methods as GA, SA and 
MLSL are used and the mentioned methods are used and simulation results are presented and compared, also LSA 
algorithm is introduced as revised SA algorithm. 
KEYWORDS: Optimized algorithms; Simulated Annealing; Genetic Algorithm; Multi-level Single Linkage; Local 

after Simulated Annealing. 
 

INTRODUCTION 
 

In digital telecommunication to send symbols corresponding with each symbol, a time signal is sent and in 
receiver side, these signals being gathered by channel noise are received and demodulated. Demodulation   is 
gaining components of time signals on base vectors. According to the achieved components, the receiver detects the 
sent symbol. The noise causes error in detection and in this way optimization equation reduces error probability. The 
way to define the sent signals in vector space has direct link with error probability and by good selection, we can 
minimize this error. If the probability of optimized receiver error is considered as objective function, the 
determination of signals components under the limitation on the sending power to reduce error in the receiver is an 
optimization issue. There are various methods to find extermum points (minimum or maximum) of a function. In 
local optimization methods, the main ideas is using the current point information (such as function gradient) to 
determine movement direction to extermum point. This rule causes that the final answer be dependent upon the 
beginning point of algorithm and if objective function has various extermum points, the algorithm will not be 
convergent to the optimized extermum point (e.g. the lowest minimum) (in other words, it will be trapped in local 
extermum point). To solve this problem, it is necessary to use global optimization methods. The simplest method is 
random search as some points in search space will be randomly selected and are used the starting point of a local 
algorithm. The more the number of starting pints, the more is possible to find optimized point in this method and 
instead bear more calculation load. Local optimization algorithms are used to design signals of digital 
telecommunication signals [1,2]. The researches being carried out in using global algorithms in the design of digital 
telecommunication signal are papers [3,4] that used MLSL algorithm for the design of optimized signal. Being 
inspired by paper [3], this paper’s objective is the design of optimized signals for digital telecommunication that by 
using these signals instead of the existing standard modulations, the error of receiving signal is reduced. In 
comparison with paper [3] some innovations are done in this project as the followings: 
1. Simplifying the conditions of optimization problem in comparison with reference [3]that increased the 
speed of optimization algorithms. 
2. Getting objective function gradient as analytical for MLSL method considering the items in reference [3], 
gradient of objective function is not achieved. 
3. The comparison of three important methods in global optimization (MLSL, SA, GA) in signals design 
4. A new algorithm called LSA (Local after Simulated Annealing )is proposed  that is the extended type of 
SA algorithm and improved considerably its performance in being convergent to optimized point 
5. The presentation of vector display of two-dimensional 32 optimized signals that are not reported in other 
papers. 
 
Optimization problem theory 

To determine the optimized signals, at first a objective function being correspondent with receiver error 
should be gained. In digital telecommunication, the messages are send in the form of symbol and for each symbol, 
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corresponding signal Mmtsm ,...,1= ,   )(  is sent and S୫(t) signal is displayed according to base signals as the 
followings: 
S୫(t) = ∑ a୫,୩φ

୩ୀଵ ୩
(t)					,m = 1,… ,M                                                    (1) 

Where K is the number of base signals, φ୩(t) base signal of kth and a୫,୩ the image of S୫(t) on kth base 
signal. The sent signal is received after interfering with additive noise of channel in receiver and is turned into the 
following equation after sampling: 
y[t] = S୫[t] + n[t]					t = 1,2, . . T                                                               (2) 

Here the noise is assumpted to be separated from signal and noise samples are separated from each other with 
equal distribution of Np . H୫ shows sending signal S୫(t) is expressed as the followings: 

H୫: y[t] = S୫[t] + n[t]		t = 1,2, . . M                          (3) 
By displaying the received signal as vector ݕ ≜ ,[1]ݕ)  and by assuming that the receiver works  ([ܶ]ݕ……

based on criteria MAP, decision making in the receiver is done as: 
ෝ݉ = argmax	{ܲ(ܪ|ݕ)|݉ = 1, . .  (4)                                                         {ܯ,
In the receiver by assuming that signal )(ts m is sent when the error is occur that : 
    ܲ൫ܪ′หݕ൯ > ,(ݕ|ܪ)ܲ ∃	݉ ≠ ݉′                                                               (5) 
So the probability of the fact that hypothesis H୫ is supported is: 

P(c|H୫) = P൫൛(H୫|y) > ܲ൫H୫′|y൯, ∀m′ = mൟหH୫൯ = P(ቊLn (ୌౣ |୷)

ቀୌౣ′ቚ୷ቁ
> 0,∀m′ ≠ mቋ |H୫)       (6) 

According to Bayes 'theorem
)(

)()|(
=)|( y

yy
p

HPHp
HP mm

m  and the above equation we have: 
݊ܮ (ு|௬)

(ு′|)
= ݊ܮ (௬|ு)(ு)

ቀ௬ቚு′ቁ(ு′)
                                                                           (7) 

As the aim is to obtain the set of optimized signals for each source, so a reasonable assumption is that the previous 
probabilities are equal. 
(ܪ)ܲ = ܲ൫ܪ ′൯, ∀	݉ = ݉′                                                                           (8) 
Considering this assumption and replacing equation (2-7) by (2-6) we can say that: 

(ܪ|ܥ)ܲ             = ܲ ቆቊln (௬|ு)

ቀ௬|ு′ቁ
> 0,∀	݉ ≠ ݉′ቋ ቤܪቇ									                           (9) 

Minimizing error probability is equal to maximizing correct decision-making probability. And: 
(ܥ)ܲ = ∑ ெ(ܪ)ܲ(ܪ|ܥ)ܲ

ୀଵ                                                                            (10) 
Considering the this assumption that the previous probabilities are equal, for maximizing P(c) we should maximize 

∑
1=

)|(
M

m
mHcP

                                                                            (11). 

One way to maximize the amount of above equation is maximizing each 
	P(c|H୫),	It should be considered 

that some of P(c|H୫) are dependent to each other and it is possible that increase in one of them causes reduction in 
another as their sum is decreased. Thus, maximization trend of each P(c|H୫ should be done by applying some 
limitations being dictated by other terms in (11). The mentioned limitations depend upon the arrangement of sent 
signals in vector space. As in each repeat, maximizing trend of limitations is changed. The result is that if applying 
such limitation is not possible, the speed (calculation output) of the trend is considerably reduced. A solution to 
simplify and increase the speed of maximization algorithm, is maximizing the least P(c|H୫  in equation (11). 
Although it is possible that such algorithm is not lead into the optimized answer for equation (11), but provide under 
optimization answer. Thus, here maximization of the following value is considered: 
∈{ଵ,…,ெ}(ܪ|ܥ)ܲ        

୫୧୬ 							                              (12) 
for ( ) | mHp y considering the independence of noise samples from each other we have: 

(ܪ|ݕ)ܲ = ∏ (ܪ|[ݐ]ݕ)ܲ = ∏ ேܲ([ݐ]ݕ − ܵ[ݐ]்
௧ୀଵ )																																																்

௧ୀଵ  (13) 
   Ln (୷|ୌౣ)

(୷|ୌౣ′)
= ∑ Ln (୷[୲]|ୌౣ)

(୷[୲]|ୌౣ′)

୲ୀଵ                                                                                   (14) 

Correctness of H୫ (sending signal S୫(t) means y[t] = S୫[t] + n[t) , thus: 
ܲ(y[t]|H୫) = P(n[t])                                                                                                 (15) 
ܲ(y[t]|H୫) = P ቀn[t] + ൫S୫[t] − S୫′[t]൯ቁ			 , ∀	m ≠ m′																																																(16)  
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By combining the above equations we have: 
ln (௬|ு)

(௬|ு′)
= ∑ ln ಿ([௧])

ಿ([௧]ାቀௌ′[௧]ିௌ[௧]ቁ)
= ܳ ′்

௧ୀଵ                                                        (17) 

ܳ′ is a random variable being dependent upon T independent random variable ( ) ( ) ( )1,2,..., nnTn . By replacing 
equation (17) by equation (9) we have: 
                P(C|H୫) = P(Q୫ଵ > 0,Q୫ଶ > 0,… , Q୫(୫ିଵ) > 0, . . , Q୫ > 0) 

             
(20) 

ܳ′s are dependent to each other in the above equation and by assuming their fixed variance P(c|H୫) is 
maximized when we maximize minஷ′  ′| thus,  optimization problem is turned into maximizing theܳ|ܧ
following expression: 
  min∈{ଵ,..,ெ}minஷ′ ܧ ∑ ln ಿ([௧])

ಿ([௧]ାቀௌ′[௧]ିௌ[௧]ቁ)
்
௧ୀଵ                                                  (21)

 
The above equation is objective function of optimization problem that can be expressed by functionܭே: ܴ → ܴ: 
(ߜ)ேܭ   ≜ ∫ ln ቀ ಿ(ఛ)

ಿ(ఛାఋ)
ቁ ேܲ(߬)݀߬

.
ோ                                                                          (22) 

Where NK is 
*KL distance between probability density function of noise and its shift as – δ. If probability density 

function of noise is symmetrical (it is not a limiting assumption), ܭ function is a pair function. Table (1) shows 
density function of probability and KN shows some common noises being studied in this paper. 
 

Table 1- Probability density function and multi-noise KN (0) function 
Noise  

√

Gaussian  

√Laplacian  

-2Ln൬ࢎࢉࢋࡿ ቀࢾ࣊
࣌
ቁ൰  


࣌

Sechቀ࣎࣊
࣌
ቁ  Hyperbolic Secant  

ࢣ

Generalized Gaussian  

࣌࣊

Cauchy  

 
In the above table,  denotes Gama function and it can be said that: 
ܧ ∑ ln ಿ([௧])

ಿ([௧]ାቀௌ′[௧]ିௌ[௧]ቁ)
= ∑ [ݐ]′ே൫ܵܭ − ܵ[ݐ]൯்

௧ୀଵ
்
௧ୀଵ                                      (23)                                     

And considering the value of )(tsm s: 
S୫[t] = ∑ a୫,୩φ୩[t]


୩ୀଵ                                                                                                (24) 

The dependency of equation to images (components) of signals is clear. These components can be expressed 
as the form of the following vector: 
a ≜ (aଵ,ଵ , … , aଵ,୩, . , a୫,ଵ, . a୫,୩) 
as KN(.) function is a pair function, the values are equal for ݉ > ݉′ and ݉ < ݉′, so to solve, considering one of 
these two parts is enough. Considering the above equation, solving the design of optimized signals equals: 
max∈ோಾ಼min	{∑ ேܭ ቀ∑ ቀܽ′, − ܽ,ቁ

ୀଵ ߮[ݐ]ቁ |݉,݉′ ∈ {1,… ′݉,{ܯ, > ݉}்
௧ୀଵ        (25) 

On the other hand, there is energy limitation for sent signals and this limitation is expressed by two 
limitations in average energy of signal and the limitation in moment energy of signal. In this paper, the limitation of 
moment energy of signal is considered and it should be |S୫(t)| ≤ C	,m = 1, . . , M, where C is a definite value 
greater than zero. Considering this limitation, objective function for optimization problem is as the followings: 
    max∈ோಾ಼ 	{−∑ ேܭ ቀ∑ ቀܽ ′, − ܽ,ቁ

ୀଵ ߮[ݐ]ቁ |݉, ݉′ ∈ {1,… ′݉,{ܯ, > ݉}்
௧ୀଵ       (26) 

That they should be minimized under the above condition by changing the images of sent signals of ܽ ∈ ܴெ  . 
 

The definitions of parameters of an optimization problem 
Global optimization problem is finding a solution among a set of acceptable answer that objective function 

has the least amount for it. A global optimization problem for function f(x) is defined as the followings: 

                                                             
* Kullback_Leibler 
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Definition: assuming ݂(ݔ): ܴ → ܴ and DRS⊆ (R is the set of real numbers). By finding x∗∗ ∈ S  as for all S∈x we 
have, ݂(ݔ∗∗) ≤  .is global minimum (∗∗ݔ)݂ is as the global minimize of objective function and∗∗ݔ ,then ,(ݔ)݂
Searching zone of S is determined as { }DiUxLS iii ,...,1=,≤≤|= x in which iL , iU  are respectively, lower zone and 
upper zone of variable xi. Any local minimum f(x*) is consisting of a tension zone that is defined as the followings: 
local minimum tension zone f(x*) is the set of points in search space that start of a local algorithm is convergent 
from those points to x* point. 

Simulation design: Signals design is done for two states M=8,16 and T=50, ܥ = √10 (equations (25), (26) 
for 5 noises whose distribution function (PN) and K(δ) is shown in table (1). In addition, base signals are 
considered as two types of sine-cosine and sine-sine and considering these two types of base signal, the condition of 
the problem is closely considered. 
Base signals sine-cosine: Two signals in this base are written as the followings: 

ଵ߮(ݐ) = ටଶ
்
sin ߱ߨ2 ௧

்
		 , ߮ଶ(ݐ) = ටଶ

்
cos ߱ߨ2 ௧

்
			 ,߱ = 10	, ݐ = 0,1,…ܶ − 1                    (27) 

Where t is discrete, T is the number of sampling in the related time distance and  is a parameter defining the 
number of periods in which signal is non-zero and signal s(t) is written as the followings: 

ܵ୫(t) = α୫,ଵφଵ(t) + α୫,ଶφଶ(t) = α୫ sin x + β୫ cos x									, ߙ = ,ଵටଶߙ
்
		 	 ,β୫ = α୫,ଶටଶ


		 , x = 2πω ୲


                 

(28) 
Considering the condition ܵ(ݐ) <  is smaller than C, the condition of the (ݐ)when maximum signal ܵ,ܥ

problem is established for all the times (t), to determined the related maximum, its derivative is equal to zero. 
 ௗௌ(௧)

ௗ௧
= ଶగఠ

்
ߙ cos(ݔ) −

ଶగఠ
்
ߚ sin(ݔ) = 0                                                    (29) 

As the result we will have: 
ߙ cos(ݔ ′) = ߚ sin(ݔ ′) → ݔ ′ = ଶగఠ௧′

்
= tanିଵ ቀఈ

ఉ
ቁ + ,		ߨ2݊ ݊ = 0,1,2, . .       (30) 

′ݐ     = ்
ଶగఠ

tanିଵ ቀఈ
ఉ
ቁ → cos ቀ2߱ߨ ௧′

்
ቁ = ఉ

ఈ
sin ቀ2߱ߨ ௧′

்
ቁ (′ݐ)ܵ			,					 = ఉమ

ఈ
sin ቀ2߱ߨ ௧′

்
ቁ + ߙ sin ቀ2߱ߨ

௧′

்
ቁ				(31)     

And  

        ඥ((ܽ,ଵ)ଶ + (ܽ,ଶ)ଶ) < ට்
ଶ
 (32)                                    ܥ

sin ቆ2߱ߨ
ݐ ′

ܶ
ቇ =

tan൬2ݐ߱ߨ
′

ܶ൰

ට1+ tanଶ ൬2ݐ߱ߨ
′

ܶ൰
=

ߙ
ߚ

ඨ1+ ൬ߙߚ
൰
ଶ
=

ߙ
ඥߙଶ + ଶߚ

→ (′ݐ)ܵ = ቆ
ଶߚ

ߙ
+ ቇቆߙ

ߙ
ඥߙଶ + ଶߚ

ቇ

= ඥߙଶ + ଶߚ <  ܥ
 

So the condition of the problem expresses that ܵ(ݐ) signals in two-dimensional vector space should be 

confined in a circle with the radius of C
T
2 . 

Base signals sine-sine: Frequency difference of two sinus signals make them orthogonal and thus the following two 
signals are achieved. 

ଵ߮(ݐ) = ටଶ
்
sin ߨ2 ଵ߱

௧
்
		 , ߮ଶ(ݐ) = ටଶ

்
sin ଶ߱ߨ2

௧
்
			 , ߱ଵ = 10,߱ଶ = 11	, ݐ = 0,1,…ܶ − 1    (33)  

By considering the problem condition and signal ܵ(ݐ) <  :ܥ

ܵ୫(t) = α୫,ଵφଵ(t) + α୫,ଶφଶ(t) = α୫ sin 2πωଵ
୲

+ β୫ sin 2πωଶ

୲

										 , ߙ = ,ଵටଶߙ

்
, β୫ = α୫,ଶටଶ


														 (34) 

Considering the previous trend: 

 ௗௌ(௧)
ௗ௧

= ଶగఠభ
்

ߙ cos ቀ2πωଵ
୲

ቁ + ଶగఠమ

்
ߚ cosቀ2πωଶ

୲

ቁ = 0                                        (35)                

ୡ୭ୱ ଶగఠభ
′


ୡ୭ୱ ଶగఠ′


=

ఉఠమ
ఈఠభ

		→ sin ଶ߱ߨ2
௧′

்
= ටቀ1 − cosଶ ଶ߱ߨ2

௧′

்
ቁ = ට൬1 − ቀఈఠభ

ఉఠమ
ቁ
ଶ
cosଶ ଵ߱ߨ2

௧′

்
൰  (36) 
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		ܵ(ݐ ′) = ߙ sin ቀ2߱ߨଵ

௧′

்
ቁ −ට1ߚ+ ቀఈఠభ

ఉఠమ
ቁ
ଶ
+ ቀఈఠభ

ఉఠమ
ቁ
ଶ
sinଶ ଵ߱ߨ2

௧′

்
< |ߙ| +    |  (37)ߚ|

Here as the above equation doesn’t have answer as analytical and it should be solved as numerical, ܵ(ݐ ′) ≈ |ߙ| +
  ,|. Thusߚ|

  |α୫| + หβ୫ห < ܥ → |a୫,ଵ| + |a୫,ଶ| < ට
ଶ
C                                                         (38) 

The resulting zone is a diamond. Considering inequalities (32), (38), searching zone of optimization problem is 
determined easily and is easily applied in the related algorithms. Also, direct application of condition ܵ(ݐ) <  ܥ
causes that searching zone has little difference with the zones of equation (32), (38) and according to figure (27)the 
space signals getting at base signal of sine-cosine is greater than the space signals can have at base signal sine-sine. 
And it means as more energy for base signals sine-cosine. From this space, it is resulted that designing with base signal 
sine-cosine creates less error in the receivers. In other words, correct decision making is increased in the receiver. 

 
Figure 1a: sine-cosine 

 
Figure 1b; sine-sine 

 

Simulation 
Genetic algorithm: The genetic algorithm being used in this paper is SGA. SGA is the simplest genetic 

algorithm consisting of 3 main operators of all genetic algorithms. These three operators are including selection, 
cross over and mutation. To do the algorithm, at first an initial population (here p=40) is selected randomly then 
objective function values are calculated for all members and the members participate in the production of the next 
generation depending upon its value. 24 superior combination of each generation are used for construction of the 
new generation (probability coefficient of cross over 0.6), to escape from being trapped in local extermum point, 
mutation parameter is used and probability coefficient of this parameter is selected as 0.05. then values of objective 
function is calculated for new generation and here the condition of ending algorithm is investigated and in case of 
fulfilling the condition, the algorithm task is finished, otherwise, this task continues. Spatial arrangement of signal is 
displayed for some states being achieved by GA algorithm in figures (2) to (5): 

 

 
Figure 2- Spatial arrangement of 8-signal for Cauchy noise (base signal sine-sine) 
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Figure 3- Spatial arrangement of 8-signal for Gaussian noise (base signal sine-cosine) 

 

 
Figure 4- Spatial arrangement of 16-signal for Laplacian noise (sine-cosine) 

 
Figure 5- Spatial arrangement of 16-signal for Hyperbolic Secant noise (sine-cosine) 

 
The results showed that in genetic algorithm, there is no guarantee to reach a good point and for repetitious 

execution of algorithm, we reach different answers and this is due to algorithm trapping in local minimums. In 
addition, if it is allowed that algorithm is executed for a long time, it cannot be sure that algorithm reaches a good 
point. But it is possible that after many times execution, we achieve a good answer that is not economical. 

SA algorithm: In the presented SA algorithm, the initial temperature is selected as T0=30 that in initial stages, 
all combinations are accepted. Temperature change is based on 1 kk TT  where 97.0 is selected till 
temperature reduction is done slowly. In the algorithm at first a combination is selected randomly and objective 
function is calculated. Then, the combination is changed in one dimension (That the amount of this change is 
dependent upon the amount of its temperature) and objective function is reduced and is calculated for new 
combination. But the reduced objective function for new combination is less than the previous combination. The new 
combination is accepted and objective function amount is calculated for this combination. Otherwise, by one 
probability (that is dependent upon the temperature of that stage), the new combination is accepted. This is done for all 
parameters. To reach the better solution, it is necessary to do some repetition in each temperature. This number in the 
applied algorithm is 50 and then the temperature is reduced according to temperature function. Algorithm is finished 
when whether the temperature is achieved final temperature (in applied algorithm Tf =1) or an optimized point is 
repeated for definite numbers that N is the number of repetitions in each temperature and in this paper this amount is 
N=50. Spatial arrangement of signal is displayed for some states attained by SA algorithm in figures (6) to (9). 

 
Figure 6- Spatial arrangement of 8-signal for Gaussian noise (sine-cosine) 
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Figure 7- Spatial arrangement of 8-signal for Cauchy noise (sine-sine) 

 
Figure 8- Spatial arrangement of 16-signal for Laplacian noise (sine-cosine) 

 
Figure 9- Spatial arrangement of 16-signal for Hyperbolic Secant noise (sine-sine) 

 

The results show the followings: SA algorithm acts rapidly or it doesn’t reach absolute minimum but always 
it reaches a good point. Thus, it has high reliability coefficient in comparison with GA algorithm. 
MLSL algorithm: To simulate MLSL algorithm, a local algorithm should be used. In this paper, Newton method is 
used. The parameters of MLSL algorithm in simulations are considered as Np=1000, 0.05=ߦ,	ρ = 4. Also algorithm 
task is finished when ending condition is fulfilled. Ending condition is considered as two forms, at first equations 
(35), (36) should be satisfied and second objective function should be repeated for a definite amount for definite 
number. The results show that in most cases, algorithm reaches a point (minimum) that these items show high 
reliability coefficient of algorithm. Spatial arrangement of signal is displayed for some states being achieved by 
MLSL algorithm in figures (10) to (13): 

 
Figure 10- Spatial arrangement of 8-signal for Gaussian noise (sine-cosine) 

 
Figure 11- Spatial arrangement of 8-signal for Cauchy noise (sine-sine) 

 
Figure 12- Spatial arrangement of 16-signal for Laplacian noise (sine-cosine) 
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Figure 13- Spatial arrangement of 16-signal for Hyperbolic Secant noise (sine-sine) 

 
Extending SA method: As we know if SA algorithm is executed for a long time, it is reached to absolute minimum 
and if we limit the execution of algorithm, in fact it will be convergent to a point in tension zone of absolute 
minimum pint. Thus, by SA algorithm, we can find a good point to use in local algorithm. Thus, the combinations 
achieved by execution of SA algorithm, are applied as starting point of a local algorithm that in this paper, it is 
called LSA method. The results of using LSA are shown in figures (14) to (17) that show considerable improvement 
in comparison with normal SA. 

 
Figure 14- Spatial arrangement of 8-signal for Gaussian noise (sine-cosine) 

 
Figure 15- Spatial arrangement of 8-signal for Cauchy noise (sine-sine) 

 
Figure 16- Spatial arrangement of 16-signal for Laplacian noise (sine-cosine) 

 
Figure 17- Spatial arrangement of 16-signal for Hyperbolic Secant noise (sine-sine) 

 
Comparing methods  

For comparing methods, each algorithm is done 10 times for each noise and base signal and the amount of 
final objective function (F(a)), the number times that objective function was called by algorithm (N) and the average 
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of these two values are obtained for 10 executions. The comparison of the results of these tables shows that GA 
algorithm has low reliability coefficient (similar answers in different executions) in finding less minimum and it is 
trapped in local minimums. While, the number of calculation of objective function (calculation load) GA is a lot. As 
it was said, SA algorithm has rather high reliability coefficient. If it is allowed that algorithm, continue its work, 
almost all answers led into one point that is near to absolute minimum. This case requires taking too much time. But 
in this project, due to the comparison of the methods, it is attempted to create equal conditions for algorithms and 
due to this, the results of SA algorithm don’t have high reliability coefficient. LSA algorithm presents better results 
in comparison with SA and its reliability coefficient is improved in it. MLSL algorithm has high reliability 
coefficient and rapidly reaches an optimized point. Optimization gradient of objective function in this algorithm is 
very steep and due to this, algorithms reach very rapidly to optimized point. GA algorithm due to low reliability 
coefficient and being trapped in local points are set aside. SA algorithm is put aside due to weak answers and the 
fact that LSA algorithm is extended type of SA algorithm and the main comparison is done between LSA algorithm 
and MLSL algorithm. To compare two important parameters in algorithms are evaluated as: 
1. The amount of objective function (minimum) 
2. The number of times objective function is calculated in algorithm 

To do this, charts (1) to (4) are plotted to compare the methods easily. In the following charts x axis shows 
different kinds of noises and y axis shows the amount of objective function and the number of times objective 
function is calculated, respectively. Considering the fact that objective function optimized amount is different for 
each noise, to compare MLSL and LSA algorithms in different noises, we normalize objective function amount. 
Thus, the amount of each y in each noise is divided by maximum absolute value of ys for two methods. This 
normalization trend is done for the number of calculation of objective function. In the charts, MLSL algorithm is 
displayed by dart color bar and LSA algorithm is shown by light color bar. In this figures, the bar in the lowest place 
shows the best performance, both in terms of the amount of function (F(a)) and the number of times in which 
objective function is calculated (NUMFUN) abbreviations being used in the charts are including: 
G: Gaussian, L: Laplacian, H: Hyperbolic Secant, GG: Generalized Gaussian, C: Cauchy 

 
Chart 1- The comparison of two methods for 8-state with base signal sine-cosine 

 
Chart 2- The comparison of two methods for 8-state with base signal sine-sine 

 
Chart 3- The comparison of two methods for 16-state with base signal sine-cosine 
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Chart 4- The comparison of two methods for 16-state with base signal sine-sine 

 
As it is shown in the charts, most of the time, MLSL algorithm do better and in some cases (16-singal), LSA 

algorithm do better (lower minimum). Objective functions are compared for all combinations achieved by execution 
of algorithms and the best combinations are determined for different states. Spatial arrangements of these optimized 
signals are shown in figures (18) to (27) that can be used in digital telecommunication systems. 

 
Figure 18- Arrangement of optimized 8-signal, Gaussian, Generalized Gaussian (sine-cosine) 

 
Figure 19- Arrangement of optimized 8-signal, Laplacian (sine-cosine) 

 
Figure 20- Arrangement of optimized 8-signal, Hyperbolic Secant (sine-cosine) 

 
Figure 21- Arrangement of optimized 8-signal, Cauchy (sine-cosine) 

 
Figure 22- Arrangement of optimized 8-signal, Gaussian (sine-sine) 
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Figure 23- Arrangement of optimized 8-signal, Generalized Gaussian (sine-sine) 

 
Figure 24- Arrangement of optimized 8-signal, Laplacian , Hyperbolic Secant  and Cauchy (sine-sine) 

 
Figure 25- Arrangement of optimized 16-signal, Laplacian ،Gaussian  ،  Generalized Gaussian  ، Hyperbolic Secant and Cauchy 

(sine-cosine) 

 
Figure 26- Arrangement of optimized 16-signal, Laplacian (sine-cosine) 

 
Figure 27- Arrangement of optimized 16-signal, Laplacian ،Gaussian  ،  Generalized Gaussian  ، Hyperbolic Secant and Cauchy 

(sine-sine) 
 
The design of optimized 32-point signal: finally by MLSL algorithm, 32-point optimized signals are designed and 
its results are shown with the shapes of signal spatial arrangement. The studies show that there is not reference 
showing the results of 32-point optimized signals, 
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Table 2- The amount of objective function for 32-point with base signal sine-cosine 

Noise F(a) Noise F(a) 
Gaussian -10.2283 Gaussian -16.5708 
Laplacian -13.9723 Laplacian -22.0469 
Hyperbolic Secant -11.6071 Hyperbolic Secant -18.6667 
Generalized Gaussian -16.1595 Generalized Gaussian -26.4802 
Cauchy -4.6169 Cauchy -7.4119 

 

 
Figure 28- Spatial arrangement of optimized 32-signal for all noises (sine-cosine) 

 
Figure 29- Spatial arrangement of optimized 32-signal for all noises (sine-sine) 

 
As it is show in the above figures, optimized 32-signal are the same for all the noises and this is due to the 

less distance between the points. In reference [2], this point is referred. Considering this reference when the distance 
between the points are less, KL leveled surfaces are in the form of circle and when the distance is increased, these 
surfaces are in different forms for different noises. As the value of C is fixed (signal components are selected in a 
fixed range), it was predicted that for more signals, the leveled surfaces are equal for different noises and the same 
vector arrangement is achieved for different noises. 
 
Conclusion  
 

The design of two-dimensional optimized signals in digital telecommunication was analyzed and simulated 
by three global optimization methods. According to the results of simulation, MLSL algorithm do better and had  
access to better results. About SA algorithm we should say that by this algorithm we can find a good starting point 
for starting the work of a local algorithm and in this regard LSA algorithm is recommended.  

GA algorithm didn’t get good results and showed that it doesn’t have the required reliability (The answers in 
some executions, had little difference with each other) to be applied in the design of optimized signals. This 
algorithm is used in some cases in which there is not extra information (e.g. gradient) in the problem. In this paper, 
optimized two-dimensional signals of 8, 16, 32 are achieved for different noises and if in digital telecommunication 
instead of standard modulations, the signals in the paper are used, the probability of error is reduced in detection. 
The important point is that in 16-signal at base signal sine-sine; the same modulation spatial arrangement QAM is 
the optimized state. 
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