

J. Basic. Appl. Sci. Res., 2(4)3432-3436, 2012

© 2012, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Saeid Kamari, Computer Department, Sahneh Branch, Islamic Azad University, Kermanshah, Iran.
 Email: s.kmari@shbu.ac.ir

A Conceptual Overview of Service-Oriented Software Systems Development

Saeid Kamari

 Computer Department, Sahneh Branch, Islamic Azad University, Kermanshah, Iran

ABSTRACT

Service-oriented architecture is a paradigm for design and development of distributed and
heterogeneous software systems. Service-oriented systems design is one of the major issues in
software engineering. One of the main concerns in service-oriented systems design is to generate
services with greater reuse capability, so that they can be reused in other systems. In this paper,
according to the design process in a service-oriented systems life cycle, different system design
approaches have been studied and the problems and benefits of each of them, the common
methodologies to develop service-oriented systems are discussed. Moreover, according to the
importance of the services identification in the service-oriented architecture and its performance as a
key and vital operation in the development process, available patterns in this field are discussed and
then will be evaluated from the functionality perspective. Obviously getting familiar with the
strengths and weaknesses of different methods of systems design and service identification in widely
used service-oriented architecture help designers to select the best solution in design and produce their
desired systems.
KEY WORDS: Service-oriented architecture (SOA), Web service, Software system life cycle,

Development methodologies, Service identification.

I. INTRODUCTION

Service-Oriented Architecture (SOA) as one of the most prominent architectures in the past decade, with creating a
layered architecture and the introduction of basic entities called services try to implement distributed and heterogeneous
software systems [1, 2, 3]. Service-oriented architecture is a paradigm for creating, realization and maintenance of business
processes distributing in big hetereogenous systems [7].

Web services technology is an effective mechanism to share application logic between different machines with different
operating systems and development environments. Web service is a software system that is determined by a URL and its
interfaces and bindings are defined and described by XML. This definition can be discovered by other software systems. These
software systems can then connect to other Web services using XML-based messaging protocols over Interne. Web services
are the most successful example of practical implementation of SOA [8].

With acceptance of service-oriented architecture as a new approach in software engineering as a model for the production
of software systems, and in order to practical use of SOA - similar to other existing methods – some SOA specific
methodologies are required for system development with emphasis on service-oriented approach. According to dependability
of SOA to services, one of the key issues in service-oriented architecture is to identify the services needed in the organization
processes and generate their interfaces. By generating the service interfaces, it will be possible to search required organization
services or produce new services in design phase in development methodology [4, 10].

This paper is organized as follows: In Section 2 the basic concepts used in the paper are presented. In Section 3 the
proposed service-oriented systems life cycle is discussed. Section 4 describes available SOA-based systems development
approaches. Section 5 also provides a common service-oriented systems development methodology. Different approaches of
services identification particpating in business processes are described in Section 6 and finally in section 7 the conclusion is
offered.

II. BASIC CONCEPTS

In this section the basic concepts and technologies needed in this paper are introduced.
A. Service Oriented Architecture

 Service-oriented architecture provides a layered architecture trying to create architecture with different abstraction
levels. It separates various concepts in each system software development such as issues related to user interfaces,
synchronization, services and resources. According to the multi-layer architecture and using open standards at every level,
service-oriented architecture can be an appropriate option for the implementation of software systems in a heterogeneous
distributed environment. Service-oriented architecture various layers are shown in Figure1 [2]. The SOA resource layer
comprises of all available information sources such as the previous programs, databases, systems management and even people
and knowledge in the organization. In the higher layer services are located on the organization resources based on standards
and specifications outlined in the service-oriented architecture as a coating or are generated from scratch. This layer creates an
integrated and extensible infrastructure for interaction between the services by building independent services with
well-defined interfaces. Due to the importance of synchronization in distributed systems and the separation of collaboration
from computational problems, a separate layer for synchronization is considered in SOA. In this layer, all the standards and
mechanisms of service coordination and combination in terms of business processes are implement. The task for the last layer
is to provide an integrated interface to access and manage the entire system.

3432

Kamari, 2012

Figure1. SOA layers

B. Web services

Web services are a set of stateless, autonomous, coarse grained, platform-independent and loosely-coupled software
components, which are implemented under a specific namespace. Web services and SOA-based practical systems using the
internet as the connection media. In most definitions of SOA, Web services are introduced as a successful implementation of
this architecture, whereas SOA can be implemented with any service based technology [8].

The web service model is composed of three basic entities: service provider, service registry and service consumer [9].
Service provider creates the service with a well-defined and standard interface and then publishes it in a centeral registry.
Service registry includes information such as address and the way to contact the supplier and technical information about the
service. Service consumer obtains the needed information from the registry and then binds to it using service description to
invoke its methods. To enable communication between different applications, with different languages and platforms, for each
of the publication, some searching and binding appropriate standards are adopted. The Web service model is shown in Figure2.

Figure2. Web service model

C. Types of Services in SOA
 Services are basic elements of service-oriented architecture. Due to the large variety of business functions, services are

employed for different purposes and also play different roles. Services are parts of the business process. Therefore, to identify
and extract the service, it is needed to view organization's business processes. Business process is a task that must be done in an
organization. Moreover, the set of activities needed to do the work is characterized in process [7].

 From a technical perspective, services are divided into three distinct classes:
1- Basic services- that provide only a specific business function and don’t seem to decompose into smaller services. These

are the most fine-grained services.
2- Composed services- that represent a fine workflow within a business process. From the granularity perspective, these

services are located in a tier above the basic services. These are built from available and basic services.
3- Process services- that are the most coarse-grained web services. From a business perspective, a process service shows a

large workflow of activities or services.

III. SERVICE-ORIENTED SYSTEMS LIFE CYCLE
 The life cycle of software systems based on service-oriented architecture, includes four different phases: Identification,

analysis and design, implementation and testing. At the first phase, different users’ requirements and expectations are
extracted. At the analysis and design phase, available services in organization processes according to users and owners
concerns are produced. In implementation phase, identified services are combined to create higher-level services to meet
customer needs. In the test phase, the service functions and processes created by the users' requirements and criteria’s are
tested. This phase can be done repeatedly till to cause the users and owners satisfaction and completely match to their needs.
Different phases of the SOA-based software systems production and their inter-relationships are shown in Figure3 [10].

Service
Broker

Service
Consumer

Service
Producer Bind

Discover Register

3433

J. Basic. Appl. Sci. Res., 2(4)3432-3436, 2012

Figure3. Service-oriented systems life cycle

IV. SERVICE-ORIENTED SYSTEMS DESIGN AND DEVELOPMENT APPROACHES
There are numerous questions and problems in design and development of Service-oriented software systems: How to

identify services which are parts of business processes? How to decompose a system into smaller parts (services), so that they
can be implemented? How to design and build services with most reuse capability, so that they can be used in more scenarios
and collaboration protocols? To solve these problems and to answer these questions, there are generally three approaches [10]:

 Top-down approach, in which the problem, system or process is broken down into smaller pieces till to reach basic
services. Because of top-down view, this approach helps designer to realize what services are needed in the system
and understand the services and activities distinction.

 Bottom-up approach, in which smaller services are combined to create larger parts and processes. In other words, this
method tries to use software assets and services to build processes and the system.

 Agile approach, which is a combination of two previous methods. At first, candidate services are identified by
top-down analysis and then tries to select services from available software assets by balancing the extracted
functionalities and existing services and processes. It causes to reduce system development costs.

Each of the first two approaches are assumed to have specific problems. In the first method, the designer developes the
system by describing the abstract services which are later discovered and replaced by real ones. The major difficulty of this
method is to find suitable concrete services that most consistent with candidate ones. In second approach, designer is aware of
existing services and tries to develop a system which is able to interact and collaborate with such services. To do so, it is also
required to know complete information about the service such as the service location in registry at first. Morever, because of
pre-defined features and functinality of existing services, there may be less flexibility in service combination. So, it may be
possible to generate servcies which are not completely fit to users’ expectations and requirements.

V. SERVICE-ORIENTED SYSTEMS DEVELOPMENT METHODOLOGY
Given the problems that both top-down and bottom-up approaches in the design and development of SOA-based systems

have, the third approach seems to combine these two methods together with the advantages of each of them to solve the
existing problems. Thus, an intermediate design methodology to produce SOA-based software systems is needed. In this
methodology, the design process needs stakeholders’ requirements and objectives analyzing at a level of abstraction. Different
conceptual SOA-based software systems analysis and design steps and their relationship are shown in Fig.4.

Fig4. Service-oriented system development methodology
Generally, the given development framework has the following steps are provided [4]:
1. Business Process Design. The overall process begins with the business process modeling phase. Thus, stakeholders are

defined with their high-level goals and basic Key Performance Indicators (KPIs), which measure the global
performance from the viewpoints of each stakeholder.

System
Initiatio

n

System
Analysi

s &

System
Testing

System
Implem
entation

Business Process
Design

Service
Identification

Choreography
Design

Requirement
Elicitation

Components
Discovery

 & Selection
Risk Analysis

Design Refinement

& Component
Adaptation

QoS
Negotiation

&Service
Contraction

3434

Kamari, 2012

2. Service Identification. This step is focused on separating loosely coupled functional parts of the collaborative business
process into standalone service components. Considering that business processes evolve in time in order to adapt to
business strategy which changes following market rules (i.e. new products, new services, new business models), we
may observe that candidate services can be identified as:
- repeated blocks of activities inside a business process;
- similar blocks of activities among various business processes or different applications;
- time-invariant blocks of activities in a time-variant business process.

 An accurate analysis of the activity diagrams produced at the first step is essential to identify these blocks of activities
 and to make them eligible to become Web services. The analysis process can be partially automated by searching for
 similar graphical patterns in the UML activity diagram representing abstract business processes.
3. Choreography Design. Desired communication patterns among identified abstract services are defined using UML

sequence or collaboration diagrams based on the interaction patterns among stakeholders, Web services and the
system. Choreography model can be used to define collaboration protocols.

4. Requirement Elicitation. Requirements for discovery of existing software components and Web services
(inputs/outputs, pre-conditions/effects, behavior patters and desired quality levels) are defined based on the identified
abstract services.

5. Components Discovery and Selection. Software components that can be used to compose the system are of two
essential types:

- Modifiable, i.e. available as documented source-code (e.g., open source projects) or coming from organizations
available to customize it (e.g., software houses);

- Unmodifiable, i.e. coming from providers not particularly interested in customization or not customizable at all (e.g.,
Web services).

 This step covers discovery of Web services (interfaces, behavioral specifications and coordination patterns specified
 at the previous stages). Then, the QoS information about Web services and their providers must be collected (using
 data published by service providers, authorized agencies or other service clients), in order to select the best candidate
 Web services.
6. Risk Analysis. This step is needed to assess risk related to use of external Web services (loss of service, loss of data,

security/privacy concerns, etc.). On the basis of this assessment, the existing risks can be mitigated through selection of
more appropriate services, use of alternative services for critical tasks, system re-design, data replication, and so on.

7. Design Refinement and Component Adaptation. At this step the prepared models can be refined to allow for the
seamless integration of the external Web services. Found Web services and existing legacy systems are tested and
analyzed in order to decide how to introduce them to the system. It may happen that adaptors or wrappers are needed.
Providers of chosen services become stakeholders of the system. If no services with required functionalities are
found, the organization should think about implementing them, thus increasing code reusability both in its own future
projects and in the projects of third parties.

8. QoS Negotiation and Service Contraction. If quality parameters of discovered Web services do not correspond to
identified KPIs, they can be negotiated with service providers. At this step identified KPIs should be mapped into
direct requirements for QoS further resulting in Service Level Agreements (SLAs).

VI. SERVICE IDENTIFICATION APPROACHES

Based on the presented methodologies for SOA-based system analysis and design, it can be said that the process of
generating concrete services according to users’ specifications includes four distinct steps. During the process, concrete
services are produced by reducing services abstraction levels. Different system analysis and design steps of SOA-based
systems are shown in Figure5 [5, 6, 11].

Figure5. Service-oriented systems analysis and design steps

Each step focuses on some aspects of service generation:
1. Service Identification: In this step services participating in organization processes and collaborations are identified

based on users needs and without mention of low-level behavioral and functional details.
2. Service specification: In this step, the service abstraction level is reduced according to collaboration protocols,

recognized relation patterns using choreography model. Behavioral details and interfaces of services are then
extracted based on recognized features.

3. Service candidate: By defining service interfaces, it is now possible to find candidate services. It is time to search

Service Identification

Service Specification

Service Candidate

Service Realization

3435

J. Basic. Appl. Sci. Res., 2(4)3432-3436, 2012

service providers for recognized services to find the best suitable and consistent services based on extracted
requirements and interfaces. The goal of this step is to find and select services which are most compatible with
customer needs and service requirements.

4. Service realization: This is the last step of service generation process in which identified services are created in the
form of real and concrete entities.

Some authors believe in service identification as the heart and core of service-oriented architecture. However, there is no
agreement on service concept, its identity and goal. So, different approaches for service identification by focusing on special
aspects of services have been proposed. Table 1 summarizes some of the significant service identification methods [12].

Table1. Different service identification approaches

Description Method
Business processes is decomposed into sub-processes or modular
activities. The most low-level tasks contain small and concrete logical
working units which are supported by functionalities presenting
separate services.

Business Processes
In this method, the relatively stable business activity model acts as the
basis for service identification.

Business Functions

In this method, IT-functionalities are divided to the components with
most concrete and worst loosely-coupled. These components interact
with each other by calling other services.

Components

In this method, non-functional requirements define the basis of
services separation and their boundaries.

Non-Functional

It’s not a real and practical method. This introduces an owner for each
service which is responsible for it.

Responsibilities

In this method technical infrastructure forms the basis of service
separation.

Infrastructure

In this method, services are generated by existing tools and system
wizards.

Existing Supply

In this method, business goals are decomposed to reach supporting
services.

Business Goals

VII. CONCLUSION

Widespread use of service-oriented architecture and Web services represents their high acceptance and efficiency. This has

caused that owners of information technology and software engineers do increasing efforts to simplify and automate various
stages of design and development of software systems based on service-oriented architecture. In this paper, by pointing to
exact position of the design stage in the life cycle of service-oriented systems, a methodology for designing systems based on
service-oriented architecture was presented.

According to importance of service identification in service-oriented systems design, various approaches were described for
this purpose. Services identification in the service-oriented architecture and extract them from the organization processes is
vital and important. In order to generate interface of services participating in a process, it is necessary to model process
executive logic and the way of their collaboration primarily. As a future work, process description models such as orchestration
and choreography can be used to produce service participants in processes [13, 14]. Orchestration refers to an executable
business process that interacts with internal and possibly external web services of organization. It describes how services
interact in message level, how business process logic flows and also shows order of interactions execution. In choreography
model, each participant states its contribution in process interactions. This standard traces sequence of message exchange
between the various partners and resources. In other words, the model defines how a set of services collaborates in order to
achieve a common goal [9].

REFERENCES

[1] T.Erl, "Service Oriented Architecture: A field Guide to Integrating XML and Web Services", Prentice Hall PTR, 2004
[2] Newcomer E, Lomow G,"Understanding SOA with Web Services", Addison Wesley Professional, December 14, 2004.
[3] Erl T, SOA: Principles of Service Design, Prentice Hall, 2008.
[4] H.Rob, S.Kinder, S.Graham, “IBM’s SOA Foundation: An Architectural Introduction and Overview”, November 2005.
[5] M. Bell, "Service-Oriented Modeling: Service Analysis, Design and Architecture”, John Wiley& Sons, ltd, 2008.
[6] M.Bochicchio, V.D'Andrea, N.Kokash, F.Longo, "Conceptual Modeling of Service-Oriented Systems", University of Salento,

University of Trento., Italy, 2007.
[7] N.Josuttis, "SOA in practice", O'REILLY, 2007.
[8] E.Cavanaugh, “Web Services: Benefits, challenges, and a unique, visual development solution”, Altova white paper, 2004.
[9] S.Dustdar, W.Schreiner, “A Survey on Web Services Composition”, Int, J. Web and Grid Services, Vol. 1, No. 1, 2005.
[10] M.Popozoglou, W.Van der Heuvel, “Service-oriented Design and Development Methodology”, Int.J. Web Engineering and

Technology, Vol.2, No.4, 2006.
[11] R.Boerner, M.Goeken, “Service Identification in SOA Governance”, Third IEEE International Conference on Digital Ecosystems and

Technologies, 2009.
[12] L.I.Terlouw, A.Albani, “Identifying Services in SOA”, ICIRS consulting & research, 2009.
[13] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., "Web Services Choreography Description Language Version 1.0.",

W3C Working Draft 17 Decem- ber 2004, World Wide Web Consortium ,2004.
[14] Peltz C., "Web services orchestration-a review of emerging technologies, tools and standards", Technical report., Hewlett Packard Co.,

January 2003.

3436

