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ABSTRACT 
 

In this study the structure for O-minimal expansions of groups is considered Let  be an o-minimal expansion of 
an ordered group (R,0,1,+,<) with distinguished positive element 1. We first prove that the following are equivalent: 

(1)  is semibounded, (2)  has no poles, (3)  cannot define a real closed field with domain R and order <, 

(4)  is eventually linear and (5) every  –definable set is a finit union of cones. As a corollary we get that Th(

) has quantifier elimination and universal axiomatization in the language with symbols for the ordered group 

operations, bounded –definable sets and symbols for each definable endomorphis of the group (R,0,+). 
KEY WORDS: o-minimal, Structure Theorems, Groups. 
  

1- INTRODUCTION 

  In all of the paper is an expansion of O-minimal from an ordered group with 
distinguished element 0<1. And what is meant by being definable is being definable by parameter in . Also the 

function  is definable whenever graph  is a definable set in . A O-minimal structure, is a 

structure in the form of  in which is a dense 
ordered set with no initial and terminal points, C is a collection of constant elements N, F is a collection of functions 
of N  (for different n s) in N and U is a collection of relations on N  (for different n s) so that any definable subset 

of N is in the form of a finite union of points and intervals with terminal points at  . 
2- Concepts 

  Definition 1. We call the definable subset  as a  K-cone whenever it is in the following form:  

                           

  Where  is a definable bounded set and  are independent elements of  which are 

linearly independent, i.e., for every , if   then

. 
  Definition 2. The definable function  is said to be linearly bounded whenever there is an 

endomorphism  so that for every large enough value of  we have: .  

  Also the structure of  is said to be linearly bounded whenever every definable function  is 
linearly bounded.    

  Definition3. We say  is semi-bounded whenever every definable subset  in the reduced structure of 

 is also definable, in which  is the collection of all definable 

bounded subsets  . 
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  We say  is "eventually linear" whenever for every definable function , there exists 

endomorphism and element  so that we can eventually have . 
  The main result of this research which is stated below is the generalization of a theorem in (Peterzil, 1992) which 
was proved by Peterzil for O-minimal expansions from collective ordered group of real numbers

. 

  Theorem 1. For a O-minimal expansion of  from an ordered Abelian group the following conditions are 
equivalent: 

(1)  is semi – bounded  

(2)  has no poles 

(3) We can not define a real closed field whose universe is an unbounded sub – interval from  and whose order 
is compatible with order . 

(4)   is eventually linear  

(5) [ structure theorem for semi – bounded   ] : Every definable set  can be partitioned into a finite 

number of definable normal cones in addition if  is definable and if is a finite collection of 

definable function from  to , then a partition like  from  exists as a finite number of definable normal 

cones so that every function  maintains every cone . In other words if  is a K-cone 

and then there exists  so that for every  and 

 we have :  

         
  If we combine the above result with the following theorem of (Loyeys, Peterzil, 1993) we will reach to a 

conclusion of eliminating the relative quantifier for semi – bounded . 
  Theorem 2. [Loveys, Peterzil]. Assume that   

                                

  Is an expansion of an ordered vector space  on an ordered division ring D with predicate 

symbols of first order  so that  includes predicate symbols of first order for all of the definable 

subsets – a of  in the vector structure. So  in its own language has the property of quantifier 
elimination. 
 
3- Propositions  

Theorem 3- Every theory of complete model, is existential universal axiomatization . 
  Proof refer to (Marker, 2002, EX, 3.4.12) 

  Theorem 4 – The property of relative quantifier elimination for semi bounded . 
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    Assume that  is semi – bounded. In this case  has the property of quantifier elimination and in the 

language  constituted of symbols , a symbol for every member  and a 

symbol for every definable bounded set from  is universal axiomatization. 

  Proof: To prove that  has the property of quantifier elimination, according to theorem no.1 it is, 

sufficient to show that m-cones in definable  have no quantifiers. Since  is semi bounded so every definable 

subset  is partitioned into a finite number of definable normal cones. But this subject, regarding to the 

fact that  is a vector space over the division ring , is concluded from theorem no.2.  

  To prove the universal axiomatization of  since  has the quantifier elimination property so it is 
a complete model; therefore according to theorem no.3 it is an existential universal axiomatization. On the other 

hand since  is O – minimal then it has definable Skolem functions. But according to structure theorem no.1 

every definable function in  is discretely defined by  terms. As a result of this the existential universal 

axioms have universal equivalents in . 

  In theorem no.1, the proof fro part (5) 
	
⇒(1) is easily obtained from the definitions since if  is 

definable in  then according to part (5), it is partitioned into a finite number of definable normal cones

. Since the bounded sets  and endomorphisms  in the reduced structure 

 are definable, therefore the set X in the reduced structure is definable, 

so  is semi – bounded. Part (1)
	
⇒(2) is established in general condition and its proof is given in (Prillay, et.al, 

1989). Here to complete the proof, we will present an improved form of the proof (Peterzil, 1992) which is also a 
summarized form of all the proof (Prillay, et.al, 1989). The proof of part (2) 

	
⇒(3) is easily obtained.  

  Because if you assume that in , the real closed field  is definable, then the bijective function  maps 

the definable bounded interval (0, 1) to an unbounded interval in R.  therefore   will have a pole. In (Peterzil, 

1992), part (3) 
	
⇒(4) has been proved for the special condition  using the following two theorems:  

  Theorem no.5 [Peterzil] 

  A O-minimal expansion from an ordered group  is eventually linear if and only if has no pole. 
Theorem no.6 [Marker, Peterzil, Pillay]  

  If a O-minimal expansion from an ordered group  is not linear (i.e. there is a definable function 

 which is not discretely linear) then it defines a field over a subinterval (probably bounded) whose 
order conforms to the order .   

  The proof of part (4) 
	
⇒(5) is difficult. Peterzil in (Peterzil, 1992) gives a proof for the special case  using 

the condition known as "Partitioning condition" then in (Van den dries, 1998) a definable nonempty set 

 is defined as:  
dim X = max{i + ⋯+ i : X	includes	one	(i , … , i )− cell	}  

  Proposition no.1 If  is semi – bounded, then  has no poles. 

  Proof: Assume that   is semi – bounded and - definable bijective function  

exists, where  and  or .  
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  Since  is semi – bounded, then -definable bijective σ in a reduced structure from  in the form 

  is also definable, where  is a finite collection of 
bounded definable subsets B ⊆ R  m′ 	s	are	positive	integers	 . 

  Assume that  is a  - saturated elementary extension from  (so  has infinite members relative to

, because  is a 1-type). Therefore  is a vector 

space over division ring . Because  is an elementary extension of  . 

  So definable endomorphisms of  in  are also definable. Thus  closed with respect to the scalar 

multiplication  and is a vector space over the division ring . 

  We consider subspace S = {rϵR	exist	so	that, SϵR′:	|S| < r	}	of	 . Suppose T is complementary of S in  :

. According to the definition S consists of all the R-finite members of R′. Therefore the order in 

the structure , is dictionary order

. Because  is bounded 

and definable so the explanation of  in  includes . On the other hand every automorphism 

for the ordered vector space  naturally includes an automorphism 

 with the definition  for the ordered vector space

. 

  Proposition no.2 Assume that x indicates the mass of the function  and  then we have: 

(1)  If and only If . 

(2)   If and only If . 

(3)  If and only If  if and only if there exist  and  under 

the condition  so that . 

(4) If  and  then there exists  and  under the condition 

 so that . 

  Proof: (1) assume that  thus for every ,  so by choosing  
in the previous lemma, we will have:  

 So according to the note 2.2.4   

, so .  Inverse) assume  in this case

. So fro every  , we have . 
(2) Is done similar to (1) 

(3) According to parts (1) and (2) we have  if and only if  
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  To show the next claim in part (3), assume , then there exist  that 

, thus if we put then 

 and ,  Because  and 

therefore  and according to part (2) . 

  Inverse) assume there exist  and  under the condition , therefore we have 

 and thus . Since  then 

 where  as a result . 

(4) Since  then . According to previous part, 

 and  exist that  and

. Therefore  by setting  we have: 

 and . Because  then for every 

 as a result for big enough values of x we have 

 since , so for big enough values of x we 

have: so far big enough values of x: 

as a result . 
  Proportion no.3  has no poles if and only if  is eventually linear. 
  Proof:  Assume that V has no poles, we show that  is not eventually linear and definable function 

 is eventually nonlinear. We can assume that for big enough values of x, function f is eventually 
nonlinear and positive, (since  is O– minimal then according to monotonic theory, definable function f from one 
point on is either strictly positive or strictly negative. We have the following three conditions:  

(1)  , In this case , so , therefore  is a 

bijective between an unbounded definable interval and a bounded definable set. As a result  defines a pole in 
 which is contrary to the assumption, so  is eventually linear. 

(2) , In this case . In other words, . In 

this case according to (Miller, Sarchenko, 1998) the inverse function , is definable for big enough values of x 

and . As a result . So like the previous case  defines a pole which 
contradicts the assumption. 

(3) , according to proposition no.2, there exists definable function under the condition that u of 

the function is not zero (because otherwise, since , function f becomes eventually linear which is 

contrary to the assumption) and therefore we have: , then  and consequently  
defines a pole which contradicts the assumption. 
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  Inverse) assume that  is eventually linear. We show that  has no poles. 

  If  is eventually linear, then there exist , in which  is linear. If x goes to infinity then from 
linearity of function f, the value of this function becomes infinity too. So  has no pole. 

  Lemma.no1. assume that  is a normal m-cone and function 

 is definable and endomorphisms of  exist so that 

 . 

  In this case, for every cone , there exist endomorphisms of 

 so that 

  

Besides, if  then . 
  Proof: According to the lemma on the sub cones, for every  we have: 

; but according to the assumption, function f is linear along any 

endomorphisms of s and therefore the endomorphisms of  which each one of them is a proper 

linear combination of  s, exist so that:  

 
Besides, since every endomorphism of is written in the form of a linear combination of endomorphisms of

, so if  then . 

  Theorem no.7 [structural theorem] If  is an eventually linear O-minimal structure then: 

(1)  Every definable set  can be partitioned into a finite number of definable normal cones. 

 (2)  If the set  is definable and  are definable functions, then set X can be 
partitioned into a finite number of normal cones so that fro every cone like  and every

, there exists endomorphisms of  that: 

                        
  The proof for structure theorem, we prove rules (1) , (2)  using parallel inductive reasoning over n. Establishment 

of cases(1) , (2) , (1) , (2) , since  is O-minimal, are obvious.  
  One. (n ≥ 1)(2) , (1)

	
⇒ (2)  

  If we proof (2)  only for a function like f, then using lemma no.1, it can be obtained for k function using induction 
on k. 

  Now we proof (2)  for  using induction on .  If  then x is a 
bounded set, therefore the rule is established. 

  Assume that  and the rule is established fro every definable set Y in which

. Using (1)  and the induction assumption, without loosing universalization, we can 

consider X as a normal - cone like . 

  Assume that  is a definable base from  which includes

. Consider the linear monomorphism L for  which is defined as for
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, where  s are standard base vectors. It is obvious that if we prove the rule for 

-cone  then the result is also established for X. Therefore we can assume that X is in the form
. 

  Assume that  is the coordinate member of X and  is the image function 
over n-1 first coordinate. Also assume that: 

is a 
definable set on which the function f with respect to the last variable X  is locally linear. Assume that 

 are definable functions given in the form:          

 and .  These functions according to 
the definition of X and eventual according to the definition of X and eventual linearity of function f are well – 
defined. 

Two. Proof over  

  For every , there exists definable function  with the definition  and 

endomorphism of  so that for every  we have: . But 
will have: 

 

  we can partition  into a finite number of definable subsets so that on each and every one of them, the 

function  is constant. Assume  is one of these subsets and the function  on 
it, is equal to the constant valueλ. 
  Now we apply	(2) 	on	X = A, K = 1	and	f = cx. For convenience we show the function   by 
c.  

  Thus A is partitioned into a finite number of definable normal cones  (  is dependent 

on	A) so that corresponding to each one of them there exist endomorphisms of  that 

 so on  we have:  

                  
  Again using (2)  we can partition A into a finite number of normal cones so that if 

 is one of them then there exist endomorphisms of  that: 
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  Now according to lemma no.1 there exists endomorphisms  that on  we 
have: 

 
But 

 

  Where  is the graph of the function  and for every , , 

and	u = e . So  is K+1-cone . Thus we have:  

 
Where for every 1 ≤ i ≤ k, λ = ζ + λµ  and	λ = λ .  

  So the rule on  is established. 
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