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ABSTRACT 
 

In this paper, we present a new accurate and simple approach for the numerical solution of initial value problems 
with Caputo type fractional derivative of order 0>  . The method is based upon expanding fractional derivative 
of unknown solution in term of Jacobi polynomials. The properties of Jacobi polynomial are then utilized to reduce 
the fractional initial value problem to the solution of algebraic equations. Through several numerical examples, the 
accuracy and validity of the method are reported.  
Keywords: Fractional Calculus, Caputo fractional derivatives, Fractional initial value problem, Jacobi polynomials, 

Jacobi-Gauss quadrature. 
 

1. INTRODUCTION 
 

In this paper, we consider the fractional differential equation  
 0,>)),(,(=)()(  tytfty  

subject to the following initial conditions  
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0
)( pyy pp  

where f  is an arbitrary function, ][,0,=,)( py p  is the p -th derivative of y  and ][,0,=,)(
0 py p  are 

the special initial conditions. Furthermore )()( ty   is the Caputo type fractional derivative of order  , defined by  
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For more details on fractional derivative concepts and another definitions for the fractional derivative, see [17, 

23]. 
Fractional initial value problems (FIVPs) arise in some application areas. See for instance the fractional 

oscillation equation [19, 23], the linear and nonlinear fractional Bagley-Torvik equation [12], the Basset equation 
[11, 20], the fractional Lorenz system [3, 29], the fractional dynamical systems [13, 31], and etc. 

Several methods have recently been proposed to solve the FIVPs. In [22], Oturanc et al. gave an analytical 
method for fractional differential equation, Galeone [15] used the Adams multistep methods for FIVPs, In [4], 
Arikoglu et al. used differential transform method for FIVPs. As the other numerical approach to solve the fractional 
ordinary and partial differential equations, we refer to [10, 24, 26, 28, 7, 30, 21]. 

In this paper, by establishing a relationship between Jacobi polynomials and fractional derivatives, a unified 
method for solution of FIVPs is presented. The Jacobi polynomials have been used extensively in mathematical 
analysis and numerical solution of differential equations (cf. [6]). Our proposed methods are based on the 
approximation of unknown solution by using a n -term Jacobi polynomials expansion. Then properties of Jacobi 
polynomial and Jacobi-Gauss quadrature are utilized to reduce the FIVP to a system of algebraic equations. The 
main advantage of the presented method is that it gains efficient results even with using a small number of 
discretization parameter n . 
 
2. SOME PRELIMINARIES 

 
In this section, we briefly review the Jacobi polynomial and Jacobi-Gauss quadrature rule [6, 14, 16].  
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2.1 Jacobi Polynomials 
The well-known Jacobi polynomials 0,1,=,),( nP ba

n  are given explicitly by  
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where  
 1.=)(1),(1)(=)( 0akaaaa k    (2) 

These polynomials can be expressed equivalently by other explicit formula or by the Rodrigues formula [6, 14, 
16]. In practice, we can use the recurrence Bonnet's relation to generate Jacobi polynomials,  
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These expressions show that )(),( xP ba
n  are analytic functions of parameters a  and b . The classical Jacobi 

polynomials correspond to the parameters 1>, ba . For these parameters, the Jacobi polynomials are orthogonal 

on the canonical interval 1,1][  with respect to the weight function ba xx )(1)(1  . i.e.,  
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As a result, all the zeros of )(),( xP ba
n  are simple and belong to the interval 1,1)( .  

 
2.2 Jacobi-Gauss Points and Quadratures 

For a given positive integer n , we denote the Jacobi-Gauss points, with parameters a  and b , by n
i

ba
i 0=

),( }{ , 

which is the set of 1n  roots of )(),(
1 xP ba

n . 

The Jacobi-Gauss quadrature rule, with parameters a  and b , is based on Jacobi-Gauss points n
i

ba
i 0=

),( }{ , and can 

be used to approximate the integral of a function over the range 1,1][  with weight ba xx )(1)(1   as  
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where niba
i ,0,=,),(   are Jacobi-Gauss quadrature weights. The Jacobi-Gauss points and weights may be 

determined by accurate and stable methods [16]. Also it is well known that Jacobi-Gauss quadrature has degree of 
exactness 12 n , i.e. it is exact whenever )(xf  is a polynomial of degree equal or less than 12 n . 
 
3. The Present Method 

At first, we present the following theorem that has a key rule in our method.  
Theorem 3.1 For 0>  and <<0 x , we have  

4895 



J. Basic. Appl. Sci. Res., 2(5)4894-4902, 2012 

 

 1),2(=1)2( ,0)()(0, 






 



xPgxPx
dx
d

iii






 

where ni
i

igi ,0,=,
1)(

1)(= 

 

.  

  

Proof 3.1 By substituting 12= 


xt  in Eq.(1), we have  
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now by taking the Riemann-Liouville fractional derivative of order   of both side, we get  
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For sake of simplicity, we consider the case 2<<0  . Furthermore, the case 2  does not seem to be of 

major practical interest. However the presented method is simply extended for the case 2 . Indeed, we consider 
the following fractional initial value problem  

   ,<<0,)(,=)()( xxyxfxy   (5) 
 ,=(0) ay  (6) 
 ,=(0) by  (7) 

where the second initial condition (7) is for 1>  only. For 1 , we approximate )(xy  as  
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and for 2<1  , we approximate )(xy  by  
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Note that the approximation (8) satisfies initial condition (6) and the approximation (9) satisfies initial 
conditions (6) and (7). For summarizing the both cases, we set  
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In view of Theorem 3.1, we can approximate )()( xy   as  
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By substituting (10) and (11) in fractional ODE (5), we get  
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By applying transformation 1)(
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Now, in order to obtain high order accuracy, the integral term in above equation is approximated by using 
Jacobi Gauss quadrature (4) and we get  
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 . The above equations form a (nonlinear) system of algebraic equations. 

By solving it, we can find unknown coefficients nici ,0,=,   and the approximation (10) is followed. 
 
4. NUMERICAL ILLUSTRATION 

This section is devoted to the numerical experiments. We implemented the proposed method for numerical 
solution of FIVPs with Matlab in a personal computer. Meanwhile, we use Matlab routines provided by Gautschi 
[16] in our implementation to generate Jacobi-Gauss nodes and weights. 

Table. 1 lists some FIVPs, which are used as test examples in our simulations and reports. In this table, baE ,  is 
Mittag-Leffler function[23],  

 0.>,,
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, ba
bak

ttE
k

k
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

 

This function plays the same role in differential equations of fractional order which the exponential function 
te  plays in ordinary differential equations; in fact, tetE =)(1,1 . 

At first, we apply our method to Ex. 1, with 1.3= , 20=  and 2,4,6=n  and 30=n . The resulting 
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solutions and exact solution are plotted in Fig. 4.a. We see that, the presented method is provides accurate results 
even with using 6=n  . Also the error of obtained solution with 30=n  is plotted in Fig. 4.b. 
To explore the dependence of errors on the parameter n , we use the following notation  

 ,10000,1,=,
10000

=,)(~)(=
100001


 jjttytyMaxe jjnj

j
n 

��
 

and we plot ne  for Ex. 1 ( 1.8=  and 6= ), Ex. 2 ( 1.2=  and 1= ) and Ex. 3 ( 0.3= , 1= , 

100=c  and 10=k ) in Fig. 5. This figure shows that the presented method converges quickly. 
To make a comparison, we consider the four numerical methods [1, 10, 18, 25] which are investigated in [2]. In 
Tables. 2 and 3, the obtained results of these methods and our method, for Ex. 1 with 1.5=0.25,=   and 

6.4=  are reported. 
In final, we apply our method to Ex. 4, with 30=n  and ,1.8,20.2,0.4,=  . The results are plotted in Fig. 6. 

We mention that when 1=  and 2=  the exact solutions are  )()(1
2
1=)( xcosexxy x    and 

xexxy 2

2
1=)(  respectively. These exact solutions are highlighted in this figure. 

Also in Table. 4, the obtained values of )(~ xyn  in 1,2,3,4,5=x  with 10,50,100=n  are presented. 
Through this Table, the accuracy and convergence rate of presented method for Ex. 4 are shown. 

 

 
Figure 1: (left) Comparison between exact solution and obtained solutions by the present method for Ex. 1 with 2,4,6=n . 

(right) Plot of error )(~)( xyxy n  for 30=n . 

 
Figure 2: Error ne  as a function of discretization parameter n  for Examples 1-3. 
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Figure 3: Comparison of obtained solution of Ex. 4 by the present method with 3=n  for various values of   

 
Table 1: Some Fractional Initial Values Problems 
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[2, 27] 
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Ex. 3  
[8, 5]  
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Ex. 4  
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Initial Co.  
†0=(0)0,=(0) 'yy   

 Exa 
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No Exact Solution  
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Table 2: Comparison of errors between some numerical methods and our method at different x  for Ex. 1 with 
0.25=  

     Methods (with 1024)=0.00625(= nh )     Presented Method  

 x     Ref.[10]     Ref.[1]     ef.[18]    Ref.[25]     10=n     100=n   
 0.8   -5.01e-5   -2.76e-5   -3.29e-5   1.06e-3   -2.77e-4   -1.83e-6  
1.6    2.46e-5   -1.36e-5   -1.62e-5   5.34e-4    8.89e-4    2.36e-6  
2.4   -1.61e-5   -8.91e-6   -1.06e-5   3.58e-4   -6.48e-4    1.12e-7  
3.2   -1.19e-5   -6.58e-6   -7.83e-6   2.70e-4    4.35e-4    -7.88e-7  
4.0   -9.39e-6   -5.20e-6   -6.17e-6   2.17e-4   -1.71e-4   -1.37e-6  
4.8   -7.73e-6   -4.28e-6   -4.91e-6   1.82e-4    1.33e-4    3.35e-7  
5.6   -6.69e-6   -3.76e-6   -4.72e-6   1.57e-4  -5.58e-4    2.10e-6  
6.4   -9.55e-6   -7.02e-6   -7.25e-6   1.35e-4  -3.50e-3   -2.36e-5  

   
Table 3: Comparison of errors between some numerical methods and our method at different x  for Ex. 1 with 

1.5=  
     Methods (with 64)=0.1(= nh )     Presented Method  

 x     Ref.[10]     Ref.[1]    Ref.[18]    Ref.[23]     10=n      50=n   
0.8   3.53e-4   2.63e-5   3.57e-5   1.26e-6   -2.46e-5   -8.1011e-9  
1.6   1.77e-4   1.60e-5   2.84e-5   -2.53e-6   8.24e-6    -5.63e-9  
2.4   -1.96e-4   3.65e-6   1.19e-5   -5.67e-6   -1.19e-5    -7.88e-10  
3.2   -4.07e-4   -3.73e-6   -1.06e-6   -4.60e-6   1.50e-5    1.59e-9  
4.0   -3.58e-4   -5.52e-6   -6.89e-6   -2.75e-6   -1.81e-5    1.80e-9  
4.8   -1.55e-4   -3.98e-6   -6.92e-6   -8.23e-7   2.08e-5    -4.26e-10  
5.6   4.62e-4   -1.62e-6   -4.24e-6   1.86e-6   3.39e-6    2.10e-9  
6.4   1.50e-4   7.68e-8   -1.37e-6   3.47e-6   1.43e-4    1.83e-8  

 
Table 4: The resulting value of the presented method on Ex. 4 for )(~ xyn  in 1,2,3,4,5=x  with 10,50,100=n . 

 x    10=n    50=n    100=n   

 1=x   133757460 e1.5785   128 e551.57851662   169 e551.57851662   

2=x   130076501 e3.4147   12927 e3.41472659   10 e3073.41472659   

3=x   111163682 e3.2216   1932 e23.22163835   1e28763.22163835   

4=x   146621946 e1.8793   1407 e21.87937124   1e25201.87937124  

5=x   264972031 e6.2654   2201256 e6.264072   2534 e06.26407219   
 
5. CONCLUSION 
 

In the present work, a numerical procedure has been developed for obtaining the solution of fractional initial 
value problems. In this method the Jacobi polynomials were used to reduce the fractional initial value problem to a 
system of algebraic equations. The method is characterized by simplicity, efficiency and it is also readily 
implemented. By some numerical examples, we analyzed the accuracy and validity of the presented method through 
simulations. We believe that the presented method in this work can be extended to solve the multiterm fractional 
differential equations. 
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