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ABSTRACT 

 
This paper develops a mathematical model in dynamic virtual cellular manufacturing systems with the multi-
period cell formation problem, production planning, dynamic virtual system reconfiguration and training 
workers. Since workers have important role in doing jobs on machines, assignment of workers to cells becomes 
a crucial factor in cellular manufacturing system. Also we have shown the role of training in increasing workers' 
flexibility and efficiency of resources is leading to more production, decrees total costs, in all over planning. 
The advantages of the proposed model are consideration of multi-period planning horizons with demand and 
part mix variation, machine capacity, and available time of worker and worker assignment. The aim of the 
proposed model is to minimize the holding and backorder costs, and training costs of worker. Finally, to validate 
and verify the proposed model, computational results are presented by solving a number of numerical examples, 
with the linearized formulation. 
Keywords: Dynamic Virtual Cellular Manufacturing System (DVCMS), Worker Assignment, Training, 

Mathematical Programming. 
 

1. INTRODUCTION 
 
Group technology (GT) has emerged as a manufacturing strategy for controlling batch production. It 

identifies similarities among product designs and manufacturing processes throughout the manufacturing cycle. 
An application of GT known as cellular manufacturing (CM) is a production system in which similar parts are 
classified into part families and different machines are assigned into machine cells in order to utilize the cost-
effectiveness of mass production and flexibility of job shop manufacturing simultaneously. With increased 
global competition and shorter product life cycles, there has been a modification to demands for mid-volume 
and mid-variety product mixes. Job shops copes well with high product variety but does not provide adequate 
throughput with high product volumes. On the other hand, the flow lines enables fast product throughput when 
production volume is high but does not cope well with product variety because of the need for frequent set ups. 
CM have emerged to cope with such production necessities and have been implemented with approving results 
that it can merge the flexibility and variety, which are further important for any manufacturing industry.  

The benefits of CM identified by Wemmerlov and Hyer [25], Heragu [10], Selim et al. [21] and Mansouri 
et al. [14] include: decline in setup time, throughput time, diminish in work-in-process inventories, reduce in 
material handling costs, simplified flow of parts and tools, centralization of responsibility, enhances product 
quality and production control, increment in flexibility, etc. In most research works, CFP has been considered 
under static conditions in which cells are formed for a single time period with known and constant product mix 
and demand. To overcome these disadvantages, the concept of dynamic cellular manufacturing system is 
introduced [19]. In dynamic environment a multi-period planning horizon is considered where every one of 
period has different product mix and demand necessities. Therefore, the formed cells in a period may not be 
optimal and well-organized for the next period. 

To address this problem, several authors recently proposed models and solution procedures by considering 
dynamic cell reconfigurations over multiple time periods (e.g. [8]; [26]; [16]; [23, 24]; [3]; [9]; [11]; [20]). Most 
methods assumed that the production quantity is equal to demand in each planning period. In reality, however, 
production quantity may not equal the demand since it may be satisfied from inventory or by subcontracting. 
Production quantity should be determined based on production planning decisions in order to determine the 
number and type of machines to be installed in the system. By consideration of machine capacity, the production 
quantities in each planning period affect the number and type of machines to be installed in manufacturing cells. 
Balakrishnan and Cheng [3] presented a two-stage procedure based on the generalized machine assignment 
problem and dynamic programming for CFP under conditions of changing product demand. The aims were to 
minimize the material handling and machine relocation costs.  
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Defersha and Chen [9] designed a comprehensive mathematical programming model for CMS based on 
tooling requirements of the parts and tooling available on the machines, involves various aspects of 
manufacturing in addition to the CFP: dynamic cell configuration, alternative routings, lot splitting, sequence of 
operations, multiple units of identical machines, machine capacity, workload balancing among cells, operation 
cost, cost of subcontracting part processing, tool consumption cost, setup cost, cell size limits, and machine 
adjacency constraints. The non-linear mixed integer model is linearized by some linearization steps in order to 
obtain a mixed-integer linear problem and solve various scenarios. Also they developed heuristic methods to 
efficiently solve the proposed model for problems of larger sizes. Recently, Ahkioon et al. [1] developed a 
preliminary CM model that integrates several manufacturing attributes, considering multi-period planning, 
dynamic system reconfiguration, and production planning and alternate routings. 

A relatively new alternative configuration of production facilities has been considered in recent years, 
namely virtual cellular manufacturing systems (VCMS). Retaining the functional layout, virtual manufacturing 
cells (VMC) have been defined as a provisionally grouping of machines and jobs to appreciate the profit 
normally related with CM. The logical grouping of jobs and machines is based on a predefined logic, and it is 
only resident in the production control system. In other words, machines are not physically relocated into cells 
in VCMS. VMC are created periodically, for example every week or every month, depending on changes in 
volumes and mix of demand as new jobs is accumulated during a planning period. VCMS combines the 
robustness and flexibility of process orientation with the advantages of product orientation, and this is expected 
to appreciate approving throughput time performance. In so doing, it provides opportunities to progress 
performance in situations where a cellular layout is technically infeasible. An example of VCMS is shown in 
Fig. 1. The first study addressing the concept of VCM is McLean et al. [15]. Baykasoglu [4] proposed a 
simulated annealing algorithm for developing a distributed layout for virtual manufacturing cell. Slomp et al. 
[22] presented the procedure is based on interactive goal programming methods for the design of VCMS 
considering labor assignment and part-machine grouping. The advantages of the proposed model are 
minimization of intercell movements of parts, provision of flexibility, capacity constraints, cell size restrictions, 
minimization of load imbalances, etc. The models in the two stages can be applied to maximize the setup 
savings, to minimize the number of intercell movements, and to keep the machine coverage and multi-
functionality on a sufficient level.  

Nomden et al. [17] reviewed the previous publications on the area of VCM. This results in a complete 
framework which identifies the fundamental principles of VMCs and classifies the diverse VMC concepts. They 
show that VCM can appreciably improve the performance of manufacturing systems. Also they suggested 
several definitions of VCM offered by various researchers and addressed the prospective issues for future 
researches.  
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. A virtual manufacturing system. Reprinted by permission. Copyright 2002 INFORMS. Benjaafar et al. [5]. 
 
One of the main points in CM is considering human issues since ignoring this factor can considerably 

reduce benefits of the utility of the cell manufacturing. But unfortunately, “while cellular manufacturing is a 
popular research area, there is a singular absence of articles that deal with the human element in cellular 
manufacturing. Human issues include: Worker assignment, Communication, Describing worker roles, Skill 
identification, Training, Reward/Compensation system, Teamwork and Conflict management. However, as the 
model complexity extend, it is often impossible to solve integer programming (IP) workforce planning models 
within a reasonable amount of time. Numerous researchers have developed heuristic algorithms for solving 
these problems. In some of the previous research papers this issue is discussed, and according to their 
assignment strategies they can be divided into two categories, Post-cell formation worker and Simultaneous 
formation of cells and worker assignment. 

Norman et al. [18] developed a MIP model in manufacturing cells with worker assignment to maximize the 
profit. Bidanda et al. [6] studied an overview and evaluation of the diverse range of human issues concerned in 
CM based on an extensive literature review. Aryanezhad et al. [2] presented a new model to deal with dynamic 

Virtual cells 
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cell formation and worker assignment problem with considering part routing flexibility and machine flexibility 
and also promotion of workers from one skill level. Mahdavi et al. [13] presented a new mathematical model for 
CFP based on a three-dimensional machine-part-worker incidence matrix which demonstrates a cubic 
representation of assignment in cellular manufacturing system. Also, the new concept of exceptional elements 
(EEs) is discussed to show the interpretation of inter-cell movements of both workers and parts for processing 
on corresponding machines. The proposed method minimizes total number of EEs and voids in a cellular 
manufacturing system. Mahdavi et al. [12] presented a fuzzy goal programming-based approach for solving a 
multi-objective mathematical model of CFP and production planning in a dynamic VCMS. They considered the 
demand and part mix variation over a multi period planning horizon with worker flexibility.  

In this paper, we proposed a mathematical model for production planning in dynamic virtual environment 
with an extensive coverage of important manufacturing features consideration of multi-period planning horizons 
with demand and part mix variation, machine capacity, and the main constraints are demand satisfaction in all 
over period, machine availability, machine time-capacity, available time of worker and training. 
The remainder of the paper is organized as follows. In Section 2, a mathematical model integrating most of 
attributes of manufacturing for production planning is formulated. Also, linearization procedure is explained in 
this section. We present computational results in Section 3. Finally conclusions and further research is described 
in Section 4. 
 
2. Problem formulation 

In this section, a nonlinear programming mathematical model of CFP is presented based on dynamic VCMS 
with worker assignment. The objective is to minimize the sum of the penalty of deviation production volume 
from the desirable value of the part demand (holding and backorder costs) and training costs of workers. Main 
constraints are machine capacity, and available time of worker, production volume and training workers. Before 
presenting the model, it is necessary to state some assumptions which are as follows: 

 
2.1. Assumptions 

1. The processing time for all parts on each machine types with workers are known and deterministic. This 
time is independent of ability workers for processing on machines. 

2. The demand for each part type in each period is known and deterministic. 
3. The capacity and capability of each machine type is known and deterministic. 
4. The available time of each worker is known. 
5. There are several machines of each type with identical duplicates to satisfy capacity requirements. 
6. Holding and backorder inventories are allowed among periods with known costs. Thus, the demand for a 

part in a given period can be fulfilled in the preceding or succeeding periods. 
7. Only one worker is allotted for processing each part on each corresponding machine type. 
8. Training for each worker in each period is only on one machine type. 
9. Training for each worker on machine type is only one period. 
10. Training, which is done to promote workers to increment in flexibility, is performed between periods 

and it takes zero time. 
11. The productivity of experienced workers is assumed to be equal to 100%. 
12. The machines are accessible for using at the beginning of each period (time of erection is zero). 

 
2.2. Notations 
2.2.1. Subscripts 
P Number of part types 
W Number of worker types 
M Number of machine types 
C Number of cells 
H Number of periods 
i Index for part type (i=1,2,…P) 
w Index for worker (w=1, 2,…W) 
m Index for machine type (m=1, 2,…M) 
k Index for cell (k=1,2,…C) 
h Index for period (h=1,2,…H) 
 
2.2.2. Input parameters 
ABmwh 1 if worker w able to work on machine type m in period h; = 0 otherwise 
aim 1 if part i needs machine type m; = 0 otherwise 
LMk Minimum size of cell k in terms of the number of machine types 
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LPk Minimum size of cell k in terms of the number of parts 
LWk Minimum size of cell k in terms of the number of workers 
Nm Number of machines of type m 
RWwh Available time for worker w in period h 
RMmh Available time for machine m in period h 
timw Processing time of part i on machine type m with worker w 

interT  The time of movement each worker between cells 
Dih Demand of part i in period h 

ih  Unit holding cost of part i in period h 
ih  Unit backorder cost of part i in period h 

A An arbitrary big positive number 
 
2.2.3. Decision variables 
yikh 1 if part i is assigned to cell k in period h; =0 otherwise 
zwkh 1 if worker w is assigned for cell k in period h; =0 otherwise 
ximwkh 1 if part i is to be processed on machine type m with worker w in cell k in period h; =0 otherwise 
nmkh Number of machine type m allotted to cell k in period h 
TRmwh 1 If worker w to be trained on machine type m in period h; =0 otherwise 
Pih Number of part i to be produced in period h 
Iih Inventory of part i at the end of period h; Ii0=0 
Bih Backorder of part i in period h; Bi0=0 

mwh  Training cost of worker w on machine type m in period h 
 
2.3. Mathematical model 

1 1
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ih ih
h i
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The objective function given in Eq. (1, 2 and 3) is linear function. The objective function consists of several 

costs items as follows: 
(1) Holding cost: The first term is the sum of the product of the holding for each part type at the end of the 

given period and associated cost. 
(2) Backorder cost: The second term is the sum of the product of the backorder for each part type at the end of 

the given period and associated cost. 
(3) Training cost: This cost is incurred when some workers have to be trained to improve their abilities to 

operate other machine. This cost is calculated based on the cost of training per each worker and the number 
of workers who are trained. 

Constraints (4) and (5) ensure that the available time for workers and machines in each period are not 
exceeded, respectively, especially when the worker moves between cells. It should be noted that the available 
time for workers’ movements includes two Tinter (go and return time). Constraint (6) balances the amount of part 
i between two consecutive periods. In other words, if 0ihI   then we have surplus inventory which results in 
holding cost, if 0ihB   it implies shortage inventory and lead to backorder cost. Constraint (7) implies that only 
one worker is allotted for processing each part on each machine type. This model is flexible to enable a worker 
to work on several machines. This means that, if one part is to be processed on a machine type, more than one 
worker would be able to service this machine type. Constraint (8) ensures that if Pih=0 then no machine, worker 
and cell are considered for part i in period h.  Constraint (9) ensures that each part is either assigned to only one 
cell or is not assigned to any cell in period h. Constraints (10) and (11) guarantee that training for each worker in 
each period is only on one machine type and also training for each worker on machine type is only one period. 
Equation (12) guarantees that while worker type w training on machine type m, hence it worker ability to 
process on this machine type. Equation (13) ensures that each part is assigned to only one cell when its 
production is planned for period h. Equation (14) guarantees that each worker will be assigned to only one cell. 
Constraint (15) guarantees that the total number of machines of each type assigned to different cells in each 
period will not exceed the total available number of machines of that type. Constraint (16) specifies the lower 
bound for the number of machines that can be allocated to each cell. Constraint (17) keeps the lower bound for 
the number of parts assignable to each cell. Constraint (18) ensures that at least LWk workers will be assigned to 
cell k. Constraints (19) and (20) specify that decision variables are binary or positive integer. 
 
2.4. Linearization of the proposed model 

Constraints (4), (5), (12) and (13) of the proposed model are non-linear. We need to introduce auxiliary 
variables to replace these nonlinear terms with additional constraints. The required new variables can be defined 
by the following equations. 

imwkh imwkh ihJ x P   

imwkh wkh imwkhE z J                                                                                                                                        
By considering these equations, following constraints should be added to the mathematical model: 

( 1)imwkh imwkh ihJ A x P    , , , , ;i m w k h  (21) 
( 1)imwkh imwkh ihJ A x P    , , , , ;i m w k h  (22) 
( )imwkh imwkhJ A x  , , , , ;i m w k h  (23) 
( 1)imwkh wkh imwkhE A z J    , , , , ;i m w k h  (24) 

5092 



Nikoofarid and Aalaei, 2012 

( 1)imwkh wkh imwkhE A z J    , , , , ;i m w k h  (25) 
( )imwkh wkhE A z  , , , , ;i m w k h  (26) 

, 0imwkh imwkhJ E   , , , , ;i m w k h  (27) 
Therefore, the linear mathematical programming is as follows: 
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The number of variables and constraints in the linearized model are presented in Table 1 and 2 respectively, 
based on the variable indices. 

 
Table1. The number of variables in the linearized model 

Count Variable Count Variable 
P× H Iih   P×C×H yikh 

P×M×W×C×H Jimwkh W×C×H zwkh 

P×M×W×C×H Eimwkh P×M×W×C×H ximwkh 

M×W× H ABmwh M×C×H nmkh 

M×W× H TRmwh P× H Pih 

  P× H Bih 

Sum= 3(P×M×W×C×H) + (M×C×H ) + ( P×C×H ) + ( W×C×H ) + 2(M×W× H) + 3(P× H ) 
 

Table2. The number of constraints in the linearized model 
Count Con. Count Con. Count Con. 

P×M×W×C×H (25) C×H (16) P× H (6) 
P×M×W×C×H (26) C×H (17) P×M×W ×H (7) 

2×P×M×W×C×H (27) C×H (18) P×M ×H (8) 
W ×H (28) C×H× [P× M×W+ P+W ]+2(M×W× H) (19) C×H (9) 

M ×C×H (29) H [(M×C)+(3× P) ] (20) M×W (10) 
P ×H (30) P×M×W×C×H (21) W× H (11) 
P ×H (31) P×M×W×C×H (22) M×W× H (12) 
P ×H (32) P×M×W×C×H (23) W ×H (14) 

  P×M×W×C×H (24) M ×H (15) 
Sum=9(P×M×W×C×H) + 2(M×C×H) + 1(P×C×H) + 1(W×C×H) + 7(P× H) + 3(M×W× H) + 4(C×H) + 3(W×H) + ( P×M×W ×H) + ( 

P×M ×H ) + ( M×W) + ( M ×H) 
 
3. Computational results  

To illustrate validity of the proposed model, one example has been solved by branch and bound (B&B) 
method under CPLEX software package, which is executed on a Pentium 4, 5.2 GHz Windows XP using 3 GB 
of RAM. 
Example. This example includes two cases, three cells, three machines types, six parts and four workers. The 
case 1 is with training workers and case 2 without training workers. The available time for both worker and 
machine in each period is 200 hours. The time of movement between cells for each worker is 0.1 hour. The 
processing time is presented in Table 3. Moreover, the number of available machine types 1, 2 and 3; are 2, 1 
and 2, respectively. The data set related to the machine-part and machine-worker incidence matrices are shown 
in Tables 4 and 5, respectively. For example, as seen in Table 4, machine types 2 and 3 are required for part type 
3. Table 5 indicates capabilities of workers in working with different machines. For example, worker 1 is able to 
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work with machine types 1 and 3. Thus, the term mwhw
AB  is equal to the number of alternative workers for 

processing part type i on machine type m. Also, the quantity of demands, holding and backorder costs per part 
unit in each period are represented in Table 6. Moreover, the minimum size of each cell in terms of the number 
of machines, parts and workers are 1, 2 and 1, respectively. Tables 7 and 8 show the results of this example for 
two cases. Table 7 indicates the assignment of parts, workers with duplicate of machines in different cells and 
training worker 4, 1 and 2 on machine 1, 2 and 3, respectively in period 2. Moreover, it shows worker 2 is 
assigned in cell 1, and worker 1 is assigned in cell 2, and workers 3, 4 are assigned in cell 3 in period 1 in case 
1. Also machines type 1 and 3 are duplicated in cell 1 and 2, cell 2 and 3, respectively. Table 8 presented the 
allotment of worker for each part, in cell for work on corresponding machine. For instance, part 3 shall process 
with machine 2 (see Table 4) and workers 3 and 4 capability of working to this machine (see Table 5) which this 
operation in period 1 in case 1 is executed by worker 3 in cell3 (see Table 8). The volume of products and 
objective function value including holding cost and backorder cost are indicated in Table 8.  As can be seen, the 
demand for part 4 in period 1 in case 1 and 2 is 350. But, 183 units of this part are produced in period 1 and 517 
units are produced in period 2. It means that to satisfy the demand of 167 units of part 4 in period 2, the required 
units are produced in period 1, which causes holding cost for part 3. Also, it can be seen that backorder cost for 
case 1 is 41852 and holding cost is 500, and the total cost is 43852. But, backorder cost for case 2 is 184980 and 
holding cost is 1420, and the total cost is 186400. In fact, in this example shown the role of training in 
increasing workers' flexibility and efficiency of resources is leading to more production, decrees total costs, in 
all over planning. For more understanding, the reconfiguration of this example in case 1 is given in Figure 2. In 
this Figure, Structural changes in the virtual cell in a way that shows no physical changes resources (machines 
and workers), but only changes the cell boundaries as a virtual cell structure and the period has changed the case 
to demand changes in response to different periods does. 
 

Table3. The processing time (hrs.)  
 Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 

      worker 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

M1 .2 .3 .2 .1 .3 .4 .2 .1 - - - - .2 .3 .2 .1 .3 .4 .2 .2 - - - - 

M2 - - - - .2 .2 .4 .3 .1 .2 .2 .3 .1 .2 .3 .4 - - - - .1 .3 .2 .4 

M3 .3 .2 .3 .2 - - - - .4 .1 .3 .2 - - - - .3 .1 .2 .2 .4 .2 .3 .1 

 
Table 4. The input data of  Machine -Part incidence 

matrix  
 Machines 

 1 2 3 

Pa
rt

s 

1 1 0 1 

2 1 1 0 

3 0 1 1 

4 1 1 0 

5 1 0 1 

6 0 1 1 
 

Table 5. The input data of  Machine -Worker 
incidence matrix in period 1 

 
 Workers 

 M
ac

hi
ne

s 

 1 2 3 4 
1 1 1 0 0 

2 0 0 1 1 

3 1 0 1 0 
 

 
Table6. The quantity of demands, holding and backorder cost of each parts in periods 

 Period 1 Period 2 Period 3 
 Dih ih  

ih  Dih ih  
ih  Dih ih  

ih  

Part 1 200 10 60 950 10 60 400 10 60 
Part 2 250 20 50 500 20 50 500 20 50 
Part 3 250 30 50 250 30 50 300 30 50 
Part 4 350 40 40 350 40 40 200 40 40 
Part 5 350 50 40 200 50 40 200 50 40 

Part 6 400 60 40 200 60 40 400 60 40 
 

4. Conclusions 
 
In this paper, a new mathematical model is presented for cell formation problem which considering for 

production planning in a dynamic virtual cellular manufacturing system with worker flexibility. The proposed 
model minimizes holding, backorder costs and training costs of workers. Generally, training leads to acquiring 
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new skills and/or improvements in existing skills. These, in turn, lead to two different economic advantages: (1) 
improvements in personality choices and incomes, and (2) cost savings for the organization. Economic 
advantages of training for organizations contain important improvements in productivity (through improvements 
in quality, decrease in scrap and waste, reduction in throughput time, greater flexibility to respond to needs, 
etc.), and a competitive advantage of employers and the state as a whole [7]. 

 
Table7. The results of parts, machines and workers assignment to cells by the proposed model in two cases 

  Parts assigned to Machines in Workers assigned to TRmwh=1 
mwh  

Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 

C
as

e 
1 

Period 1 3,4 1,2 5,6 1 1,3 2,3 2 1 3,4   

Period 2 3,4 1,2 5,6 1,1,3 3 2 2,4 3 1 

(1,4,2) 500 

(2,1,2) 500 

(3,2,2) 500 

Period 3 3,4 1,2 5,6 2 1 1,3,3 1,3 4 2 Total cost   1500 

C
as

e 
2 Period 1 1,3 2,6 4,5 2,3 1 1,3 3,4 2 1   

Period 2 1,3 2,6 4,5 1,3 1,2 3 1 2,4 3   

Period 3 1,2 3,4 5,6 1,3,3 2 1 1,3 4 2  

 
Table8. The solution obtained by the proposed model in two cases 

   Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 

C
as

e 
1 

Pe
ri

od
1 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1 2    2         1    1       

2        3   3     3       3  

3 2          3        3    3  

V.Product 250 250 250 183 350 10 

Pe
ri

od
2 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1    1    1        1    1     

2     3    3    3        3    

3  1        1         2    2  

V.Product 875 329 250 517 139 574 

Pe
ri

od
3 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1    2    2        2    2     

2     1    1    1        1    

3  3         3a       3    3   

V.Product 425 542 300 200 261 416 

C
as

e 
2 

Pe
ri

od
1 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1 3     2       3     2       

2        1    1    1       1  

3 3          1        1    1  

V.Product 342 150 250 145 350 112 

Pe
ri

od
2 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1 1     2       1    1        

2        2    2    2        2 

3   3      1        1    1    

V.Product 667 500 163 0 0 0 

Pe
ri

od
3 

Machines w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 

1 1     3       1    1        

2        2    2    2       2 a  

3   1      1          1    1  

V.Product 541 500 46 91 185 0 
a The worker movement between cells 
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Fig. 2. Cell reconfiguration schema in each period for this example in case 1 
 

We have shown the role of training in increasing workers flexibility and efficiency of resources is leading 
to more production, decrees total costs, in all over planning. Also in this article, the role and function of 
dynamic virtual cellular manufacturing systems addresses so that no physical changes in the system resources 
available only with the virtual cell boundaries change to meet the demand values in different periods can be. 
Numerical examples included in the paper show validity of the proposed model.  

An attractive future research trend is to investigate work on other heuristic solution methods or other 
stochastic algorithms and meta-heuristic algorithms for solving the real size of industrial instances. Furthermore 
it would be appropriate to consider the problem studied here with the addition of some other assumptions like 
ability of workers for work as a team and the role of manpower in producing more quality of products. 
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