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ABSTRACT 

 
This article presents a new mathematical model for an identical parallel-machines scheduling problem with 
preemptive jobs in a just-in-time (JIT) environment that minimizes Earliness/Tardiness (E/T) penalties. In ordinary 
in non-preemptive problems, E/T penalties are a function of the completion time of all the jobs. However, we initiate 
a preemptive scheduling model where the earliness penalty depends on the start time of a job. The model is 
linearized by an elaborately–designed procedure to reach the optimum solution. To validate and verify the 
performance of proposed model, computational results are presented by solving a number of numerical examples. 
Keywords: Identical parallel-machines scheduling; Earliness/Tardiness; Just-in-time; Preemption.  
 

1. INTRODUCTION 
 

In the single machine scheduling problem with E/T, a set of jobs, each with an associated due date, has to be 
scheduled on a single machine. Each job has a penalty per unit time associated with completing before its due date, 
and a penalty per unit time associated with completing after its due date. Many researches has been extensively done 
in the recent years to minimize the weighted number of early and tardy jobs in single machine scheduling problem 
(Davis and Kanet [5]; Hoogeveen and Van De Velde [12]; Wan and Yen [23]; Sourd and Kedad-Sidhoum [20]; Luo 
et al. [16]; Hendel and Sourd [9]; Esteve et al. [7]; Liao and Cheng [15]). Just-in-time scheduling problems form a 
well-studied class of multi-criteria scheduling problems. Indeed, these problems with earliness penalties are very 
useful to represent practical problems, in which perishable goods should be delivered or storage costs cannot be 
disregarded. Most of these problems are based on tardiness, Ti, and earliness, Ei, computed by: Ti = max(0, Ci - di), 
Ei = max(0, di - Ci), where, Ci and di denote the completion time and due date of job i, respectively. Clearly, a job 
cannot have a positive tardiness and a positive earliness simultaneously (i.e., a job is either tardy or early). 
Moreover, earliness and tardiness are often comparable in terms of costs (or penalties) induced by a delivery that is 
not on time. Therefore, these two criteria are often aggregated into a single criterion, which is called the weighted 
deviation of the job with respect to its due date, computed by: f = (αi×Ei + βi×Ti), where, αi and βi are the unit cost 
of tardiness and earliness of job i, respectively. Interestingly, the above function can be generalized to express more 
complex combinations of contradicting criteria and soft or hard constraints on the date a customer should be 
delivered.  

In this paper, we consider the scheduling problem preemptively by n jobs on m parallel identical machines in a 
JIT environment. In non-preemptive problems, earliness-tardiness costs are related to the job completion time. It 
means that a tardiness (or earliness) penalty is due if the job completes after (or before) its due date. Allowing 
preemption, we can interrupt the job and process another job, and then continue the previous job. With preemptive 
jobs, there is a chance to remove the machine idle time by occupying with other interrupted jobs. On the other hand, 
taking some jobs' processing time too long and consequently assigning the earliness-tardiness penalty is the 
difficulty of preemptive jobs. Many researches in minimizing the weighted number of early and tardy jobs are 
carried out in the literature. Runge and Sourd [19] addressed a new model for the single machine E/T scheduling 
problem where preemption is allowed. In this model presented interruption costs are based on the work-in-process 
(WIP) of the job. The WIP costs are based on the differences among the start and completion times of the jobs. This 
model developed two main advantages over an existing model HS presented by Hendel and Sourd [10]. Primary, HS 
does not penalize interruption in all cases. And the next advantage is that liberty among the E/T and the WIP costs 
allows them to design a new timing algorithm with a better time complexity. Also they discussed for several 
dominance rules and the particular case of the scheduling problem around a common due date. Furthermore, 
investigated the lower bound for the timing algorithm and shown that a local search algorithm based on their new 
timing algorithm is sooner than an alike local search algorithm that uses the timing algorithm proposed by Hendel 
and Sourd [10] has been considered. Hendel et al. [8] considered a single-machine E/T scheduling problem with 
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preemption, in which each job has two due dates instead of one; one deals with the start time and the other related to 
completion time of jobs. They investigated a new single machine scheduling problem with earliness and tardiness to 
capture the just-in-time philosophy, where the earliness costs depend on the start times of the jobs and tardiness 
costs depend on completion times. They also applied an efficient representation of dominant schedules and 
introduce a polynomial algorithm to compute the best schedule for a given representation. By using local search 
algorithm and a branch-and-bound (B&B) procedure, the authors showed there is a very small gap between their 
results and optimum solutions. Wan and Yen [22] considered a single machine scheduling problem to minimize the 
total weighted earliness with the minimum number of tardy jobs. They proposed a heuristic and a B&B algorithm 
and compared these two algorithms for different size problems. Nowicki and Zdrzalka [18] studied on a bi-criteria 
approach for an m parallel identical machines scheduling problem with n preemptive jobs. The completion time and 
processing cost were two objectives of this problem. In the case of identical machines, a greedy algorithm was 
proposed to solve a problem of least processing cost under the limited completion time. Djellab [6] considered m 
parallel uniform machine scheduling problems to complete n preemptive jobs at a later time in order to minimize the 
makespan. They developed two new heuristics, superior interval order (SUPIO) and inferior interval order (INFIO), 
to find upper and lower bounds to the makespan, respectively. Chen and Powell [4] studied on Dantzig-Wolfe exact 
decomposition algorithm for the problem of scheduling n jobs on m identical parallel machines that minimizes the 
total weighted E/T with an unrestrictively large common due date. A branch-and-bound algorithm is established for 
the problem as a set partitioning one, in which each node is the linear relaxation problem of a set partitioning 
problem with side constraints in the branch-and-bound tree. Their investigated decomposition algorithm is suitable 
just for problems with up to 60 jobs in a reasonable CPU time. Xing and Zhang [24] considered a parallel machine 
scheduling problems, in which jobs may be split arbitrarily to continuous sublots. They solved a number of simple 
cases with independent-job setup times in a polynomial time, and furthermore presented a heuristic method to 
minimize the makespan. Hiraishi et al. [11] surveyed a machines scheduling problem with n non-preemptively jobs 
on m uniform parallel machines to maximize the weighted number of jobs completed exactly at their due dates. They 
solved this problem in a polynomial time with positive setup times. Azizoglu [1] considered the problem of 
scheduling n preemptive jobs with deadlines on m identical parallel machines, in which the objective function is to 
minimize total completion time. They investigated a polynomial time algorithm for their problem with agreeable 
deadline for each job and when preemption is allowed. A scheduling problem on uniform parallel machines 
minimizing the number of JIT jobs was analyzed by Cepek and Sung [3], in which a processing time and a due date 
are given for each job. But they called a job is JIT if it is exactly completed on its due date. Lushchakova [17] 
surveyed on a scheduling problem with two uniform parallel machines and n preemptive jobs to minimize the mean 
flowtime where a job becomes available for processing with a given release date, and all the jobs have equivalent 
processing times. Biskup et al. [2] investigated the problem of scheduling jobs on a specified number of uniform 
parallel machines to minimize the total tardiness. They presented three algorithms that are general enough for 
solving numerous problems for finding optimal or near-optimal solutions to minimize the total tardiness. 
Kravchenko and Werner [13] developed a linear programming model for parallel machines scheduling problems that 
is solved by a polynomial algorithm. This algorithm transforms a solution of the given problem to an optimal 
solution. Kravchenko and Werner [14] worked on a preemptive parallel identical machines scheduling problem that 
minimizes the sum of completion times and presented a polynomial algorithm. Sun and Li [21] presented a problem 
of processing a set of n jobs on two identical parallel machines where preemptive jobs are not allowed and machine 
maintenance must be done periodically. They proposed two approaches minimizing the makespan and the 
completion time, respectively. 

The rest of this paper is as follows. Section 3 discusses the problem definition, presentation of mathematical 
nonlinear programming, and its linearization process. The linearization procedure and the linearized model are 
presented in Section 4. Section 5 shows the numerical examples to validate and verify the performance of proposed 
model. Finally, conclusion is given in Section 6. 

 
1. Problem formulation 

This section presents a new mathematical model for a parallel machines scheduling problem with preemptive 
jobs in a JIT environment that minimizes the total tardiness-earliness penalties. Then, we linearize this nonlinear 
programming model. 

Consider a non-preemptive parallel machine scheduling problem with N jobs on M parallel identical machines. 
Associated with each job i , i = 1, . . . , N, are several parameters: Pi , the processing time for job i ; Di

c , the due date 
for job i ; i , the tardiness cost per unit time if job i completes processing after Di

c ; and earliness costs as Ei = 
max(0, Di

s - Si ) ; Si where is the start time of job i ; and Di
s= Di

c- Pi+1 is the ideal start time for job i (that is the 
target start time); and i , the earliness cost per unit time if job i starts processing before Di

s . We assume that the 
processing times, start times and due dates are integers.  
The following assumptions are considered in the presented model.  
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3.1. Assumptions 
 Processing times for all jobs are known and deterministic. 
 No job can be processed on more than one machine simultaneously and any machine can process any job. 
 Each machine can process only one job at a time and Preemption of jobs is allowable. 
 All machines are identical and a job can be processed by any free machine. 
 Completing jobs earlier than due dates are impossible. 
 Transportation time between machines is negligible. 
 Work-in-process inventory is allowed and its associated costs are negligible. 
 Machine setup time is negligible and Machines are available throughout the scheduling period (i.e., no 

breakdown). 
3.2. Notations 
3.2.1. Subscripts 
N Number of jobs  
J Number of positions 
M Number of machines  
i Index for job (i=1,2,…,N) 
j Index for position (j=1, 2,…,J) 
m Index for machine (m=1, 2,…,M) 
3.2.2. Input parameters 
Pi Processing time of job i  
Di

c Ideal completion time (or due-date) of job i 
i  Unit earliness penalty of job i 
i  Unit tardiness penalty of job i 

A An arbitrary big positive number 
3.2.3. Decision variables 
Ci Completion time of job i 
Di

s Ideal start time for job i 
Ximj 1 if job i on machine m in position j; otherwise, it is zero. 
Ei Earliness of job i 
Ti Tardiness of job i 
Si Starting time of job i 
 
3.3. Mathematical model 

1

min ( )
N

i i i i
i

E T 



 

    (1) 

     Subject to: 

1 1

M J

imj i
m j

X P
 


                                                         

;i
             

(2) 

1

1
N

imj
i

X



                                                            

, ;m j
 

(3) 

1

1
M

imj
m

X



                                                              

, ;i j
 

(4) 

c
i i iT C D 

                                                                 
;i  (5) 

s
i i iE D S 

                                                                
;i  (6) 

max [max ( )]i m j imjC j X 
                                      

;i
 

(7)  
 

min [min [ (1 )]]i m j imjS j A X  
                             

;i
 

(8) 
 0,1imjX 

                                                        
, , ;i m j

 
(9) 

5171 



 

Nikoofarid et al., 2012 

C1 

,T Ei i
¥

                                                                 
;i
 

(10) 
The objective is to minimize the total weighted earliness and tardiness cost for all jabs. The constraints ensure 

that jobs start at or after their respective ready times and that jobs do not overlap. 
Equality (2) guarantees that the number of positions of all machines in which job i is processed is equal to the 
processing time of job i. Inequality (3) necessitates that in position j on machine m only one job can be processed 
and Inequality (4) ensure that job i in position j only one machine can be processed. The tardiness and earliness of 
each job are calculated by Constraints (5) and (6). Equation (7) and (8) presents the completion time and start time 
of each job. Constraints (9) and (10) provide the logical binary and non-negativity integer necessities for the 
decision variables. 
 
 
                           
 
                
               1                                               6                                                            
Figure 1. Earliness and Tardiness cost  

 
Figure 1 shows an example to illustrate the calculation way of earliness and tardiness in the first component of 

objective function and related constraints (4) and (5). As we can see, the completion time of job 1 (C1) happens after 
its due date (D1

c). As a result, tardiness of job 1 happens and its value is equal to T1 = C1 - D1
c. Also, the starting 

time of job 1 (S1) happens before its ideal starting time (D1
s). Therefore, earliness of job 1 happens and its value is 

equal to E1 = D1
s - S1. The cost resulted from E/T is obtained by product unitary E/T penalty and the related E/T 

quantities.  
 

3. Linearization of the proposed model 
In this section, we present the linearization procedure and the linearized model. 
3.1. Linearization procedure 

The linearization procedure that we propose here consists of two steps that are given by the two propositions 
stated below. Constraints (7) and (8) are non-linear, therefore, these two terms will be linearized using the following 
auxiliary variables Gij, Qij, Rij, Fij and Bij. Each proposition for linearization is followed by a proof that illustrates the 
meaning of each auxiliary (linearization) variable and additional constraints. 
Proposition1. The non-linear constraint (7) can be linearized by the following transformation 

max max( . )m imj iJj
X j Q    

, under the following sets of constraints: 

1 1
1

; (11.1)
M

i im
m

Q X i


   

1
1 1

.(1 ) ( . ) , ; (11.2)
M M

ij ij imj imj
m m

Q Q X j X i j
 

      

Proof. Consider the following two sections: 

(i) In term max max( . )m imjj
X j 

  
, we find the final position of process for job i, thus in constraint (11.2), 

when for the final position, for example position j, 
1

1imj
m

X


 , then Qij takes value j and for the following 

positions which are larger than j, 
1

imj
m

X

 s take value 0, then Qij finally turns value j which implies the final 

position of process in constraint (11.2). 
(ii) The non-linear constraint (11.2) can be linearized by the following 

transformations 1
1

.
M

ij imj ij
m

Q X R


 and
1

.
M

imj ij
m

j X F


 , under the following sets of constraints: 

1
1

(1 ) , ; (11.3)
M

ij ij imj
m

R Q A X i j


     

I1 I1   

Position 

I1 
D1 

T1=C1 -D1
c E1= D1

S -S1 

S1 D1
S 
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1
1

(1 ) , ; (11.4)
M

ij ij imj
m

R Q A X i j


   
 

1

. , ; (11.5)
M

ij imj
m

R A X i j


   

And 

1

1

1

(1 ) , ; (11.6)

(1 ) , ; (11.7)

. , ; (11.8)

M

ij imj
m
M

ij imj
m

M

ij imj
m

F j A X i j

F j A X i j

F A X i j







   

   

 







 

This section can be shown for each of the two possible cases that can arise.                                 

1. 
1

M

imj
m

X

  . Qij-1 = Qij-1.   , ;i j  

Such a situation arises when 
1

imj
m

X

  = 1 so, constraints (11.3) and (11.4) implies Rij ≤ Qij-1 and Rij  ≥ Qij-1 and 

ensures that Rij = Qij-1. 
2. 

1
imj

m

X

  .Qij-1 = 0. Such a situation arises under one of the following three sub-cases:  

(a)  
1

imj
m

X

  = 1 and Qij-1 = 0.   , ;i j  

(b)  
1

imj
m

X

  = 0 and Qij-1 > 0.   , ;i j   

(c)  
1

imj
m

X

  = 0 and Qij-1 = 0.   , ;i j   

In all of the three sub-cases given above, Rij takes the value of 0, because in these cases, constraint (11.5) 
implies Rij ≤ 0 and ensures that Rij = 0. Because Rij has not a strictly positive cost coefficient, the minimizing 
objective function doesn’t ensures that Rij = 0. Thus, constraint (11.5) should be added to the mathematical model. 
The performance of constraints (11.6) - (11.8) is similar to constraints’ (11.3) and (11.5). 
Proposition2. The non-linear constraint (8) can be linearized by adding the following set of constraints: 

1 1
1

1 1
1

1

; (12.1)

(1 ). , ; (13.2)

1 ; (13.3)

M

i im
m

M

ij ij ij imj
m

J

i ij
j

B X i

B B B X i j

S J B i



 




 

   

   







 

Proof. Consider the following two sections: 

(i) In term min min (1 )i m imjj
S j A X       

, we find the first position of process for job i. In constraint 

(12.2), when for the first position, for example position  j, 
1

imj
m

X

  = 1, then Bij takes value 1 and since for the 

following positions which are larger than j, Bijs take value 1, then the summation of Bijs implies the number of 
positions where job i is    work-in-process. Thus Si returns the first position number in constraint (12.3). 
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(ii) The non-linear constraint (12.2) can be linearized by the following transformation 1
1

.
M

ij imj ij
m

B X G


 , 

under the following sets of constraints: 
 

1
1

(1 ) , ; (12.5)
M

ij ij imj
m

G B A X i j


     

1

. , ; (12.6)
M

ij imj
m

G A X i j


   

Thus, constraints (12.1) - (12.6) should be added to the mathematical model. The performance of constraints (12.4) - 
(12.6) is similar to constraints’ (11.3) - (11.5). 
3.2. The linearized model 
We now present the linear mathematical model as follows: 
min (1.1)z    
Subject to: 
(2), (3), (4), (5), (6), (9), (10)   

1ij ij ij ijQ Q R F  
 , ;i j  (7) 

1ij ij ij ijB B X G    , ;i j  (8) 
1

1 1
1

M

i im
m

Q X




  ;i  (11.1) 

i iJC Q  ;i  (11.2) 

1
1

(1 )
M

ij ij imj
m

R Q A X


    , ;i j  (11.3) 

1
1

(1 )
M

ij ij imj
m

R Q A X


    , ;i j  (11.4) 

1

.
M

ij imj
m

R A X


   , ;i j  (11.5) 

1

(1 )
M

ij imj
m

F j A X


    , ;i j  (11.6) 

1

(1 )
M

ij imj
m

F j A X


    , ;i j  (11.7) 

1

.
M

ij imj
m

F A X


   , ;i j  (11.8) 

1
1

M

i imj
m

B X


  ;i  (12.1) 

1
1

M

ij ij imj ij
m

B B X G


    , ;i j  (12.2) 

1

1
J

i ij
j

S J B


    ;i  (12.3) 

1
1

(1 )
M

ij ij imj
m

G B A X

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1
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(1 ) , ; (12.4)
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
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1
1

(1 )
M

ij ij imj
m

G B A X


    , ;i j  (12.5) 

1

.
M

ij imj
m

G A X


   , ;i j  (12.6) 

1 (1 )ij ij ijR Q A X    , ;i j  (12.4) 
, , , , 0ij ij ij ij ijG B F Q R   , ;i j  (13) 
The number of variables and constraints in the linearized model are presented parametrically in Tables 1 and 2 

respectively, based on the variable indices. 
 

Table1. The number of variables in the linearized model 
Count Variable Count Variable Count Variable 
N×J Rij N×J Qij N× M× J Ximj 

N×J Gij N×J Fij N Ti 

  N×J Bij N Ei 

Sum= (N×M×J) + 2 (N) +5 (N×J) 
 

Table2. The number of constraints in the linearized model 
Count Con. Count Con. Count Con. 
N×J (11.8) 2×N (10) N (2) 

N (12.1) N (11.1) M×J (3) 
N×J (12.2) N (11.2) N× J (4) 

N (12.3) N ×J (11.3) N (5) 
N×J (12.4) N ×J (11.4) N (6) 
N×J (12.5) N ×J (11.5) N× J (7) 
N×J (12.6) N× J (11.6) N× J (8) 

5×N×J (13) N ×J (11.7) N×M×J (9) 
Sum=(N×M×J) + 18(N ×J) + (M×J) + 9(N) 

 
4. Computational results 

To validate the proposed model and illustrate its various features, numerical example with randomly generated 
data is solved by branch and bound (B&B) method under Lingo 11.0 software on an Intel® CoreTM2.4 GHz 
Personal Computer with 4 GB RAM.  This example includes three machines and seven jobs. The information related 
to the example is given in Table 3. Table 3 presents the value of the parameters for each job and contains processing 
time, due-date and penalty of E/T. 

 
Table3. Job information 

Job number Processing Time Due date Ideal Start Time Earliness Penalty Tardiness Penalty 
1 3 6 4 80$ 60$ 
2 3 5 3 60$ 40$ 
3 4 9 6 80$ 90$ 
4 5 11 7 40$ 80$ 
5 3 11 9 60$ 50$ 
6 8 12 5 30$ 60$ 
7 4 13 10 60$ 70$ 
 

Table 4 presents the solution obtained for each job and it contains the starting and completion time, number of 
interruptions and flow time. Furthermore, tardiness/earliness penalty imposed by each job is calculated in Table 4. 

 
Table4. The solution obtained for each job 

Job number Starting Time Completion Time Tardiness Penalty Earliness penalty 
1 4 6 0 0 
2 3 5 0 0 
3 6 9 0 0 
4 7 11 0 0 
5 9 11 0 0 
6 2 12 0 3*30$ 
7 10 13 0 0 

5175 



 

Nikoofarid et al., 2012 

M3 I6 I6    

M2 I6 

 I7 I6 M3 

E6= D6
s - S6 

 

 M1 I2 

I4 

I1 

I3 

I3 I5 

I5 

I4 

I7 

I4 

S6 

I6 I1 I2 

I1 

 I2 I6 I4 I5 

I7 

I7 

I3 

I6 

I4 I3 

D6
s

Position 

I6 

I6 I6 

I6 

I1 I1 I6 I6 I7 

T5= C5 – D5 

 

 

M3 

M2 

M3 

I7  

I5 I6  

I6 I2 

I1 

M1 I1 

I4 

I2 

I3 

I4 I6 

I6 

I4 

I6 

I4 
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Table5. Objective function and its cost components 
OFV Earliness Tardiness 

90 90 0 

 
The objective function value (OFV) obtained after 15495 iterations in CPU time 9’:34” is presented in Table 5. 

Figure 2 shows the schema of just-in-time in identical parallel machines for this example. It can be seen, the 
positions in which the jobs are processed, the starting and completion time of each job, as minimum earliness and 
tardiness cost acquired. In this example, start time job 6 is 2 but idle start time for this job is 5, which causes 
earliness cost, and the unit earliness penalty of job 6 is 30, therefore the total cost is 3×30=90. We implement the 
sensitive analysis of model by increasing the unit earliness penalty of job 6 from 30 to 130. The job schedules, 
objective function and the solution obtained for each job is presented in Figure 3 and Tables 6 and 7, respectively. 
Increasing in the unit earliness penalty of job 6 causes that model tries to prevent earliness in processing of job 6. As 
a result, the completion time of job 5 is increased. As we can see, job 6 is processed without any earliness penalty 
and the completion time of job 5 is increased from 11 to 14. Also the tardiness of job 5 is increased. By comparing 
the objective function values presented in Tables 5 and 7, we can understand that in spite of processing job 6 without 
any earliness, increased completion time of job 5 raise the objective function from 90 to 150. 

Further to the explained example, we have also solved several numerical examples of different sizes and their 
results are shown in table 8. 

 

Table6. The solution obtained for each job 
Job number Starting Time Completion Time Tardiness Penalty Earliness penalty 
1 4 6 0 0 
2 3 5 0 0 
3 6 9 0 0 
4 7 11 0 0 
5 9 14 3*50$ 0 
6 5 12 0 0 
7 10 13 0 0 

 

Table7. Objective function and its cost components 
OFV Earliness Tardiness 
150 0 150 

 

Table8. Several numerical examples and related cost components of objective functions 
No. of Jobs No. of Machines OFV Earliness Tardiness CPU time 
8 2 880 654 226 40’:32” 
10 2 1128 425 703 1:49’:11” 
12 3 2340 894 1446 2:22”:49” 
15 3 3563 1645 1918 5:48’:47” 
20 4 5642 3475 2167 8:05’:52” 

 

 
  

 
   

 
 
 

     
 

 
Figure2. Schema of just-in-time in identical parallel machines for this example 

 
 
 
 
 
 
 
 

 
 

 
Figure3. Schema of just-in-time in identical parallel machines for this example 
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5. Conclusion 
 
This paper has presented a new non-linear programming model for a parallel identical machines scheduling 

problem with preemptive jobs in a just-in-time (JIT) environment. The nonlinear formulation of the proposed model 
was linearized using an innovative procedure. The performance of the model was illustrated by a numerical 
example. Sensitive analysis performed on interruption cost illustrated the impact of this feature on the model 
performance. CPU time required to reach optimal solution for the presented examples shows that obtaining an 
optimal solution for such hard problems in a reasonable time is computationally intractable. An attractive future 
research trend is to investigate the preemptive jobs in JIT with parallel uniform or different machines. Also it would 
be appropriate to consider the problem studied here with the addition of some other assumptions like sequence 
dependent setup times. It is also interesting to develop heuristics or meta-heuristic algorithms to solve the proposed 
model for large-sized problems. 
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