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ABSTRACT 
 

Pseudo-bicliques model various problems encountered in bio-informatics, data mining and networks. They 
relax the rigid connectivity requirement of bicliques to cater missing and noisy data. In this paper, we consider 
the weighted density based model of pseudo-biclique. This model defines pseudo-biclique as a bipartite 
subgraph such that the ratio of the number of its edges to the number of edges in biclique of same size is no 
less than a given threshold value. The weighted model of pseudo-bicliques better fits the real-world situations 
and give much more flexibility to researchers. We propose an algorithm based on reverse search to generate all 
weighted pseudo-bicliques in a given graph. This is computationally non-trivial task as simple straightforward 
branch-and-bound and back-tracking schemes involve an NP complete problem. Furthermore, we proposed the 
use of multi-level pseudo-bicliques to discover knowledge at multiple levels and extend our algorithm to 
enumerate all multi-level pseudo-bicliques. We introduce various enhancements to our algorithm based on the 
structure of pseudo-bicliques and underlying bipartite graph. We evaluated the performance of our algorithms 
on random graphs and real-world problems. The results are quite promising and show that average linear time 
is incurred to generate each pseudo-biclique.  
Keywords: combinatorial generation, graph theory, bipartite graph, biclique, data mining, algorithm, stock and 

financial ratios. 
 

 
1.0 INTRODUCTION 

 
Exhaustive generation of discrete combinatorial objects is of fundamental interest in computer science. The 

solution to various problems encountered in computing, networks, bio-informatics, chemistry, data mining, etc. 
commences by generating all possibilities that can arise. With the advent of the high speed digital computer, it is 
possible to treat vast amounts of data in a practical amount of time. In areas, such as genome science and data 
mining the problems are often vaguely defined, and researchers have to find meaningful structure in huge data 
set. In these areas, enumeration is being widely used to obtain optimal or nearly optimal objects.  

The dense structures in a graph are of significant importance as they represent groups of similar objects or 
deeply related objects. Nowadays, due to increase in computational power it is possible to efficiently generate 
lists of dense structures. Biclique, a dense structure, is used to model various real-world problems: discovery of 
web communities, document and words co-clustering, images and features co-clustering and protein interaction 
discovery [8]. Due to the rigid all-verses-all connectivity requirement of biclique, it is unsuitable for dealing 
with incorrect or missing data. If an edge in a biclique is removed it is no more a biclique. However, it still is a 
dense structure and represents a more natural interaction in many real-life situations.  

In this paper, we propose the use of weighted pseudo-bicliques instead of biclique to capture natural in-
teractions in real world data. The pseudo-bicliques are more practical as they relax the rigid connectivity 
requirement of bicliques and thus, cater for the missing data [8]. Here, we consider the density based model of 
pseudo-biclique. This model defines pseudo-biclique as a bipartite subgraph such that the ratio of the number of 
its edges to the number of edges in biclique of same size is no less than a given threshold value. The use of 
weighted version of pseudo-bicliques gives a lot of flexibility to the researchers looking for similar patterns in 
huge data-set. We extend the definition of pseudo-bicliques to multiple levels. This allows us to find effectively 
fault-tolerant multi-level patterns.  

The generation of density based pseudo-biclique is a non-trivial task because straightforward back-tracking 
and branch-and-bound schemes involve a NP-complete problem [7]. Secondly, the monotone property does not 
hold in the family of density based weighted pseudo-bicliques. Therefore, we cannot say that every subset of a 
pseudo-biclique is also a pseudo-biclique. Because of the anti-monotone property, the various techniques used 
in literature to enumerate combinatorial objects are not applicable to density based pseudo-bicliques.  

In this paper, we suggest the application of our algorithms in stock market and social network. We apply 

5324 



Alamgir et al., 2012 
 

the concept of weighted and multi-level pseudo-bicliques to group similar stocks on the bases of financial ratios 
and vice versa. The financial ratios are valuable indicators of a company’s financial situation and future 
performance. The ratios are compared with the historical values of the same company or with the ratios of 
similar companies to extract meaningful information. For this reason, financial analysts usually cluster stocks 
(or any other security) on the bases of financial ratios [3]. The clusters are then carefully examined to discover 
the related stocks on the bases of financial ratios. This helps to gain understanding of the company current 
financial situation and predict its future behavior. Apart from this, we also suggest the application of pseudo-
bicliques in finding users with similar interests in social networks. We conduct experiments on a social network 
of movie ratings by users.  

Now, we briefly outline the contributions of our research work. In this paper, we design efficient algorithm 
for listing all weighted pseudo-bicliques in a given graph G. The framework of our algorithm is based on reverse 
search [1]. We extend our generation scheme to enumerate weighted multi-level pseudo-bicliques. We evaluated 
the performance of our algorithm on randomly generated bipartite graphs and real-world problems. We 
considered two real-world data sets: stock and financial ratios set and social network for movie ratings. The 
results are very promising and show that average linear time is incurred for generating a pseudo-biclique.  

The rest of the document is organized as follows: Section 2 describes the related work. Section 3 
introduces the basic concepts used in this paper. In Section 4, we develop a generation algorithm for listing all 
pseudobicliques. Section 5 presents multi-level pseudo-bicliques and generation algorithm to enumerate them. 
In section 6, we describe the applications of our algorithm. In Section 7, we gives details of  our computational 
experiments and results. Finally, we conclude the paper in Section 8.  
 
2.0 RELATED WORK  
 

Generation of bicliques and maximal bicliques has attracted a lot of attention in the last decade. 
Researchers have developed many polynomial delay algorithms to list down bicliques [11]. However, the 
biclique cannot handle missing data because of its rigid connectivity requirements. Therefore, researchers are 
now considering pseudo-bicliques to model more natural interactions in real world problems.  
There are many ways to define pseudo-biclique, one possible model is a subgraph that is acquired from a 
complete bipartite graph by removing fixed number of edges. Another model is to define a pseudo biclique in 
terms of density. In this case, pseudo-biclique is a subgraph that has density greater than a given threshold value. 
Here, the density is the ratio of the number of edges in pseudo biclique to the number of edges in a complete 
bipartite graph of the same size. In the first model, certain number of edges is removed from graphs of any size. 
Thus, larger subgraphs can lose only a small portion of the edges, and many trivial vertex sets will become 
pseudo-bicliques. However, in the case of density based definition the restraint on the number of edges, changes 
with the size of the subgraph. Furthermore, small subgraphs are classified as pseudo bicliques only if they are 
bicliques.  

Some schemes have been devised to enumerate pseudo-bicliques using the first model [8], [12] but no 
significant work is conducted using the density based definition of the pseudo-bicliques. David Gibson [2] 
proposed an algorithm for finding as many disjoint dense subgraphs in a given graph as possible. As his 
algorithm generates an incomplete list, thus, it can skip some useful dense graphs. In [6], the scheme to find 
quasi cliques in a given graph is extended to deal with quasi bicliques, but it can only list balanced quasi 
bicliques. The proposed schemes to list pseudo-bicliques are mostly limited to bipartite graphs. In [8], the author 
deals with this issue by converting a given graph to an equivalent bipartite graph. However, in the process he 
doubles the number of vertices and this increase the computation time considerably. Apart from this their 
algorithm lists duplicate pseudo-bicliques and requires a post process to remove them, thus increasing the 
computation time.  

The problem of generating all pseudo-bicliques can be compared with the data mining techniques to list 
pseudo frequent item sets in a transactional database. Some mining algorithms [9, 12] deal with the missing item 
set by considering it a fault if an item of the item set is missing in a transaction. These approaches vary just one 
partition of the biclique that is they consider only frequent item set and do not deal with the frequent 
transactions [5]. However, in many applications related to chemistry and biology such as discovering protein-
protein interactions, it is desirable to vary both the partition of the pseudo-bicliques. Our proposed algorithm 
deals with this issue and generates a complete list of pseudo-bicliques in average linear time per object. This is 
significantly better than the previously known related algorithms [5] as it gives an improvement by a factor of V, 
here V is the total number of vertices in the given graph G(V, E).  

We apply our pseudo-biclique generation algorithm to co-cluster stock and financial ratios data set, which 
has a considerable amount of missing data. A technique called subspace clustering is also used to find clusters 
within different subspaces of high-dimensional data sets [15]. However, existing subspace and co-clustering 
algorithms donot handle missing data. Some researchers have proposed the use of self-organizing maps (SOMs) 
[3] to group stocks based on their financial ratios. SOM has its own limitations, in SOM it is difficult for user to 

5325 



J. Basic. Appl. Sci. Res., 2(5)5324-5334, 2012 

 

define clear clusters of entities because the boundaries of the clusters are hard to tell apart. In [4], authors 
resolve this issue and give some well-defined stock clusters, but still they cannot tell the financial ratios in which 
a cluster of stocks is highly related.  
 
3.0 BASIC DEFINITIONS  
 

A graph G = (V, W) comprises of a set of vertices V and weight matrix W to keep edge weights. The 
weight of the edge between vertex i and j is denoted by wi,j . We assume that graph G is simple, undirected and 
weighted (without loss of generality). Also, all the edge weights are less or equal to 1 that is 0 < wi,j < 1. A 
graph G is a bipartite if its vertex set V can be partitioned into two disjoint nonempty sets V1 and V2, such that 
each edge in G has one endpoint V1 and the other in V2. A bipartite graph G is often denoted as G = 
(V1∪V2,W).  

A graph H =(Vh
 
,Wh

 
) is a subgraph of a graph G if Vh

 
⊆ V and Wh ⊆ W . We say that H is a biclique 

subgraph, if every vertex in the set Vh
 
∩V1 is connected to every vertex in Vh∩V2. Furthermore, we say H is 

maximal biclique subgraph if no other biclique contains H.  
Now, we introduce the definitions of weighted degree, density and pseudo-biclique subgraphs. 

  
Definition 3.1. Weighted degree of a vertex v in a weighted graph G(V, W ) is defined as deg(v)= ∑ 

u∈{V } 
wu,v 

 
We define density of a bipartite subgraph: as the ratio of number of its edges to the number of edges in biclique 
of the same size.  
 
Definition 3.2. For a weighted bipartite graph G(V1,V2,W ), the density β(G) is given by  
 

   β(G)=   Σi∈V1 deg(i)   =      Σi∈V2 deg(j)                             (Eq. 1) 
|V1|×|V2|       |V1|×|V2|  

 
For unweighted graphs, the weight matrix would be a binary matrix where 1 represents existence of the 

edge and 0 represents its absence. Whereas, the density relation remains the same.  
 
Definition 3.3. A pseudo-biclique BU1,U2 is a bipartite subgraph of graph G, if β(B) ≥ θ, where 0 < θ ≤ 1. We 
denote the degree of vertex v in a subgraph B by degB(v), the maximum degree by △( BU1,U2) and minimum 
degree by δ( BU1,U2).  
 
4.0 ENUMERATION OF WEIGHTED PSEUDO-BICLIQUES  
 

In this paper, we address the problem of finding dense bipartite subgraphs using an enumerative approach. 
We develop an algorithm to list weighted pseudo-bicliques in a given graph G using the reverse search 
technique. The reverse search, originally developed by Avis and Fukuda [1], [7], is a sophisticated depth-first 
search type scheme for generation. It is widely used in the field of combinatorial generation because it is a 
simple and efficient technique. In reverse search, we construct a tree-shaped traversal route on the family of the 
combinatorial object under consideration. In order to form the tree, we define a parent for each element and 
ensure that definition of the parent is unique and acyclic, that is, each element is not a proper ancestor of itself. 
The parent-child relation forms an enumeration tree; a spanning tree on the set of elements to be generated. The 
reverse search algorithm traverses the tree in a depth- first. One benefit of this technique is that it does not 
memorize the visited elements in memory space.  

We need to establish an adjacency relation on the set of weighted pseudo-bicliques to enumerate all such 
structures. We observe that the removal of a vertex with a minimum weighted degree from a bipartite subgraph 
does not decrease the density of the resultant subgraph. Ties are broken lexicographically; if there are more than 
one minimum weighted degree vertices then we consider the one with minimum index. We use this observation 
to define a parent-child relationship on the set of weighted pseudo-bicliques.  

The following lemma establishes parent-child relationship on the set of weighted pseudo-bicliques.  
 
Fact 4.1. Let v be the minimum weighted degree vertex in G =(V1 ∪ V2,W ), without loss of generality assume 
that v ∈ V1, then  

Σi∈V1   degG(i) ≥ |V1| degG(v)          (2)  
 
Lemma 4.1. Let BU1,U2 be a weighted pseudo biclique, and vertex v ∈ (U1 ∪	U2). If deg BU1,U2 

(v)= δ(BU1,U2 ) 
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then β(BU1,U2\ v) ≥ β(BU1,U2).  
 
Proof. We want to proof that the density of BU1,U2\ v is no less than the density of BU1,U2. Without loss of 
generality we assume that v ∈ U2. Now, we show that  
 

β(BU1,U2\ v) − β(BU1,U2) ≥ 0  
 
By substituting the value of density in the left side of above equation we get  
 

Σi∈U1  deg BU1,U2 (i) − deg BU1,U2 (v)  −  Σi∈U1   deg BU1,U2 (i)  
   |U1|×|U2 − 1|                            |U1|×|U2|  

 
=    Σi∈U1  deg BU1,U2 (i) − |U2|×  deg BU1,U2 (v)   

     |U1|×|U2|×|U2 − 1|  
 

≥    |U2|× deg BU1,U2 (v) −|U2|× deg BU1,U2 (v) 
     |U1|×|U2|×|U2 − 1|                                     =     0  

 
Using the above lemma we can establish that each pseudo-biclique has density no more than its parent, 

thus a parent Prt(BU1,U2) is a pseudo-biclique if BU1,U2 is a pseudo-biclique. In other words, we can say that for 
any pseudo-biclique BU1,U2,  BU1,U2\ v will also be a pseudo-biclique if v is a minimum degree vertex in BU1,U2.  
Now, we define a unique parent-child relationship among pseudo-bicliques.  
 

Definition 4.1. Let BU1,U2 be a pseudo-biclique, then B* = (BU1,U2∪ v) is a child of BU1,U2 if for every 
u ∈ {U1 ∪ U2)} one of the two conditions holds  
 
1 degB* (v) < degB* (u) 
2 degB* (v)=  degB* (u)  and label of v is less than label of u 

 
Fig. 1: An illustrative example for Pseudo-biclique enumeration and weight matrix W  

 
In Fig. 1, we show an example of pseudo-biclique BU1,U2 comprising of vertices {2, 3, 6, 7, 8}. According 

to our defined parent-child relationship only the addition of vertex 1, 5 or 9 can yield children of BU1,U2. Vertex 
4 cannot be added because deg BU1,U2 (4) > δ (BU1,U2). Although the degree of vertex 10 is equal to δ (BU1,U2)., 
but it is lexicographically larger than vertex 3 (minimum degree vertex of deg BU1,U2).  
 
4.1 Algorithm  

In this section, we outline our algorithm design. First, we present the main idea and then suggest some 
improvements to reduce the computation time of the algorithm. Using computational experiments we prove that 
our suggested efficiencies significantly improve the time bounds, and it takes linear time to generate each 
pseudo-biclique.  

The generation algorithms that are based on reverse search start with the trivial structure (an object of 
minimal size) and find all its children recursively. In our case, each vertex can be thought of a pseudobiclique. 
However, we want to avoid trivial pseudo-bicliques that have all vertices in the same partition. To achieve this 
we start our algorithm with an edge of the given graph G(V1 ∪ V2,W ), and then recursively search its children. 
This pruning step does not affect the result because all the descendants of such subgraphs are the subgraphs with 
zero edges. Furthermore, this also prunes the bicliques that have two or more zero degree vertices. We develop a 
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preprocessing routine that calls GenPseudoBiclique for each edge to enumerate all the pseudo-biclique in that 
branch of the enumeration tree.  

Mostly, we are not even interested in small sized or star shape graphs. To avoid such structures, we 
propose to start the algorithm with a subset of vertices that forms a pseudo-biclique. We can set a constraint on 
the minimum number of vertices allowed in each partition. However, there is one drawback in this 
preprocessing step, that is we may skip some of the pseudo-bicliques for lower density thresholds. So we have 
to choose a value for subset size that gives us efficiency and non-trivial pseudo-bicliques without losing any 
important structure. In our computational experiments on real-world data sets, we run the algorithms on subsets 
that are pseudo-bicliques having two vertices in each partitions.  

As stated earlier every pseudo-biclique has a unique parent, this adjacency relation spans all possible 
pseudobicliques and forms the enumeration tree. Depth-first traversal of the enumeration tree will visit each 
node exactly once, which ensures that the result set is complete without any duplication. In our algorithm, we 
traverse the search space in a way that allows straightforward pruning of non-dense pseudo-bicliques. According 
to the defined adjacency relationship, a non-dense pseudo-biclique will has non-dense descendants. During the 
depth-first traversal, we prune the path whenever the density check fails at a node. Thus, we avoid the 
generation of non-dense descendants.  

 
Algorithm 1: Algorithm for generating Pseudo-bicliques 

 
Two basic operations are performed before inclusion of each vertex: computation of minimum weighted 

degree vertex and density. The graphs are represented using adjacency lists. In simple straight forward 
implementation of the algorithm, time to compute the density of a pseudo biclique takes O(V ) time. Similarly 
finding minimum degree vertex of a pseudo biclique takes O(V ) time. Both these operations are performed at most 
V times in an iteration of the algorithm, thus time to compute a pseudo biclique is O(V

2
). The space requirement of 

the algorithm is quadratic since no additional space is used other than the weight matrix of the graph.  
The above algorithm can be used with slight modification to list all maximal pseudo-bicliques. A pseudo-

biclique BU1,U2 is maximal if and only if there does not exist a vertex v such that v/∈ U1 ∪U2 and β(BU1,U2∪ {v}) ≥ 
e. The existence of v ensures that BU1,U2 is not maximal, and hence it is not listed by the algorithm in the output. In 
Algorithm 1 BU1,U2 is not maximal if the condition at line number 2 holds for any iteration. Hence, by addition of a 
simple constraint we can list only the maximal pseudo-bicliques of the given graph G(V1 ∪ V2,W).  
 
4.2 Improvements for Efficient Computation  

The time requirements of the algorithm can be improved by maintaining information about the minimum 
degree vertex and degrees of all vertices of G in BU1,U2 under consideration. We keep an array to record the degree 
of each vertex in BU1,U2. For any v, if we know deg BU1,U2(v) and the degree sum of all the vertices in BU1,U2 then 
the density of BU1,U2∪{v} can be computed in a constant amount of time. Time to verify the parent-child 
relationship can also be improved. In most cases, only a comparison between deg BU1,U2 

(v) and δ(BU1,U2) is 
sufficient to do the job. We can subdivide the task of determining child of BU1,U2 in one of the following three 
cases.  
 
1. If deg BU1,U2(v) is strictly less than δ(BU1,U2), then BU1,U2∪{v} is a child of BU1,U2 
2. If deg BU1,U2 

(v) is greater than  δ(BU1,U2) + Wv,δ(BU1,U2), then it is not a child of BU1,U2 
3. Otherwise one of the two possibilities can occur  

(a) If v is connected to minimum degree vertex of BU1,U2, then verify the parent-child relationship  
(b) If v is not connected to minimum degree vertex of BU1,U2, then a comparison between label of v and 

minimum degree vertex of BU1,U2complete the task  
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In all the above cases except 3(a), verification of child can be done in constant time. Only the case 3(a) 
takes O(V) time.  
 

Now we show that the cost incurred on constant checkings can be distributed to pseudo-bicliques as 
overhead. When a pseudo-biclique is generated, it takes O(V). This is because when a vertex is added to BU1,U2, 
the degrees of all of its adjacent vertices in the array are updated. This operation takes O(∆(G)) time. For each 
BU1,U2, the number of constant checkings that does not yield any child are at most O(V ). The overhead incurred 
for constant checking can be included in the generation cost of BU1,U2. Hence, we can say that overhead of 
constant checkings does not affect the asymptotic time bounds of the algorithm. In section 7, we estimate non 
constant checkings using computational experiments. We found that the total number of non constant checkings 
is O(f(G)), where f(G) is the total number of pseudo bicliques in G.  

Another improvement is to avoid trivial pseudo bicliques that have all vertices in the same partition. We 
start our enumeration algorithm with an edge. This allows us to prune all the subgraphs that have all vertices in 
the same partition. Pruning these bicliques from the enumeration tree do not affect the result. This is because all 
the descendants of such nodes are the subgraphs with zero edges. Furthermore, we also prune the bicliques that 
have two zero degree vertices.  
 
4.3 Generating Weighted Pseudo-bicliques in General Graphs  

Now we extend our pseudo-biclique generation algorithm described in previous section for general graphs. 
In general graph G, we wish to enumerate all non-induced pseudo bicliques.  

Previously, some researchers [8] have dealt with generation in general graph by using a graph 
transformation scheme. In this scheme, the general graph G =(V, E) is transformed to an equivalent bipartite 
graph G′(VUV′,E′), where V′ = {v′|vi ∈ V } and E′ = {(vi,vj′)|(vi,vj) ∈ E}. Now we can say that BV1,V2 is a 

pseudo-biclique in G if and only if B′
V1,V2 

 
is a pseudo-biclique in G 

′ 
, here V1 ⊆ V , V2 ⊆ V , and V2′ ⊆ V′ . 

We have not used this scheme because it double the size of the problem and, thus doubles the computation time 
and space. Enumeration is an exhaustive procedure, and it is highly desirable that generation of each object is 
extremely fast.  

The nature of our algorithm allows us to extend it easily to the general graphs without increasing the size 
of the input graph G. Note that the lemma 4, proved in section 4 also holds for general graph. Therefore, we use 
the same adjacency relation on the set of pseudo-bicliques in general graph G that is described in the section 4. 
As every pseudo-biclique has a unique parent, the graph induced by this parent-child relationship forms a tree.  

The Algorithm 1 GenPseudoBiclique can be adapted to work for general graphs. Note that, when input 
graph G is bipartite, then the partition of each vertex in generated pseudo-bicliques is specified by G. But this is 
not the case when G is a general graph. In this scenario, we have to check for two possible pseudo-bicliques 
against each vertex v. We introduce an array in Algorithm 1 to hold the partition id of each vertex in G. We first 
set partition id of v to U1 partition of BU1,U2 and perform steps 2-7 of Algorithm 4. We repeat this process after 
setting partition id of v to U2 partition. This will generate the complete list of all non-induced pseudo-bicliques 
in general graphs.  
 
5.0 MULTILEVEL PSEUDO-BICLIQUES  

The existing algorithms for pseudo-biclique enumeration deal with mining knowledge at single concept 
levels. However, mostly it is desired to discover knowledge at multiple concept levels. For example, besides 
clustering stocks on the bases of financial ratios, it will be more interesting to show analyst that stocks clusters 
are 80 percent similar in liquidity ratios and 50 percent related in debt ratios, etc. Secondly, in many real-world 
applications, multiple dimensions may be associated with one clustering entity. As in the case of social network, 
for example, movie rating network, we have different genres of movies. Incorporating dimension information 
into the mining process can produce patterns with more detailed knowledge. As described before, the existing 
subspace clustering algorithm cannot deal with this situation as they cannot handle missing data. We propose 
multi-level pseudo-biclique enumeration algorithm to handle multi-level clustering with missing data.  

We model the data with multiple concept levels using a bipartite graph G(V1 ∪ V2,W ), where V2 is 
further partitioned into non-overlapping vertex sets to represent different concept levels. For instance, consider 
the authors and books network; we model it as a bipartite graph, where the set of authors are represented as 
vertices in V1 and books as vertices in V2. An edge symbolizes the connection between an author and a book. 
To capture the concept at multiple levels, we partition V2 to represent the categories of the books. We are 
considering only the literary work, so we categorize the books as novels, poetry, drama and short stories. A 
multi-level pseudo-biclique in this graph corresponds to a group of authors that have coauthored at-least given 
number of books in each category.  
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Fig. 2: A Multilevel Pseudo-biclique 

 
Now, we give our definition of a multilevel bipartite graph and a multilevel pseudo-biclique. A multilevel 

bipartite graph G(V1 ∪{V21 ∪ V22 ∪· ··∪ V2k },W ) is a bipartite graph, where partition V2 is divided into k 

non-overlapping sets and V2iis the i
th 

set. A multilevel pseudo-biclique B(U1 ∪{U21 ∪ U22 ∪· ··∪ U2k }) is a 
subgraph of G(V1 ∪{V21 ∪ V22 ∪· ··∪ V2k },W ) such that U1 ⊆ V1, U2i ⊆ V2i and β(BU1,U2i) ≥ θi for all 1 ≤ 
i ≤ k. Here, θi is the density threshold for pseudo-biclique BU1,U2i. The value of θi can be different for all, 1 ≤ i ≤ 
k. Figure 2 shows an example of multilevel pseudo-biclique. Note that every multi-level pseudo-biclique with a 
same θ threshold for each level is a θ weighted pseudo-biclique.  
 
5.1 Enumeration Algorithm for Multilevel Pseudo-Bicliques  

In this section, we enhance our basic algorithm for pseudo-bicliques to enumerate all multilevel pseudo-
bicliques. The following lemma establishes adjacency relationship on the set of weighted multilevel pseudo-
bicliques.  
 
Lemma 5.1. Let B(U1 ∪{U21 ∪ U22 ∪· ··∪ U2k }) be a weighted multilevel pseudo-biclique, and v be the 
minimum degree vertex in B then β (B(U1 ∪{U21 ∪ U22 ∪· ··∪ U2k }) \ v ) ≥  β( B(U1 ∪{U21 ∪ U22 ∪· ··∪ 
U2k })) 
 
Proof. We have to consider two cases; v ∈ U1 or v ∈ U2i . Note that we can represent the multilevel pseudo 
biclique B(U1 ∪{U21 ∪ U22 ∪· ··∪ U2k })  as a collection of k pseudo-bicliques B(U1 ∪ U2i ), 1 ≤ i ≤ k. Let 
v∈U2i, then removal of v effects only the density of pseudo-biclique B(U1 ∪ U2i ). Therefore, by Lemma 4, 
β(B(U1∪{U2i \ v})) ≥ β(B(U1 ∪ U2i )) ≥ θi. On the other hand, when v ∈ U1, then it is the minimum degree 
vertex in all k pseudo-bicliques. Thus, repeated application of Lemma 4 ensures that removal of v does not 
decrease the density of any of the k pseudo-bicliques. Hence, β(B({U1 \ v}∪ U2i )) ≥ β(B(U1 ∪ U2i )) for all 
1≤i≤k.  

We use the reverse search to enumerate all multilevel pseudo-bicliques based on the parent-child relation 
defined in Lemma 5.1. The multilevel pseudo-biclique can have different density thresholds for individual 
pseudo-bicliques. So we make sure that all density constraints are fulfilled after addition of a new vertex in 
current multilevel pseudo-biclique. Given a multilevel bipartite graph G, with k partitions of set V2, and k 
density thresholds the Algorithm 2 recursively lists all maximal multilevel pseudo-bicliques in G.  

In order to generate all multilevel pseudo-bicliques, we repeatedly invoke the Algorithm 2 for each edge in 
the given graph. The Algorithm 2 produces a complete list as our parent-child relationship defines a unique 
parent for each multilevel pseudo-biclique, and we traverse each node in the enumeration tree exactly once. The 
computation time to output a multilevel pseudo-biclique increase by a factor of k as compare to the Algorithm 4. 
The additional time is required for computation of density and verifying density thresholds for all k pseudo-
bicliques. 
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Algorithm 2: Algorithm for generating Multi-level Pseudo-bicliques 

 
6.0 APPLICATIONS: STOCK AND FINANCIAL RATIOS CO-CLUSTERING AND SOCIAL 
NETWORKS  

In this section, we describe the application of our pseudo-biclique generation algorithms and, in the next 
section we present the results of our computational experiments on real-world data set.  

We apply the concept of weighted and multi-level pseudo-bicliques to group similar stocks on the bases of 
financial ratios and vice versa. The financial ratios are valuable indicators of a company’s financial situation and 
future performance. They are used to examine trends and compare the financials of the companies. In some 
cases, financial ratio analysis can be used to foresee future bankruptcy. A study of financial ratios is very crucial 
for the financial analyst conducting a fundamental analysis of a business. Fundamental analysis is the 
cornerstone of investing as it provides insight on a company’s prospects and potentials. It involves delving into 
the financial statements, gathering real data, calculating financial ratios to evaluate a security’s value.  

One of the drawbacks of fundamental analysis is that it involves too many parameters: economic indicators 
and extensive macroeconomic data. This can greatly complicate the situation for the analysts and investors. 
Apart from this, a reference point is needed for ratio analysis. This indicates that to dig out meaningful 
information, one should compare the ratios with the historical values of same corporation or with the ratios of 
other comparable corporations. For this reason, financial analysts usually cluster stocks (or any other security) 
on the bases of financial ratios [3]. Then the clusters are carefully examined to discover the related stocks on the 
bases of financial ratios. This helps to gain understanding of the company current financial situation and predict 
its future behavior.  

We propose the use of weighted pseudo-bicliques to co-cluster stock and financial ratios. The weighted 
model of pseudo-bicliques provides greater flexibility to the analyst examining the financial ratios. The ratio 
analysis is used for various purposes like value investment, analyzing company current and future performances 
and to predict bankruptcy. In the analysis, the analyst considers only those financial ratios that are relevant to the 
topic of the study under-consideration. Moreover, depending on the study some ratios plays more important role 
than others. For example, for value investing the investment valuation ratios are very important but role of other 
ratios like cash flow indicator ratios cannot be completely ignored. In this scenario, it would be highly beneficial 
for the analyst to assign weights to ratios according to their relevance to the purpose and then cluster them. 
Furthermore, to provide another level of abstraction we propose the use of multi-level pseudo-bicliques. In this 
case, we exploit the fact that financial ratios have multiple classification levels like liquidity ratios, efficiency 
ratios, debt ratios etc. Thus, they can be considered as multi-level entities to extract more information.  

The pseudo-bicliques generation is quite helpful in finding peoples with similar interests in social 
networks. Our generation algorithms, give a list of pseudo-bicliques of desired density that represent some 
interconnected group of users. We have conducted experiments on a network of movie ratings by users. The 
output pseudo-bicliques can be quite useful for social networking sites to recommend movies to their users.  
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7.0 COMPUTATIONAL EXPERIMENTS  
We have conducted computational experiments to evaluate the performance of our algorithm. We have 

used randomly generated bipartite graphs and real-world data-sets in our experiments. The results are quite 
promising and show that average linear cost is incurred for generating each pseudo-biclique. We carry out our 
experiments on Windows 7 environment, using Intel(R) Core(TM)i7 CPU (1.6GHz) with 6GB RAM. We 
implement our algorithm in C++ using Boost Graph Library [10]. The results of the experiments are plotted in 
log scale. 

  

7.1 Random Graphs  
In this experiment, we estimate the ratio of the total number of pseudo-bicliques in a graph to the number 

of non-constant checkings. The edges in randomly generated bipartite graphs are uniformly distributed ac-
cording to the given edge density. The number of pseudo-bicliques depends on the given density threshold or on 
the graph size. For this purpose, we have evaluated the performance of our algorithm on three parameters: 
density threshold, number of vertices, and edge density. We carry out three different experiments to estimate the 
desired ratios. In each experiment, we fix two parameters and compute the ratio for various values of the third 
parameter. In the first experiment, we estimate the ratio for different edge densities. Second experiment 
examines the effect of various density thresholds on the ratio. In the third experiment, we vary the number of 
vertices in the graph. The results of these experiments are shown in Figure 3. In these experiments, we invoke 
the Algorithm 4 for each edge in the randomly generated graph.  

We have made two observations from the above experiments. First, the number of non-constant checkings 
is less than the number of pseudo bicliques generated in all three experiments. This observation leads us to infer 
that cost of non-constant checking can be distributed to pseudo-bicliques generated and an amount of work done 
per pseudo biclique is O(V ). Secondly, the growth rate of non-constant checking is far less than the growth rate 
of pseudo-bicliques when graph size is increased or density threshold is decreased. From this, we can deduce 
that the average cost of computing a pseudo biclique decreases as the search space of algorithm increases.  
 
7.2 Experiments on Real-World Datasets  

We conduct experiments on two real-world problems: co-clustering stocks and financial ratios and movie 
rating social network.  
 
7.2.1 Stock Market: Stocks and Financial Ratios  

We group stocks and financial ratios using the two approaches developed in this paper, namely 
enumeration of weighted pseudo-bicliques and multi-level pseudo-bicliques. The existing algorithms [8], [9], 
[12] cannot be used as they are incapable of finding our defined maximal multilevel pseudo-bicliques. We 
obtained various stocks and financial ratios data sets for the year 2007 − 2008 from Portfolio123 [17]. The data 
sets are for medium and large sized technology firms. We have performed experiments on firms of different 
sizes separately. This is mainly because; researchers have discovered that significant differences exist in 
financial ratios between large public and small private firms [16], [14]. Thus, it is meaningless to compare 
financial ratios of the different sized firms.  

 
Fig. 3: Results obtained from experiments on random graphs  
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The choice of the ratios plays an important role and greatly depends on the purpose of the analysis which 
can be value investment, trend analysis or bankruptcy prediction. In our algorithm, analyst is given the 
flexibility to assign weights to the ratios according to their importance and relevance. Thus, he can play with the 
weights to get the desired grouping of stocks and financial ratios. In our experiments, we have considered the 
following basic categories of ratios: valuation, liquidity, financial strength, profitability and growth. In the 
valuation category, we have included dividend yield(DY), price earnings ratio(PE), price/earnings to next year 
growth rate, price to book ratio, price to cash flow per share ratio and price to sales ratio. In order to assess 
liquidity, the current ratio(CR) was the primary ratio examined. For assessing the financial strength, we have 
included total debt to total equity and payout ratio(PR) annually. Examination of the return on investment(ROI) 
and return on equity(ROE) ratios were used to provide an assessment of profitability. Growth was measured by 
EPS growth rate, gross margin(GM), net income(NI) and sales growth rate(SGR). We have considered five year 
growth rates.  

The financial ratios consist of continuous values. We deploy hierarchical clustering algorithm to divide the 
range of each financial ratio into discrete clusters. There are various hierarchical clustering methods, we employ 
the pairwise centroid-linkage clustering. We used C-Clustering library implementation  

 

 
 

Fig. 4: Results obtained from experiments on stock and financial ratio data sets  
 

We represent the data sets as bipartite graphs. As mentioned earlier, we have considered two data sets. The 
bipartite graph for the large-sized firms consists of 401 vertices(101 stocks and 300 financial ratio intervals) and 
for the medium-sized firm consists of 603 vertices(228 stocks and 375 financial ratio intervals). In this 
experiment, we have used 15 financial ratios mentioned above. We have used two different weight vectors, 
namely W1 and W2, to examine the effect of weights on the number of pseudo-bicliques and clustering. In W1, 
we assign 0.75 weight to PR and ROI, and other ratios are set to one. While in W2, we set price to book ratio 
and price to cash flow to 0.8 and CR, SGR and NI to 0.5 and rest are same as W1. For multi-level pseudo-
bicliques, we group the ratios into three groups: valuation ratios, growth ratios and a combined group for 
liquidity, profitability and financial strength ratios. In the experiment for Algorithm 2, we have used the same 
density threshold for all levels and assign weight one to all the ratios.  

In this experiment, we run the algorithms on subsets that are pseudo-bicliques having two vertices in each 
partition. Furthermore, we observe that pseudo-bicliques that have multiple edges between stocks and 
discretized cluster of one financial ratio provide no useful information. So we prune these pseudo-bicliques and 
thus, reduce the search space. It is clear, from Figure 4 that the number of the pseudo-bicliques is very large, so 
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it would be more interesting to output only the maximal pseudo-bicliques for analyzing the stocks’ behavior. As 
described above, with slight modification our algorithm can list the maximal pseudo-bicliques.  

The results of the above experiments with different data sets are shown in the Fig. 4. We scrutinize the 
output set to find out the effect of weight vectors W 1 and W 2. The weight vectors greatly help in pruning the 
unnecessary pseudo-bicliques. With weight vector W 2, we get much less pseudo-bicliques as compare to W 1, 
this is evident from the graphs in Figure 4(a) and Figure 4(b). The W 2 vector assign less weight to some ratios 
and this helps to get a restricted set of pseudo-bicliques.  

We examine the pseudo-bicliques generated by both the approaches. As mentioned above, every multi-
level pseudo-biclique with a same e threshold for each level is a e weighted pseudo-biclique. However, if we are 
considering only the maximal pseudo-bicliques set then this is not true. A maximal multi-level pseudobiclique 
may not belong to the maximal weighted pseudo-biclique set. We observe that output set of maximal multi-level 
pseudo-cliques provide the financial analyst with specific information regarding financial ratios as it has 
maintained density for each type of ratios. Moreover, in case of multi-level, we observe that the edges in a 
pseudo-biclique are evenly distributed; especially in-case the value of e is large. However, this is not true for 
weighted pseudo-bicliques.  

In this experiment, we compare the number of non-constant-checkings with total pseudo-bicliques 
generated. It is interesting to note that non-constant checkings are far less than the total pseudo-bicliques as in 
the case of random graphs. Thus, we can distribute the overhead of non-constant-checkings to pseudo-bicliques.  
 
7.2.2 Social-Network: Movie Ratings by Viewers  

We have also conducted an experiment on a social network for the movie ratings by viewers. The data set 
for this experiment was obtained from MovieLens Data Sets [13]. It was gathered by the “GroupLens Research 
Project” conducted by  University of Minnesota. The data set that we have considered consists of 10000 ratings 
for 1682 movies by 943 users. The users have rated the movies on the scale of 1 to 5. We construct a bipartite 
graph for this data set with 943 users in the first partition and 8410 rankings of 1682 movies in the other. The 
graph has 9353 edges. The results of this experiment are shown in the Fig. 5.  

 
Fig. 5: Results obtained from experiment on movie rating social network  

 
The generated maximal pseudo-bicliques provide groups of users who are interested in similar movies. 

This can be quite useful for social networking sites to recommend movies to their users. Furthermore, the results 
confirmed that the non-constant checkings are far less than the number of pseudo-bicliques generated. 
Therefore, each pseudo-biclique takes average linear time to generate.  
 
8.0 CONCLUDING REMARKS  
 

The pseudo-biclique enumeration is an interesting problem to be studied as it models various real life 
problems in chemistry, data mining and biology. This paper is set out to investigate the ways for the efficient 
generation of weighted pseudo bicliques in a given graph. We used density based model to define pseudo 
biclique and devise a scheme for their exhaustive generation based on reverse search. Our algorithm is optimal 
in the sense it operates in average linear time and linear space. We extended our algorithm to list multi-level 
pseudobicliques that helps to discover knowledge at multiple levels of abstraction. We carry out computational 
experiments and use theoretical bounds to show that our algorithm takes linear time on average to generate each 
pseudo biclique. Furthermore, we have conducted experiments on real-world data sets namely movie rating 
social network and stock and financial ratios data sets to evaluate the performance of our algorithms. Usually, it 
is not desirable to have small sized or asymmetric dense substructures in the output set. This problem can be 
resolved by adding a constraint on partition size and connectivity of individual vertices. As future work, we 
want to explore ways that can eliminate small sized and asymmetric pseudo bicliques. Furthermore, we want to 
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bound the non-constant checkings performed in our algorithm using theoretical bounding techniques.  
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