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The main of this paper is to introduce a set-valued homomorphism in which induced by a module 
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1. INTRODUCTION 

 
After the pioneering work of Zadeh (1965), there has been a great effort to obtain fuzzy analogies of 

classical theories. Various uncertainties in real world applications can bring difficulties in determining the crisp 
membership functions of fuzzy sets. 

There have been involved not only vagueness (lack of sharp class boundaries), but also ambiguity (lack of 
information). Hence many extensions have been developed to represent these uncertainties in membership 
values, such as interval-valued fuzzy sets. In other hand, the notion of rough sets has been introduced by Pawlak 
(1981, 1982, 1985), and Pawlak and Skowron (2007). Rough set theory is an extension of set theory, in which a 
subset of a universe is described by a pair of ordinary sets called the lower and upper approximations. The 
lower approximation of a given set is the union of all the equivalence classes which are subsets of the set, and 
the upper approximation is the union of all the equivalence classes which have a non-empty intersection with 
the set. It soon invoked a natural question concerning possible connection between rough sets and algebraic 
systems and fuzzy sets. The algebraic approach to rough sets has been studied by Iwinski (1987), Bonikowaski 
(1995), Zhang, Wu (2001). Banerjee and Pal (1996), Nanda (1992), Biswas (1994), Biswas and Nanda (1994) 
discussed the notion of rough sets and rough subgroups. Kuroki (1997) introduced the notion of rough ideals in 
semigroups. Davvaz (2004) has given the notion of rough subring with respect to a subring of a ring. Dubois 
and Prade (1987, 1990) combined fuzzy sets and rough sets in a fruitful way by defining rough fuzzy sets and 
fuzzy rough sets. Qi-Mei Xiao and Zhen-Liang Zhang (2006) discussed the lower and the upper approximations 
of prime ideals and fuzzy prime ideals in a semigroup with details. Davvaz (2008) defined a T - rough 
homomorphism in a group and introduced the T -rough set with respect to a subgroup of a group. Based on the 
definition, Hosseini et al. (2012) studied some properties of T –rough set in semigroups and commutative rings. 
It is well known that a partition induces an equivalence relation on a set and vice versa. The properties of rough 
sets can thus be examined via either partition or equivalence classes. Rough sets are a suitable mathematical 
model of vague concepts, i.e., concepts without sharp boundaries. 

In this paper, we introduce the notion of a set-valued homomorphism on a module and the generalized 
rough module with respect to a submodule. We prove some more general and fundamental properties of the 
generalized rough sets. We discuss the relations between the upper and lower T –rough modules and the upper 
and lower approximations of their homomorphism images and generalize some theorems which have been 
proved in (2008, 2012). We attempt to conduct a further study along this line. 

 
1. Preliminaries 
The following definitions and preliminaries are required in the sequel of our work and hence presented in 

brief. Some of them were in (1981, 1982, 1985 and 2004). Suppose that U is a non-empty set. A partition or 
classification of U is a family Θ of non-empty subsets of U such that each element of U is contained in exactly 
one element of Θ. It is vitally important to recall that an equivalence relation θ on a set U is a reflexive, 
symmetric and transitive binary relation on U. Each partition Θ induces an equivalence relation θ on U by 
setting 

xθy⇔x and y are in the same class of Θ. 
Conversely, each equivalence relation θ on U induces a partition Θ of U whoseclasses have the form 
[x]θ = {y ∈U | xθy}. 
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Definition 2.1. A pair (U, θ) where U = ∅ and θ is an equivalence relation on U is called an approximation 
space. 

Definition 2.2. For an approximation space (U, θ) by a rough approximation in (U, θ) we mean a mapping 
Aprθ : P (U )  P (U)× P (U ) defined by for every X∈ P (U ), Aprθ(X) = (퐴푝푟휃 (X), 퐴푝푟휃	(푋)), where 

Aprθ (X) = {x ∈ U | [x]θ⊆ X}, Aprθ (X) = {x∈U | [x]θ ∩ X ∅}. 
Aprθ(X) is called the lower rough approximation of X in (U, θ) whereas 퐴푝푟θ (X) is called the upper rough 

approximation of X in (U, θ). 
Definition 2.3. Given an approximation space (U, θ) a pair (A, B) in P (U )×P (U ) is called a rough set in 

(U, θ) if (A, B) = (퐴푝푟θ (X), 퐴푝푟θ (X) ) for some X∈ P (U ). 

Definition 2.4. A subset X of U is called definable if 퐴푝푟θ (X),  =Aprθ (X). If  X⊆U is given by a 
predicate P and  x∈U , then 

1. x ∈퐴푝푟θ (X), means that x certainly has property P, 

2. x∈퐴푝푟θ (X) means that x possibly has property P , 
3. x∈ U \ 퐴푝푟θ (X) means that x definitely does not have property P. 

 
2. Set-valued Homomorphism 
   Throughout the paper, R is a commutative ring, M, N are R-modules and if X be a set, the set of all non-

empty subsets of X denoted by P* (X). We define the concept of a set-valued homomorphism and give some 
important examples of them. We show that every module homomorphism is a set-valued homomorphism. We 
also investigate some basic properties of the generalized lower and upper submodules induced by a set-valued 
homomorphism. 

Definition 3.1. (2008) Let X and Y be two non-empty sets and B∈ P* (Y ). Let T :X → P* (Y ) be a set-
valued mapping. The lower inverse and upper inverse of B under T are defined by 

LT (B) = {x∈X | T (x) ⊆B};  UT (B) = {x∈X | T (x) ∩ B ∅}. 
    They are called the T -lower approximation or the lower T -rough and the T -upper approximation or the 

upper T -rough with respect to B, respectively. 
Definition 3.2. (2008)  Let X and Y be two non-empty sets and B∈ P* (Y ). Let T : X → P* (Y ) be a set-

valued mapping, then (LT (B), UT (B)) ∈ P* (X) × P* (X) is called the T -rough set of X with respect to B or the 
generalized rough set with respect to B. 

Example 3.3. (i) Let (U, θ) be an approximation space and T : U → P *(U )be a set-valued mapping where 
T (x) = [x]θ , then for any B∈ P *(U ), LT (B) =퐴푝푟(B) and UT (B) = 퐴푝푟(B). So a rough set is a T -rough set. 

Definition 3.4. (i) Suppose that A be a non-empty subset of M . The subset A is called an R-submodule of 
M or just submodule of M if a − b, ra∈A for all a, b∈A and r∈R. 

(ii) Let M be an R-module. A proper submoduleN of M  is called prime if given r∈R, m∈M then rm∈N 
implies m∈N or rM⊆N . 

(iii) Let M be an R-module. A proper submoduleN of M is called primary if given r ∈R, m∈M then rm∈N 
implies m∈N or rm M⊆N for some m∈N. 

(iv) A mapping f : M → N is called an R-module homomorphism or just a module homomorphism 
provided that for all u, v∈M and r ∈R : 

f (u + v) = f (u) + f (v)  and   f (ru) = r f (u). 
Definition 3.5. Let M and N be R-modules and T :M → P* (N ) be a set-valued mapping. T is called a set-

valued homomorphism if 
(i) T (m1 + m2 ) = T (m1 ) + T (m2 ); 
(ii) T (rm) = rT (m); 
for all r∈R and  m, m1 , m2∈ M. 
It is clear that T (0) = {0} and T (−m) = −T (m) for all m ∈ M. 
Example 3.6. (i) The set-valued mapping T : M → P* (N ) defined by T (r) ={0}, is a set-valued 

homomorphism. 
 (ii) Let T :M → P* (M /A) be a set-valued mapping where T (m) = {m + A} for all m ∈ M and A is an R-

submodule of M . Then T is a set-valued homomorphism. 
(iii) Let θ be a complete congruence relation in M , i.e., [x]θ + [y]θ = [x + y]θ and r[x]θ = [rx]θ for all x, y ∈ 

M and r∈R. Define T : M → P* (M ) by T (x) = [x]θ , then T is a set-valued homomorphism. 
(iv) Let f : M → N be a module homomorphism and B be a non-empty subset of N . Then the set-valued 

mapping T : M → P*(N ) defined by T (r) = {f (r)}, is a set-valued homomorphism. It is called a set-valued 
homomorphism induced by a module homomorphism. 
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(v) Let T : M → P*(N ) be a set-valued mapping where M = Z and N = Z×Z 
andT (r) = {(0, r)}, for all r ∈ Z, then T is a set-valued homomorphism. 
The following lemmas have been proved in [12]. 
Lemma 3.7. Let A∈ P *(N ) be an R-submodule of N and T : M → P *(N ) 
be a set-valued homomorphism and LT (A) and UT (A) be non-empty, then the 
both of them are R-submodules of M . 
Lemma 3.8. Assume M, N, Q be R-modules and T : M → P *(N ) be a set-valued homomorphism and f : Q 

→ M  be a module homomorphism, then T of is a set-valued homomorphism from Q → P *(N ) such that UTof 
(B) =f −1 (UT (B)) and LT of (B) = f−1 (LT (B)) for all B∈ P *(N ). 

Lemma 3.9. Assume M, N, Q be R-modules and T : M → P*(N ) be a set-valued homomorphism and f : N 
→ Q be a module homomorphism, then Tf is a set-valued homomorphism from M → P*(Q) defined by Tf (m) = 
f (T (m)) such that LT (A) = LT (f−1 (A)) and 푈  (A) = UT (f−1 (A)) for all A∈ P*(Q). 

Theorem 3.10. Let M and N be two R-modules and f : M → N be an isomorphism and T2 : N → P* (N ) be 
a set-valued homomorphism. If T1 (m) = {u∈M | f (u) ∈ T2 (f (m))} for all m∈M , then T1 is a set-valued 
homomorphism from M to P* (M ). 

Proof. First, we show that T1 is a well-defined mapping. Suppose m1 =m2, we have 
y1∈ T1 (m1 )⇔ f (y1 ) ∈ T2 (f (m1 )) = T2 (f (m2 )) 
⇔ y1∈ T1 (m2 ). 
Then T1 (m1 ) = T1 (m2 ). Now we show that T1 (m1 + m2 ) = T1 (m1 ) + T1 (m2 ). 
Suppose y ∈ T1 (m1 + m2 ), then 
f (y) ∈ T2 (f (m1 + m2 )) = T2 (f (m1 ) + f (m2 )) = T2 (f (m1 )) + T2 (f (m2 )). 
Hence there exist a ∈ T2 (f ((m1 )) and b ∈ T2 (f ((m2 )) such that f (y) = a + b. 
Since f is onto, then there exist d, c ∈M such that f (c) = a, f (d) = b . On the other hand, we have f (c) ∈ T2 

(f (m1 )), then c ∈ T1 (m1 ) and also f (d) ∈T2 (f (m2 )). Therefore d ∈T1 (m2 ) and f (y) = a + b = f (c) + f (d) = f 
(c + d). 

Since f  is one to one, it implies y = c + d.  So y ∈ T1 (m1 ) + T1 (m2 ). It follows 
T1 (m1 + m2 )⊆ T1 (m1 ) + T1 (m2 ). 
Conversely, assume that y ∈ T1 (m1 ) + T1 (m2 ), then there are a ∈ T1 (m1 ) , 
b∈ T1 (m2 ) such that y = a + b. Hence 
f (y) = f (a) + f (b) = f (a + b) ∈ T2 (f (m1 )) + T2 (f (m2 )) = T2 (f (m1 + m2 )) 
⇒y∈ T1 (m1 + m2 ). 
So T1 (m1 ) + T1 (m2 ) ⊆ T1 (m1 + m2 ).  Also suppose r ∈ R and m ∈M , then 
T1 (rm) = {u ∈ M | f (u) ∈ T2 (f (rm))} 
= {u ∈ M | f (u) ∈ T2 (rf (m))} 
= {u ∈ M | f (u) ∈ rT2 (f (m))}. 
Suppose u ∈ T1 (m) and r ∈ R. By definition, f (u) ∈ T2 (f (m)), therefore f (ru) = rf (u)∈T2 (f (rm)). It 

implies that ru∈ T1 (rm) which shows rT1 (m) ⊆ T1 (rm). Now suppose that f (u) ∈ T2 (f (rm)) = rT2 (f (m)). So 
there is a t ∈ T1 (m) such that u = rt∈ rT1 (m). It yields that T1 (rm) ⊆ rT1 (m). Hence T1 (rm) = rT1 (m). 

 
Theorem 3.11. Let M and N be two R-modules and f : M → N be an isomorphism and let T2 : N → P* (N ) 

be a set-valued homomorphism. If T1 (m) = {u ∈ M | f (u) ∈ T2 (f (m))} for all m ∈M , and A is a non-empty 
subset of N , then 

(1) f (퐿 (A)) = 퐿 (f (A)); 
(2) f (푈  (A)) = 푈 (f (A)). 
Proof. (1). If y ∈ f (LT1 (A)), then there exists m ∈퐿 (A)such that y = f (m).But if m ∈퐿 (A) (A), then T1 

(m) ⊆ A. Now, let w ∈ T2 (f (m)), since f is onto, there exists z ∈ M such that w = f (z). So, 
w = f (z) ∈ T2 (f (m)) ⇒ z ∈ T1 (m) ⊆ A 
⇒ w = f (z) ∈ f (A) 
⇒ T2 (f (m)) ⊆ f (A) 
⇒y∈퐿  (f (A)). 
Therefore f (퐿 (A)) ⊆퐿  (f (A)). 
Conversely, if y∈퐿  (f (A));thenT2 (y) ⊆ f (A). On the other hand, f  is onto, then there is m ∈ M such that 

y = f (m). Hence, we have T2 (f (m)) ⊆ f (A). 
Let u ∈ T1 (m), then f (u) ∈ f (A), therefore there exists a ∈ A such that f (u) = f (a). But f is one to one, so u 

= a. Hence we have 
u∈ A ⇒ T1 (m) ⊆A ⇒ m ∈퐿 (A) ⇒ y = f (m) ∈ f (퐿 (A)). 
Hence 퐿 (f (A))⊆f (퐿 (A)). 
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(2). If y∈f (푈  (A)), then there exists m ∈푈  (A) such that y = f (m). 
But if y∈푈  (A), then T1 (m) ∩ A ∅. Let a ∈T1 (m) ∩ A. Therefore 

푓(푎) ∈ 푇 푓(푚) ∩ 푓(퐴) ⇒ 푇 푓(푚) ∩ 푓(퐴) ≠ ∅ 
⇒ 푓(푚) ∈ 푈 푓(퐴)  
⇒ 푦 ∈ 푈 (푓(퐴)) 

It means that	푓 푈 (퐴) ⊆ 푈 푓(퐴) .Conversely, if y∈	푈 푓(퐴) . Since f 

is onto, then there exists m ∈ M such that y = f (m) and T2 (y) ∩ f (A) ∅. 
So, we have T2 (f (m)) ∩ f (A) ∅. Hence there is a z ∈ T2 (f (m)) ∩ f (A). It means that there exists a ∈ A 

such that z = f (a) ∈ T2 (f (m)). Therefore a ∈ T1 (m) ∩ A. It obtains that m ∈ UT1 (A). Hence y = f 

(m)∈푓 푈 (퐴) . It follows that 푈 푓(퐴) ⊆푓 푈 (퐴) . 
Finally, the following corollaries which have been proved [14, 24] are a special case of Theorem 3.10, 

Theorem 3.11 and Lemma 3.7.  
 
Corollary 3.12. Let M and N be two R-modules and f : M → N be an isomorphism and let T2 : N → P* (N) 

be a set-valued homomorphism. If T1 (m) = {u∈M | f (u) ∈T2(f (m))} for all m ∈M , and A is a non-empty subset 
of N , then the following hold: 

(1) 퐿 (A) is an R-submodule of M (prime, primary) if and only if 퐿 (A) (f (A)) 
is an R-submodule(prime, Primary) of N ; 
(2) 푈 (A) is an R-submodule (prime, primary) of M if and only if 푈  (f (A)) 
is an R-submodule(prime, primary) of N . 
 
Corollary 3.13. Let M  andN be two R-modules and f : M → N be an isomorphism. Let θ2 be a 

congruence relation on N and Aa subset of M . 
Let 
θ1 = {(m1 ,m2 ) ∈M × M | (f (m1 ), f (m2 )) ∈ θ2 } 
if θ2 is complete congruence relation, then 
 
(1)푓(퐴푝푟 (A) )= 퐴푝푟 (푓(퐴)); 

(2)	푓 퐴푝푟 (퐴) = 퐴푝푟 (푓(퐴)). 
Corollary 3.14. Let M and N be two R-modules and f : M → N be an isomorphism. Let θ2 be a complete 

congruence relation on N and Aa subset of M. Let 
θ1 = {(m1 , m2 ) ∈M × M | (f (m1 ), f (m2 )) ∈ θ2 } 
then	퐴푝푟 (퐴)is an R-submodule of Miff	퐴푝푟 (f (A)) is an R-submodule12 
of N . 
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