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ABSTRACT 

 

We consider a dynamic stochastic knapsack problem with the aim of minimizing the cost of the selected 

items whose weights follow a mixture of Poisson and Exponential distribution using additive model. A graphical 

presentation of our contagious distribution with different values of both parameters and range of X  is made to show 

their behaviors. We also propose an algebraic model for the problem.  
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INTRODUCTION 

 

The knapsack problem is an aspect of optimization problem that is well studied because of it various 

application in different aspect of human endeavor. It is applied in cutting stock problem, capital budgeting problem, 

cargo loading problem, etc. A situation where the parameters of the knapsack problem are known a priori constitute 

what is termed the deterministic knapsack problem, whereas, when any of the parameter is not made known before 

the commencement of the exercise is termed the stochastic knapsack problem.  The knapsack problem can be static 

or dynamic. In static stochastic knapsack problems, a set of items is given, but the rewards and / or sizes are 

unknown. Whereas, in dynamic stochastic knapsack problems, the items arrive over time, and the rewards and/or 

sizes are unknown before arrival. Decisions are made sequentially as items arrive ; Kosuch & Lisser (2008).  

Literature has shown that much work has been done in the static aspect of the knapsack problem than the dynamic. 

Different authors have come up with different illustrations as a way of defining the knapsack problem; Martello & 

Toth (1990) illustrated that “the knapsack problem” can be likened to a hitch-hiker who intends to fill his knapsack 

by selecting from among various possible objects which will give him a maximum comfort. They formulated the 

problem mathematically by numbering the objects from 1 to n and introducing a vector of binary variable jx

),...,2,1( nj  . Where  selectedisjobjectif

otherwisejx 1

0   , then if jp is a measure of the comfort given by object j , jw its 

size and c  the size of the knapsack, the problem will now be  

        


n

j

jj xpMaximize
1

 

         



n

j

ii cxwtoSubject
1

     

 Whereas, Kosuch & Lisser (2008) in their own way defines knapsack problem as a combinatorial problem: 

each item is modeled by a binary decision variable  1,0x with x=1 if the item is chosen and 0 otherwise; He 

added that the knapsack problem is generally linear, that is both the objective function and the constraints are linear. 

 However, in this work , we are interested in a situation where the items we are selecting in order to minimize the 

cost in the firm comes from two distinct population, and we employ additive model of contagious distribution to 

address the problem. By minimizing the cost, we are maximizing the profit of our limited capacity. Our reason for 

the contagious distribution is that, we assume the random variable x  takes up distinct values, nxxx ,...,, 21  with 

positive probabilities and also take up (assume) all values in an interval; say bxa  . The probability 
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distribution that will be obtained here will be as the result of combination of both discrete and continuous 

distribution; see Meyer (1965). 

 

CONTAGIOUS DISTRIBUTION 

From the brief overview of the mixed distribution mentioned in the last paragraph above, it is worth noting 

that this mixture of distribution can take any form; mixture of two or more continuous distribution or discrete 

distribution or even both through either multiplicative or additive model. According to Sandoval-Escalante (2007), 

the use of a mixture of probability distribution functions for modeling samples of data coming from two populations 

have been proposed long time ago by Mood et al(2006) as 

          xFPxPFxFxX 21 1Pr   …………………….(1)  

Where P is a factor used to weigh the relative contribution of each population  10 P , and )(xF is the 

composite exceedance probability. )(1 xF and )(2 xF are the component. He adopted the model in equation (1) and 

used it in his work on a mixed distribution with Extreme value distribution (EV1) and General Extreme Value 

component (GEV) component for analyzing heterogeneous samples as  

)(xF = 

 
      ……………………………….(2) 

The assumption was that the first and second populations behave as Gumbel distribution (EV1) and (GEV) 

distributions respectively. 

In line with our equation (1) by Mood et al, Stirzaker (1994) defines mixed distribution as let  )(1 xf and )(2 xf be 

density functions, and let )(3 xf = )()1()( 21 xfxf   . Where 10   , then 0)(3 xf  and 

11 213   fff  .  

Hence 3f is a density function and is said to be a mixture of 1f and 2f . There are other related works on this mixed 

(additive model) as shown in the literature review. 

 

LITERATURE REVIEW 

 

Willbaut & Hanafi (2008) presented several variants of knapsack problems mostly derived from the 

classical knapsack problem. They mentioned that the problems can be obtained by modifying the constraints or 

changing the objective function. Appropriate techniques that were found to be successful in solving these problems 

were briefly reviewed. They also briefly discussed hybrid methods that combine the strengths of different methods 

such as exact and heuristics. Argali & Geunes (2009) considered a stochastic resource allocation problem that 

generalizes the knapsack problem to account for random item weights that follow a poisson distribution. They 

provided a polynomial-time solution for the continuous relaxation of this problem and a customized branch – and – 

bound algorithm to solve the binary version of the problem. They carried out computational test on a set of 

randomly generated problem instances which showed that their algorithm performs favourably when compared with 

a commercial mixed-integer nonlinear solver. 

Kosuch & Lisser (2008) studied, solved and compared two different variants of a stochastic knapsack 

problem with random weights. They applied a branch-and-bound algorithm to solved continuous sub-problems in 

order to provide upper bounds. They also used a stochastic gradient method for solving the continuous stochastic 

knapsack problem with simple recourse (SRKP) and a second order-cone-programming (SOCP) algorithm as well as 

a stochastic Arrow-Hurwics algorithm for solving the constrained version of the continuous knapsack problem. 

Fortz et al (2008) in their work on the knapsack problem with Gaussian weights stated that the main difficulty in two 

stage stochastic programming with real recourse is the number of scenarios to consider, resulting in a huge number 

of variables and constraints. They overcome this difficulty for the knapsack problem with penalty recourse by 

considering only the Gaussian random variables. They simplified the problem and avoided performing multiple 

integrations for evaluating the objectives using a summation property. Then, they gave a complexity results for a 

stochastic version of the sub-set-sum problem, and for the general problem with constant weights and capacity 

uniformly distributed. 

Kleywegt & Papastavrou (1998) in their work on the dynamic and stochastic knapsack problem (DSKP) were able 

to define and analyzed the problem. For the infinite horizon case it was shown that a stationary deterministic 

threshold policy is optimal among all history-dependent deterministic policies. For the finite horizon case, it was 
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shown that a memoryless deterministic threshold policy is optimal among all history-dependent deterministic 

policies.  Also, the general characteristic of the optimal policies and optimal expected values were derived for 

different cases. 

Kress et al (2007) presented a new knapsack related combinatorial problem termed minmax 

multidimensional knapsack problem (MKP) that was motivated by a military logistics problem. The logistic problem 

was to determine an optimal deployment of inventories that satisfy certain operational requirement in a two days 

scenario. They showed that the resulting two-period stochastic programming problem can be solved by solving a 

series of multidimensional knapsack problems. They developed a practically efficient algorithm for solving the 

multidimensional knapsack problem.                  

However, Cohn & Barnhart (1998) reported that the study of stochastic knapsack problems is limited 

almost exclusively to two cases in which the value of the objects are random, and in which the objects themselves 

arrive as part of a stochastic process. For more detailed coverage on these problems, see; Carraway et al (1993), 

Steinberg & Parks (1979), Henig (1990), Righter (1989), Kleywegt & Papastavrou (1998),etc. it was on this note 

that we decided to expand on this area by introducing the contagious distribution to solve the problem. 

Researchers have made use of contagious distribution to solve different problems. For instance, Thamerus (1996) 

considered the case where a latent variable X cannot be observed directly and instead a variable W = X + U with a 

heteroscedastic measurement error, U was observed. It was assumed that the distribution of the true variable X is a 

mixture of normals and a type of the EM algorithm was applied to find approximate maximum likelihood estimates 

of the distribution parameters of X. 

Decarlo (2002) carried out an extension of signal detection theory (SDT) that incorporate mixture of the 

underlying distributions. The mixture was motivated by the idea that a presentation of a signal shifts the location of 

an underlying distribution only if the observer is attending to the signal; otherwise, the distribution was not shifted 

or was only partially shifted. Their mixture of SDT provided a general theoretical framework that offers a new 

perspective on a number of findings. It can also account for non-linear normal receiver operating characteristic 

curves.  

Willmot (1986) considered the distribution of total claims payable by an insurer when the frequency of 

claims is a mixed Poisson random variable. He showed how in many cases, the total claims density can be evaluated 

numerically using simple recursive formula (discrete or continuous). He also showed how the results might be used 

to derive computational formulae for the total claims density when the frequency distribution is either from the 

Neyman class of contagious distribution, or class of negative binomial mixtures.  

Arana and Leon (2004) considered the performance of a model of mixture normal distributions for dichotomous 

choice contingent valuation data, which allows the researcher to consider unobserved heterogeneity across the 

sample. The model was flexible and approaches a semi-parametric model, since any empirical distribution can be 

represented by augmenting the number of mixture distributions. They found that the mixture of normal model 

reduces bias and improves performance with respect to an alternative semi-parametric model, particularly when the 

sample is characterized by heterogeneous preferences. 

  Literature has shown that most studies on the static stochastic knapsack problem concentrates on normally 

distributed rewards, (Morton & Wood (1998), Goel & Indyk (1999), Sniedovich (1980), Carraway et al (1993)) 

because the normality assumption covers a wide range of practical applications and at the same time, makes the 

static problem more tractable. In this work we are going to deviate completely from the use of normal distribution to 

a mixture of Poisson and Exponential distribution.  

     

THE CONTAGIOUS DISTRIBUTION MODEL 

We employ the additive model of the contagious distribution as shown in Sandoval (2007).  

         xFPxPFxFxX 21 1Pr   

Let )(1 xF  be a Poisson distribution and )(2 xF be an exponential distribution. Therefore      )(xF = 

  x
x

eP
x

e
P 




 



 1
!

                                                        ……………………………… (1) 

 The graphical presentation of our new distribution with different values of xofrangesandP ,,  is as shown 

below: 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig. 1 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 
 

Fig. 2 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig. 3 

 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig. 4 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig. 5 

 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig. 6 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig.7 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig. 8 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig.9 

 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 
Fig. 10 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig. 11 

 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig. 12 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig.   13 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig.   14 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

g1

g2

g3

Key

g1:  = 2, p = 0.2

g2:  = 4

g3:  = 6

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

f X 

g1

g2

g3

Key

g1:  = 2, p = 0.5

g2:  = 4

g3:  = 6

0.5 1.0 1.5 2.0
x

0.2

0.4

0.6

0.8

1.0

1.2

f X 

5440 



J. Basic. Appl. Sci. Res., 2(6)5431-5446, 2012 

 

 
Fig.   15 

p=0.2; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig.   16 

p=0.5; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 
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Fig.   17 

p=0.8; 

f[_,X_]=((p*Exp[-]*^x)/x!)+((1-p)**Exp[-*x]); 

 

 

 
Fig. 18 
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the graph of the same mixture of Poisson and Exponential distribution but the parameter  is a bit increased (0.2, 

0.4 & 0.6) with the weighing factor P  being varied as 0.2, 0.5 & 0.8 respectively. Figure 4 in particular possesses a 

sharp decrease whereas figure 5 & 6 with higher P  value possesses a decay function as the variable x increases. 

In figure 7 - 9, the parameter   was increased again (0.1, 0.5 & 1.0) and weighing factor P  was varied 

as 0.2, 0.5 & 0.8 respectively. It was observed that, though the graphs were still decreasing function, but the rate of 

decay was just mild. In figure 10 - 12, the value of the parameter   was made an integer (1, 2 & 3) and weighing 

factor P  was varied as 0.2, 0.5 & 0.8 respectively. They were all decreasing function graphs, but the rate of decay 

was high as the weighing factor P  increases. However in figure 13 - 15 the parameter   was increased to 2, 4, & 

6 whereas the weighing factor P  was varied as 0.2, 0.5 & 0.8 respectively. They were all decreasing function 

graphs, but the value of P  affected the rate of decay in the sense that as P  increases the rate or level of decay was 

reducing. 

In figure 16 - 18, the parameter   was increased again to 5, 10 & 15 while the weighing factor P  was 

varied as 0.2, 0.5 & 0.8 respectively. The largest value of    decayed to zero as x tends to 0.6 whereas the graph 

of 10   decayed to zero at 9.0x   while 5 decayed as x  increases in figure 16.  However, in figure 17 

& 18, the graph with 15   decayed to zero and got terminated at 65.0x while the one with 10  decayed 

to zero at 8..0x  and continued at that zero level all through. Whereas the graph with 5  were decreasing 

function but did not decay to the level of zero but was continuous as  x  increases.  

 

   PARAMETER ESTIMATION FOR THIS MIXED DISTRIBUTION 

We apply the maximum likelihood method of likelihood estimation as follows;
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At this point, we observe that the function is not differentiable with respect to  . 

 

THE MODEL 

To formalize our model, let ix equals to 1 if item i  is selected and zero otherwise. Also, for convenience, let )(xR

denote our contagious distribution; that is  
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)(xR  =   x
x

eP
x

e
P 




 



 1
!  

Our proposed model will be similar to that of chapter three above. This is because we are still considering a case of 

mixed distribution for the capacity, though with additive form. Hence our objective function is stated as 

Minimize f =   


U

L

U

L

n

i

ii dccvcPhdccuCPgxk )()()()(
1         

............................................     (4)  

S.t             Ccvcuxw
n

i

ii 


)()(
1                                                   

...................................      (5) 

              UCL                    ; U(c).V(c) =0       ;    1)( dccP      

        0ix  and integer 

   

Where )(cU  is the slack variable with the capacity c  

             )(cV  is the surplus variable with respect to the capacity c  

             )(cP  is the probability distribution of the capacity c  

             L   is the lower bound of the capacity  

             U   is the upper bound of the capacity 

             g  is the penalty cost of the slack variable 

             h    is the penalty cost of the surplus variable 

 

we defined the interval   ULQ ,  

there exist  Qxw
n

i

ii 
1

  and 

                     


n

i

ii xw
1

< QQ   

Where Q is a positive real number.  Let  


n

i

ii xw
1

 

                                  Q     ; < QQ   

Hence Q creates a neighbourhood for 



n

i

ii xwQ
1

  

Define  )(cV   =   cxw ii                                            CL  < Q  

              )(cU  =  ii xwC                                           Q < UC   

Substituting these into our objective function we have  

Min f =   




U

Q

Q

L

n

i

ii

n

i

ii

n

i

ii dccxwcPhdcxwCcPgxk ))(())((
111

   

  ..........................      (6) 

 

        =    


U

Q

Q

L

Q

L

n

i

ii

n

i

ii

U

Q

n

i

ii dccCPhdcxwcPhdcxwcPgdccCPgxk )())(())(()(
111
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S.t    Qxw
n

i

ii 
1

 

        


n

i

ii xw
1

< QQ   

ii dx 0   ;       0ix  

Min f =   

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Q
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L

n

i

ii

n

i

ii

n

i

ii dccxwcPhdcxwCcPgxk ))(())((
111

     

..........................    (7)      

        =    


U

Q

Q

L

Q

L

n

i

ii

n

i

ii

U

Q

n

i

ii dcccPhdcxwcPhdcxwcPgdccCPgxk )())(())(()(
111

........4.8 

(Here, we make P(c) = P(x), such that   dxxPdccP )()( ) 

     

    

   
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L
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Q

n
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S.t    Qxw
n

i

ii 
1

 

        


n

i

ii xw
1

< QQ   

ii dx 0   ;       0ix            

CONCLUSION 

 

In this paper, we consider a form of production process in which items (goods) arrive stochastically and the 

weights of these items are made known on its arrival. The profits made with respect to the items accepted for 

processing is maximized and the weight of those items is assumed to follow a contagious distribution of Poisson and 

Exponential distribution using additive model. The graphs of our new distribution are observed to be a decreasing 

function graph generally. However, when the values of the parameter  gets larger, (a positive integer e.g 5, 10, & 

15), the graph possesses a sharp decrements as 5.00  x  and then continued to decay at almost zero level as x

increases. However, when  is small (0.1, 0.2, & 0.3) and (0.1, 0.5 & 1.0), the graph is a decreasing function graph. 

Also, an algebraic stochastic knapsack model is proposed for the item weight following a contagious distribution of 

Poisson and exponential distribution using an additive model. 
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