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ABSTRACT

In descriptive statistics, there are two computational algorithms for determining the correlation coefficient, if we
k m
have two sets of observations b , {y ! }J':l :
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Algorithm 1xr =

. and Algorithm 2:r =

Where ¢ = lz ", and the correlation coefficient formula will be numerically stable only if it is derived
n [E

from the division of covariance over variance for they are numerically stable. It is interesting to discuss, which of

the above formulas is numerically more trustworthy in the machine numbers set and lattice rules? We prove that the

first algorithm is the better than the second algorithm. Numerical experiments show the efficiency of Algorithm 1.

KEYWORDS: Quasi -Monte Carlo methods, lattice rules, computational statistics, round-off error, Lattice-Nystrém.

INTRODUCTION

Random sequence is at the heart of the lattice rules and quasi-Monte Carlo (QMC) methods [8, 15].
Acceptable random sequence of uniform random points for integration lattices and the digital pass a variety of such
tastes:

Serial correlation
Uniformity test
Gap test

Run test
Permutation test.

agrwbdE

Also, the correlation coefficient as an important concept from statistics is a measure of how well trends in the
predicted values follow trends in past actual values. It is a measure of how well the predicted values from a forecast
model "fit" with the real-life data. On the other hand, we observe that there are different methods for computing
correlation coefficient. It is interesting to discuss, which of the methods is numerically more trustworthy in the
machine numbers set?

In this paper, we want to discuss the numerically stability of serial correlation. This is a rather weak test for
interdependence between two sequences. If the serial correlation coefficient is very small, then two sequences are
most independent.

On the other hand, there are some aspects strategies for error analysis were investigated by [1-7,9,11,13,14,17-
21]. Assessing the accuracy of the results of calculations is a paramount goal in numerical analysis. One
distinguishes several kinds of errors which may limit this accuracy:

1) Errors in the input data,
2) Round of error,
3) Approximation errors.

The stability analysis of a numerical method is related to the above sources of error if the amount of the total
error is very small [10,16].
In the following, we recall some basic definitions for this investigation from [ 11].

Definition 1. We define the set of machine numbers by

*Corresponding author: D. Rostamy Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

7645



Rostamy and Jabbari2012

IF =IF(B,m,L,U)={0}UlxeR:x = (—1)Sﬁez aiﬁ“'},

such that the set of floating point numbers with m significant digits , base [; ; 2,04 % 0,0< o, <p-1,

i=1,...,m,s=0,1andtherangeof (L,U) with L<e<U,eeZ, LeZ and U €Z, also, we have:
CardIF=2(U -L+1)(B-1)8"" +1.

Moreover, we recall that underflow and overflow are obtained if € < L and e >U , respectively.

If we consider an algorithm same as y = ¢(X) , such that function ¢:D -~ R™ D € R" X and y are input and
output of ¢, respectively. Therefore, we can give the following decomposition for ¢ :

' Q= (p(r) o (p(r_l) oo (p(o)
@D:D; » Diyy, D; S RY, Dy =D,D,,; SR+ =R™,
where its sequence of elementary operations gives rise to a decomposition of ¢ into a sequence of elementary maps

and leads from x := x via a chain of intermediate results
X=X 5 0O (xX?) = x? 5 ... O (x) = xV =y,
to the result y. Now let us denote y/(i) the ““remainder map" by:
YD =M o pr-Douopd:p»R™ i=0,..,r,
then (//(0) = ¢ with floating-point arithmetic.
On the other hand, if we assume that every go“) is continuously differentiable on D,. Then, we arrive at the

following formula which describes the effect of the input errors AX and the round off errors «; on the result

y =0 = p(x):

Ay = AxT+D = De(x)Ax + D(p(l)(x(l))al 4o +D(p(r)(x(r))a,, + oy, )
where
& 0 0 - 0
0 & 0 - 0 and
E...=| : : N : e |<eps,
0 0 0 €,
a,., = E  x9,

i+1 i+1

Therefore, we consider D pAX where the Jacobian of the matrix Dl//(i), which measures the propagation

or total effect of rounding error is,
DyPa,+...+Dy Va, +a,,. 3

Here, we recall the following mapping:
rd:D—-IF, DcCR,

where rd(x) = x(1+¢),|e[<eps forall xe D and ¢pg = (B, g (we call eps as the machine epsilon or
2

the machine precision).
Definition 2. An algorithm is numerically more trustworthy than another algorithm if, for a given data set X , the
total effect of rounding error (2) smaller for the first algorithm compared to that of the second one.

We convert the computing of the correlation coefficient formula to the following algorithms. Based on the
following algorithms, since the numerically stability variance has been estimated [11], so, here, we only consider the
numerically stability covariance:

MM

k
i=1 j=1

n

k m
A lgorithm 2:r :iz DN (i =Xy - V).
n %

I’]ijxiyj

A lgorithm 1:C=cov(x,y)= -Xy,
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Computation of D@Ax for two algorithms

Proposition 1.The terms DoAx are changed for two algorithms.

Proof: In Algorithm 1 for X = (XX )Y = (VoY) , we have the following statement:

AC =D g .Ax = -
n k N
+(Zx,n,l—x]Ayl+
i=1
If we write,
1 k m R
p=C :(_Z nijxiyj)_xyl
N =7 ran
————
1
F _n—(n“xly1+ SN XY N XY
Ny, +--+N,y,
oF _i Nyt + N0 ¥y
OX ni:
HLLPES Tl | I
Ny X e+ Ny X
OF 1| NppXy 4+ N ,Xy
oy n|:
[Ny X+ + 0,0 X
and
m
_ in Zyj
— j=1
g=xy=-—-=—.
n n
XYy, i+ + XY,
L XYt XY,
=3
X Yot +X Y
Yi+...+ Yo,
og 1
ox n?
Y+ +Y,
and
Xi+...+X,
og 1.
oy n?
y Xp+...+X,
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On the other hand we have:

Zn“y,— 2V

i=t i=t
5§0 _ 1 E anyj 1 § yJ
x n|t T

For derivation related to x;, we can write:

1 1 1 1 1
Fn11y1_n_2y1 + n_n12y2__2y2 +oee t n_nlmym_

n
—i y (n _i)+y (n _£)+...+y (n _ij
n 1 11 n 2 12 n m im n

s
n< UM )

Therefore, for all the other derivations of x= (X, . . . ,X ) we have:

$y,(n -2
le 1j n

u 1

op 1 Zyj(nzj*_j

—_ 1 n

n

and fory=(y,,---,y,)

For simplifying, we can write:

1 1 1 1 1
n_nllxl_n_le + n_nzlxz_n_zxz ot n_nklxk
1

= E—x n,, - el +-E—x n _1 + +-E—x N, — —
n 1 11 n n 2 21 n n k k1

Therefore, for all the other derivations of y-(yi, ...,y m We have:
k l T
HCE
9 _ 1
ay .
1
Exme - 7]

Then we have:
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We simplify this statement once more to reach the relation DpAx of the first algorithm:

:
(Zyjn1j —y_JAx1+--- +(Zyjnkj —y_JAxk
! =1

N, -

+(Zk:xi x_jAy1+---+(Zk:xinim—x_jAym
i=1

i=1
In algorithm 2, we have the following statement:
AC =D ¢p.AX

AC =D ¢.AX =L
n

3||—\

If we write,
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And we can write

_+nkl[_%J(Xk =X )4 Ny, [1_%J(Xk -X) |
e () P

i=1
So, for derivation related to x=(x,..., X k),We can write:

ST 6.7
99 _11:

U RE s

Also, for all the other derivations of y-(yy, ..., Ym):
o9

(l—i—)ﬁ;lnll(x, —x_)+(—i—jlzzllzm;2n” (xI —x_) '
1

oy n

(1215 00 (o) (- L) 5 G- 1) |

Then we have:
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Having compared this relation DpAx for two algorithms, it is demonstrated that this amount for the second
algorithm is more than of the first one.
Hence, proof is completed.

Total effect of rounding for algorithm 1
Proposition 2. A bound for the total effect of rounding error for algorithm 1 is as follows:

k m
|A|< {%{Z DXy Ny +WJ+2y }eps.(l)
i=1 j=1

Here, we assume A: = total effect of rounding error for algorithm 1, such that

1 m ok 1 k m - _
A :[n_zz Xiyjnij£1+n_zzijinij£2_x y£3—xy£4]

j=1i=1 i=1j=1

1 k m - 1 k m PR
+—Zinyjnij35—xyge+(—[zz nijxiyjj—xy]g7.
n == n\ ==

-

Proof: If we consider algorithm 1 then for simplify we can write:

w(o)(xm)zxw:{Zk:xi,zm:yi,x_,y_}
_ =

i=1

O (x )= (x (2)):[Zk: X,y 0, ,x_y_],

0 (x @ )=(x (3)):£
nLi

Therefore, we have:
(2)

W5 )

Q=9 opop"’,
Ay =AX G =p @.AX +D W(l)(x (1))a1+Dl//(2)(X (2))a2+a3
and we can conclude

k
X, S,
i=1 k m
X ©) N @® X,y .n;
O X e o[ Sy, | e, e | R
Y1 j=1 -
S X Xy
Ym vy

(2) 1 k
_(p__) X(3)=n—{ >
i=

Hence, we can write

¢(D)(X1,... Xk Y ’ym): ZyJ )

uvn
O ,v,t,s)= i,
0 O( )[ts j

0@ (p,q ):E—fq,

p O(x D)=y Oy ts)=pPop @ (u v t,s)=p @ (uvn, ts ):uvn”

—ts,
n
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DW(I)(U iv1tis):(ivnij’iunij’_s’_t)’
n n

Dw(l)(x(l))_(%zm:yjn _Zx n, X—J

1

v O (x @)=y @ (p,a)=¢@(p.q )=%—q

Dy )(x (2)):(l,_1}
n

Moreover, we have:

M-
>
o

I
=N

.MB
<
"o
N

o, = pOx @ _ Oy © _

><| —
||
[

<

&,

m T

k
Wy O _ lexiyjnijgfi

j=1 1

o0y @

=@ -Q

8

{zklzmlnuxiy,)—x_y_}@.

> |*‘ <|

X
o, = pOx B _ oDy (2)_(

i=1 j=1
So, we can write:

Ay =Ax =D ¢.Ax +Dy/(1)(x (1))a1+Dy/(2)(x (2))a2+a3:D @.AX

K
leel
i=1
L7 S Y Lo
+ — LT X:nNe: =y, =X € +[,—j
Nz b Y = 172 n
)(_83
Yy
kK m
> Z XiYinjie 1 k m
i1 1115+n[z leanJJTe7,
XV e i=1j=1

Therefore we have

j=1

R 1 LS| N
+—ZZX Yy Ny&s - xy86+£F[ZZnijxiij—xy]g7.

L 1 &M - J—
Ay =D ¢ .AX + [n—ZZX y n;é& + n—ZZijining—xygg—xyg4]

i=1j=1
Therefore, the proof is completed.

Total effect of rounding error for algorithm 2
Proposition 3: A bound for the total effect of rounding error for algorithm 2 is as follows:
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|B|<{ (ZZX y;n ”+>WJ+2y}eps.(H)

i=l j=1
Here, we assume B: = Total effect of rounding error for algorithm 2, such that

B_(——)x_lzl_zm:n”(yj—y)e+(——)yzz g (g =)’ +—(x -X)e,

1 i=1 j=1

m

Zn ( )+ +_(Xk_x)€kznk1( '_y_)+_(yl_y_)gl'izﬂnil(xi_x_)

=1

+...+_(ym Vel anm (x; —x)+—22(x I (TR A LI

i=1 j=1

I (IR S (VIR IR 30 IR S AR I

i=1 j=1 i=1 j=1
Proof: If we consider algorithm 2 then for simplify we can write:

X1

Xk

P (x@)=x® = |

Therefore, we have:
Q= (p(3)o(p(2)o(p(1)o(p(o)

Ay =Ax W=D ¢.AxX +Dy/(1)(x (1))a1+Dn//(2)(x (2))a2+Du/(3)(X (3))a3+a4
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we can conclude

X, El (Xl_x_)
MU L LRI S AN (Xk_i)
Y1 , (yl—y)
Yo X P
v (Yo-v)
% ()
X; =X N _ o
DR PN St M O
Y, -
j=1

Hence, we have
(©) — Y v
(D (Xll 1iny11 ,ym) (Xli 1iny1i ,ym,X,y)a
oM Uy, U W WU LW )=((u,=u) (U —u) (W, —w ), (W, —w )

k k
Al (R AR )=(Zvi D7 )
i=1 i=1

1
(0(3)(p:Q):qunij,
W(l)(x (1)): (/)(3)0(0(2)0(0(1) (ull... U W, W UL W ):
0Pop® (uy—u), (U —u), (W, —w ), (W, —w)

(g o)
=%ii(ui —u)(w - )ny,

i=1 j=1
On the other hand we have

[Seme g
Dk D TEILINES SR L
DIDNCFEURLIN 35 S EBLY
(07§07
Dy ()= 2 [ 3 06 3 (6, =0 |
DINNCIELSLIES B IO
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m 1 k m
1//(2):go(3)ogo(2)(v1,---,Vk,J/l,"'J/m):€0(3)[Z uZ?;j ;ZZanu

i=1 1

moreover, we have

Also, we know that

Therefore we can write

k m
S X 0y (-0 §-Y)

Oy @1 =11=1 g".
n

A
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So, we can write
Ay =D ¢.AX +D!//(1)(X (1))a1+ Dy/(z)(x(z))a +D1//(3)(X (3))a3+a4,

m

Ay =D @.Ax +[—nijx_zzm:nij(yj—y—) (——jy—izk_:z (=)

i=1j=1 -

1 _ W _ 1 _ 0 _
+F(X1_x)5lz nlj(yj —y)+-~+—(xk —x)ngnkj(yj —y)
-1 j

n

1 N _ 1 L, _

+F(yl—y)glznil(xi—x)+--~+n—(ym—y)ngnim(xi—x)
i=1 i

+%g%(xi _X_)(Yj _y_)nijgk+1+nii_lji_l(xi _X_)(yj _y_)nijgr:H-l
+%izk:il(xi _X_)(yl y_)

I
-

It is obviously seen that II>] and this is achieved simply through the opening of the above relations, so, the one
algorithm is much more reliable numerically.
Therefore, the proof is completed.

Computation of the total effect of rounding error for algorithms
In this section our aim is to compute covariance with the use of elementary maps. If we consider algorithm 1,

then we can state it by the following decomposition
k m
22X Y,

i=1 j=1 —Xy

C=cov(x,y)= .

Therefore, we have:
0
X( ) Z(Xll.”’xk'yl’.”’ym)

X© = (Xy o XY Yo Xy +X5)

X(k) =(x1,~~~,Xk,y1,""ym’X_)

X(k+1) Z(Xll"'!xk!yl’.“’ym’x_’yl_i_yz)

X(k+m)=(x XYY e X y_)
<, ¥)

)

(k+m+1) (X X0 Y Y

i=1

k
X(2k+m—1)_(z X|!y11"'1ym!_ y—
(2k +m) L
X {lel +y2’ y_j

i=1

x (2k+2m-2)

x (2kr2m-1) :(iixiyj,x_ij
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X(2k+2m+3) :(liixiyjnij _Wj

1
Also, the following decomposition is given for algorithm 2, if we consider

C=c0v(x,y)=%z i n; (5 =X)(y; =)

-1 j-1
X(O) :(Xl""’xk’yl""’ym)

X0 = (X, X Y1 Y Xy X))

X(k) :(Xl,""xk’yl’“"ym’x_)
x (k+1) Z(Xl’...’xk,yl,‘~',ymyx_:y1+y2)
X(k+m) =(X1’...’Xk’yl,"‘,ymyx_vy_)

x (krm+1) :(XI_X—,XZ,...,Xk,yll..-,ym,x—,y_)

x (2k+m) =(X1—X_x"‘:xk _X—,yl,...,ym,x_,y_)

X(zk+m+l):(Xl_x—,...,)(k _x,yl—y_,yz,...,ym,y_)

X(zk+2m) :(Xl—X_,“':Xk =X, Y. =Y. Y —y_)
P (0, =)+ (= ) (X =)= T Y =)

;(<sk+zm—1>:(il(xi SV T Y —y‘j
X(3k+2m):(zk:(xi ~) (Y =)+ (Y= ) Y —y_j

i=1

X(3k+3m—2) — [Zk: (Xi - X
i=1

S0r)
- [$5 w9

7657



Rostamy and Jabbari2012

R s
o (555 -, - )

m k
if X, . .
It is concluded that if we have {y ! }J=1 and,{ ! }':1 then by using Algorithm 1, we have (2k+2m+3) elementary
maps. Also, for Algorithm 2 we have (3k+3m+1) elementary maps.

Therefore, the second algorithm has also much more stages rather then the first algorithm, and has much more

errors.
Now that we have achieved the more reliable algorithm for the estimation of the covariance and since we knew

that which algorithm has been much reliable for the variance, so we can reach the preferred algorithm for the

correlation coefficient.
Therefore, the following algorithm is much more reliable numerically for the correlation coefficient:

k m
(Zznijxiyj)_nw
i=1 j=1

r = .
\/Zni(xi_x_)zznj(yj_y_)z

RESULTS AND DISCUSSION

In this follows we run two algorithms on two sets of data. Also, we assume that the set of numbers is IF (10,4,L,U).
Our aim is to calculate the relative errors of the two algorithms in the set 1F(10,6,L,U).

Remark 1.e, and e, denote the relative error for algorithm land 2, respectively.
Example 1. We assume that the set of numbers and observations are as follows:
x, =0.1345,x, = 0.2123,x, = 0.3104.

y, =0.1254,y, =0.2213,y, =0.3041,n = 3.

In the set IF (10,4,L,U) we obtain:
X =0.2191 andy = 0.2169 and in the set IF (10,6, L, U)we obtain
X =0.219066 and y = 0.216933

In the set IF (10,4,L,U) we obtain for Algorithm 1 in Table 1.1:
Table 1.1 Result of Algorithm 1for IF (10,4,L,U).
X; Y XY X5Y Xo¥ | Ny | Ny | Ny
0.1345 | 0.1254 | 0.0169 | 0.0266 | 0.0389 | 1 2
0.2123 | 0.2213 | 0.0297 | 0.0470 | 0.0686 | 2
0.3104 | 0.3041 | 0.0409 | 0.0646 | 0.0944 | 3 1

also, in this set for Algorithm 2 we have in Table 1.2:

Table 1.2 Result of Algorithm 2 for IF (10,4,L,U).
X; X; =X Y Yi=Y [Ny | Ny | Ny
0.1345 | -0.0846 | 0.1254 | -0.0915 | 1 2
0.2123 | —0.0068 | 0.2213 | 0.0044 2 4

0.3104 | 0.0913 | 0.3041 | 0.0872 | 3 | 1

and in the set IF (10,6,L,U) we obtain for Algorithm 1 in Table 1.3:
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Table 1.3 Result of Algorithm 1 for IF (10,6,L,U).

X yj lej Xzyj Xzyj Ny Ny, N,
0.1345 | 0.1254 | 0.016866 | 0.026622 | 0.038924 | 1 2 1
0.2123 | 0.2213 | 0.029765 | 0.046981 | 0.068691 | 2 4 2
0.3104 | 0.3041 | 0.040901 | 0.064560 | 0.094392 | 3 1 4
And finally, in this set we can obtain the quantities of Algorithm 2 in Tablel.4:
Table 1.4 Result of Algorithm 2 for IF (10,6,L,U).
X X; =X Y yi—-V Ny [ Ny | Ny
0.1345 | -0.08566 | 0.1254 | -0.091533 | 1 2
0.2123 | —-0.006766 | 0.2213 | 0.004367 2 4
0.3104 | 0.091334 | 0.3041 | 0.087167 3 1

We obtain the relative errors in Table 1.5 for two algorithms:

Table 1.5 Comparison between two algorithms for Example 1.

Alg. 1 Alg. 2
Covariance of observations €=0.3053 € =0.0032
in IF (10,4,L,U)
Covariance of observations C=0.242736 C =0.005991
in IF (10,6,L,U)
Relative error in IF (10,6,L,U) €;=-0.6947 €,=0.9968
Example 2.We assume that the set of numbers and observations are as follows:
x, =0.1123,x, = 0.1234,x , = 0.1356.
y,=0.1113y, =0.1124,y, =0.1135,n =3.
In the set IF (10,4,L,U) we have:
X =0.1238 andy = 0.1124 and in the set IF (10,6, L, U)we obtain
X = 0.123767 and y = 0.112400
In the set IF (10,4,L,U) we obtain for Algorithm 1in Table 2.1:
Table 2.1 Result of Algorithm 1for IF (10,4,L,U).
Xi yj lej Xzyj Xzyj nli nzi nsi
0.1123 | 0.1113 [ 0.0125 | 0.0137 | 0.0151 3 2 1
0.1234 | 0.1124 | 0.0126 | 0.0139 | 0.0152 2 0 2
0.1356 | 0.1356 | 0.1523 | 0.0167 | 0.0184 1 1 2
also in this set for Algorithm 2 we have in Table 2.2:
Table 2.2 Result of Algorithm 2 for IF (10,4,L,U).
X; X; =X Y Y=Y [N | Ny | Ny
0.1123 | -0.0115 | 0.1113 | -0.0011| 3 | 2 | 1
0.1234 | —0.0004 | 0.1124 0 210
0.1356 | 0.0118 | 0.1356 | 0.0011 | 1 | 1 | 2

and in the set IF (10,6,L,U) we obtain for Algorithm lin Table 2.3:
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Table 2.3 Result of Algorithm 1 for IF (10,6,L,U).

X Y j X1y X,Y XY j Ny | Mo | Ny
0.1123 | 0.1113 | 0.012499 | 0.013734 | 0.015092 3
0.1234 | 0.1124 | 0.012623 | 0.013870 | 0.015241 | 2 0
0.1356 | 0.1356 | 0.152279 | 0.016733 | 0.018387 1 1 2

And finally, in this set we can obtain the quantities of Algorithm 2 in Table2.4:

Table 2.4 Result of Algorithm 2 for IF (10,6,L,U).

X X; =X Y Yi—=V | Ny [Ny | Ny
0.1123 | -0.011467 | 0.1113 | —-0.0011 | 3 2
0.1234 | —-0.000367 | 0.1124 0 2 0
0.1356 | 0.011833 | 0.1356 | 0.0011 1 1

We obtain the relative errors in Table 2.5 for two algorithms:

Table 2.5 Comparison between two algorithms for Example 2.

Alg. 1 Alg. 2
Covariance of observations € =0.002647 C=0
in 1IF(10,4,L,U)
Covariance of observations C =0.0026 C =0.000013
in IF(10,6,L,U)
Relative error in 1F(10,6,L,U) €;=-0.0180 e=1

Conclusion

Computational correlation coefficient is playing on ones more important role in the testing independent random
sequences in lattice and QMC, therefore, we try to use this work for the spatial numerical results that reminds a
challenge in lattice-Nystrém and sigmoidal-Nystrdm methods. If deserves special attention and will be consideration
elsewhere (see[12,13]).

Acknowledgments
The authors are very grateful to anonymous reviewers for valuable comments.

REFERENCES

[1] R. L. Ashenhurst & N. Metropolis, Un-normalized floating-point arithmetic, J. Assoc. Comput. Math. 6(1959) ,
415-428.

[2] F. L. Bauer , Computational graphs and rounding error, SIAM J. Numer. Anal. 11 (1974), 87-96.
[3] F. L. Bauer , J. Heinhold, K. Samelson & R. Sauer, Modern Rechenanlagen, Teubner, Stuttgart, 1965.
[4] H. Henrici, Error Propagation for Difference Methods, Wiley, New York, 1963.

[5] D. E. Knuth, The Art of Computer Programming, Semi-numerical Algorithms, vol. 2, Addision-Wesley,
Readig, MA, 1969.

[6] U. Kulisch, Grundzgiie der Intervallrechning, in: D. Lauugwitz (Ed.) ,
Bibliographiches Institut, Mannheim, (1969), 51-98.

[7]1 R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliff, NJ, 1966.

Uberblicke Mathematik, Vol. 2,

[8] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Siam, 1992.

7660



J. Basic. Appl. Sci. Res., 2(8)7645-7661, 2012

[9] H. A. Rademacher , On the accumulation of errors in processes of integration on the high-speed calculating
machines, in Proceedings of a Symposium on Large Scale Digital Calculating Machinery, Annals Comput.
Labor. Harvard University, 16 (1948), 176-185.

[10] D. Rostamy V.F., A Stochastic Partial Differential Equation for Computational Algorithms, Appl. Math.
Comput., 159 (2004), 429-434.

[11] D. Rostamy and E. Yaghesh, Comparison of numerically stability of two algorithms for calculation of
variance, Journal of Sci. Islamic Rep. of Iran, 21(2010), 265-272.

[12] D. Rostamy, M. Jabbari & M. Gadirian, Lattice-Nystrém Method for Solving Integro-Differential Equations
with the Initial Conditions, Submitted paper.

[13] D. Rostamy, and M. Jabbari, Sigmoidal- Nystrém for solving an aerofoil equation, Applied Mathematics and
Computation, 218(2012) 8492-8502

[14] O. Stauning , Automatic Validation of Numerical Solutions, Ph. D. Thesis, Technical University of Denmark,
Lyngby, 1997.

[15] V. Sinescu, Shifted lattice rules based on a general weighted discrepancy for integrals over Euclidean space,
J. Comput Appl. Math 232 (2009) , no. 2, 240-251.

[16] J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1993.

[17] H. M. Taylor& S. Karlin, An Introduction to Stochastic Modeling, Academic Press, New York, 1984.

[18] S. R. Varadhan, Multiplicational Differential Processes, Springer-Verlag, New York,1996.

[19] J. H. Wilkinson, Error analysis of floating-point computation, Numer. Math. 2 (1960), 219-340.

[20] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Wiley, New York, 1963.

[21] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

7661



