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ABSTRACT 
 

Measures of uncertainty in past and residual lifetime distributions have been proposed in the information-theoretic 
literature. Di Crescenzo and Longobardi [4] and Ebrahimi and Pellerey [7] introduced past and residual entropy functions.  
Misagh and Yari [11] and Sunoj et al. [15] proposed the interval entropy functions as useful dynamic measures of 
uncertainty for two sided truncated random variables. In this paper, we aim to study the use of interval entropy in 
characterization of distribution functions. Furthermore, we presented an informative distance which are based on a time 
interval and are more general than the well-known Kullback-Leibler divergence measure. The newly proposed measures 
are consistent in that they are valid in both past and residual lifetimes.  
KEYWORDS: Time interval, Entropy, Characterization, Distance. 
 

1. INTRODUCTION 
  

 Reliability analysis is a branch of statistics which deals with death in biological organisms and failure in mechanical 
systems. There are several uncertainty measures that play a central role in understanding and describing reliability. 
Recently the residual entropy was considered in Ebrahimi and Pellerey [7] which basically measures the expected 
uncertainty contained in remaining lifetime of a system. The residual entropy has been used to measure the wear and tear of 
components and to characterize, classify and order distributions of lifetimes Belzunce et al [1] and Ebrahimi [5]. The 
notion of past entropy was introduced in Di Crescenzo and Longobardi [3] which can be viewed as the entropy of the 
inactivity time of a system.  

     Sunoj et al. [15] has studied the use of information measures for doubly truncated random variables which plays a 
significant role in studying the various aspects of a system when it fails between two time points.  

 Ebrahimi and Kirmani [6] introduced the residual discrimination measure and studied the minimum discrimination 
principle. Di Crescenzo and Longobardi [4] have considered the past discrepancy measure and presented a characterization 
of the proportional reversed hazards model. Furthermore, the use of information measures for doubly truncated random 
variables was explored in Misagh Yari [10, 11]. In this paper, continuing their work, we propose a new measure of 
discrepancy between two doubly truncated life distributions. The remaining of this paper is organized as follows. In section 
2, some results including uniqueness of interval entropy are presented. Section 3 is devoted to definitions of dynamic 
measures of discrimination, including residual and past lifetimes and also the notion of interval discrimination measure is 
introduced. In section 4 we present some results and properties on newly presented measures. 
 
2. Uncertainty in a time interval 

Let 푋 be a non-negative absolutely continuous random variable describing a system failure time. We denote the 
probability density function of 푋 as 푓(푥), the failure distribution as 퐹(푥) = 푃(푋 ≤ 푥) and the survival function as 퐹(푥) =
푃(푋 > 푥) . The Shannon [14] information measure of uncertainty is defined as: 

 
     퐻(푋) = −퐸(log 푓(푋)) = ∫ 푓(푥) log푓(푥)∞ 푑푥 ,                                                                           (2.1) 
 
where log denotes the natural logarithm. The entropy (2.1) is not scale invariant because 퐻(푐푋) = log|푐| +퐻(푋), but it is 
translation invariant, so that 퐻(푐 + 푋) = 퐻(푋) for some constant 푐. The latter property can be interpreted as the shift 
independence of Shannon information.  
     We can rewrite the Shannon entropy as: 
 
     퐻(푋) = 1 −퐸[푟(푋)] 
               = 1− 퐸[휏(푋)]. 
 
We recall that hazard rate (HR) and reversed hazard rate (RHR) of random lifetime 푋 is defined as 푟 (푡) = 푓(푡) 퐹(푡)⁄  and 
휏 (푡) = 푓(푡) 퐹(푡)⁄  respectively. The HR and RHR have been used in the literature of reliability in both theory and 
applications of them. 
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     Ebrahimi and Pellerey [7] considered the residual entropy of the non-negative continuous random variable 푋 at time 푡 
as: 
 
     퐻 (푡) = ∫ ( )

( ) log ( )
( )

∞ 푑푥.                                                                                                            (2.2) 
 

     The entropy (2.2), in fact, measures the uncertainty represented by residual lifetime distribution 푋 at time 푡 > 0. The 
residual entropy has been used to measure the wear and tear of systems and to characterize, classify and order distributions 
of lifetimes. See Belzunce et al. [1] and Ebrahimi and Kirmani [6]. Di Crescenzo and Longobardi [3] considered the past 
entropy and motivated its use in real-life situations. They also discussed its relationship with the residual entropy. Formally, 
the past entropy of 푋 at time 푡 is defined as follows: 

 
    퐻 (푡) = ∫ ( )

( ) log ( )
( )푑푥.                                                                                                              (2.3) 

 
The entropy (2.3) measures the uncertainty about a system which is observed only at deterministic inspection times, and is 
found to be down at time 푡, then the uncertainty relies on which instant in (0, 푡) it has failed. 

Now Recall that the probability density function of  (푋|푡 < 푋 < 푡 ) for all 0 < 푡 < 푡  is given by 
푓(푥) 퐹(푡 ) − 퐹(푡 )⁄  . Sunoj et al. [15] introduced the notion of interval entropy of 푋 in the interval (푡 , 푡 ) as the 
uncertainty contained in (푋|푡 < 푋 < 푡 ) which is denoted by 

 
     퐼퐻(푡 , 푡 ) = −∫

( )
( ) ( ) log ( )

( ) ( )푑푥.                                                                             (2.4)  
 
     We can rewrite the interval entropy as: 
 
     퐻(푡 , 푡 ) = 1− ( ) ( )∫ 푓(푥) log 푟(푥) 푑푥 

                    + ( ) ( )
{퐹(푡 ) log퐹(푡 ) − 퐹(푡 ) log퐹(푡 ) 

                    +	[퐹(푡 ) − 퐹(푡 )] log[퐹(푡 ) −퐹(푡 )]	}. 
 
Note that interval entropy can be negative and also it can be −∞ or +∞ . Given that a system has survived up to time 푡  , 
and has been found to be down at time 푡  , 퐼퐻(푡 , 푡 ) measures the uncertainty about its lifetimes between 푡  and 푡  . 
Misagh and Yari [11] introduced a shift-dependent version of 퐼퐻(푡 , 푡 ).The entropy (2.4) has been used to characterize 
and ordering random lifetime distributions. See Misagh and Yari [10] and Sunoj et al. [15]. 

 
Example 2.1. Suppose 푋 and 푌 be random lifetimes of two systems with joint density function 푓(푥, 푦) = , 0 < 푥 < 2, 0 <

푦 < 4 − 2푥. The marginal densities of 푋 and 푌 are 푓(푥) = (2− 푥)	, 0 < 푥 < 2, and 푔(푦) = (4 − 푦), 0 < 푦 < 4, 

respectively. Simply, 퐻(푋) =  and 퐻(푌) = + log 2 , but because 푋 and 푌, belong to different domains, the use of 

differential entropy to compare 푋 and 푌 informatively is not interpretable. Interval entropy of 푋 and 푌 in the interval 1,  

are 퐼퐻 1, = −0.712 and 퐼퐻 1, = −0.624 respectively. Therefore, in interval 1,  the system 푋 is less 
informative than 푌. 
 

Hereafter, we study the connection of interval entropy with uniform distribution. Suppose 푋 denotes random lifetime 
of a component with uniform distribution in the interval (훼,훽), then we have 퐼퐻 (푡 , 푡 ) = log(푡 − 푡 ). The expected 
uncertainty contained in uniform distribution is related to the distance between two points of time considered. For example 
in 푈(1,11) we can conclude 퐼퐻 (1,3) = 퐼퐻 (7,9). Generally, for subsets 퐴 and 퐵 of (1,11) so that ‖퐴‖ = 푘‖퐵‖, we have 
퐼퐻 (퐵)− 퐼퐻 (퐴) = log , where ‖퐴‖ denotes the length of interval 퐴 and k is a positive real value, but it cannot be 
concluded that 퐼퐻 (퐵) = 푘퐼퐻 (퐴). 
 
Proposition 2.1. Suppose 푋 is a absolutely continues random variable, then for 0 < 푡 < 푡 , 퐼퐻 (푡 , 푡 ) ≤ log(푡 − 푡 ). 
Proof. From (2.4), it is seen that the entropy of a random variable uniformly distributed on (푡 , 푡 ) equals to log(푡 − 푡 ). 
Considering the maximum entropy principal (See Cover and Tomas [2]), the uniform distribution maximizes uncertainty 
under the constraint in which the probability density function is focused on the finite interval (푡 , 푡 ). 
 
Remark 2.1. For fixed 푡 , suppose 퐼퐻 (푡 , 푡 ) = 푘 which 푘 is a positive constant; then for 푡 < log(푘 − 푡 ), we get 
퐼퐻 (푡 , 푡 ) > log(푡 − 푡 ) that conflict proposition 2.1. So, in all points of time, the interval entropy of a random variable 
cannot be constant. 
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Remark 2.2. Note that  log(푡 − 푡 ) is not always reliance; for example, suppose 푋 be an exponential random variable with 
mean1 휃⁄ , then we have 퐼퐻 (푡 , 푡 ) = 휃퐸(푋|푡 < 푋 < 푡 ) − 휃푡 − log ( )

( ) ( )		 whereas lim → , →∞	퐼퐻 (푡 , 푡 ) = 1−
log휃		but lim → , →∞	 log(푡 − 푡 ) = ∞. 

The general characterization problem is to obtain when the interval entropy uniquely determines the distribution 
function. The following proposition attempts to solve this problem. We first give definition of general failure rate (GFR) 
functions extracted from Navarro and Ruiz [12]. 
 
Definition 2.1. The GFRs of a random variable 푋 having density function 푓(푥) and cumulative distribution function 퐹(푥) 
are given by ℎ (푡 , 푡 ) = ( )

( ) ( ) and ℎ (푡 , 푡 ) = ( )
( ) ( ) . 

 
Remark 2.3. GFR functions determine distribution function uniquely. See Navarro and Ruiz [12]. 
 
Proposition 2.2. Let 푋 be a non-negative and continuous random variable, and assume 퐼퐻(푡 , 푡 ) be increasing with 
respect to 푡  and decreasing with respect to 푡 , then 퐼퐻(푡 , 푡 ) uniquely determines 퐹(푥) . 
Proof. By differentiating 퐼퐻(푡 , 푡 ) with respect to 푡  , we have 
 
     ( , ) = ℎ (푡 , 푡 )[퐼퐻 (푡 , 푡 )	−1 + logℎ (푡 , 푡 )], 
 
and 
 
     

( , ) = −ℎ (푡 , 푡 )[퐼퐻 (푡 , 푡 )−1 + logℎ (푡 , 푡 )],   
 
thus, for fixed 푡  and arbitrary 푡 , ℎ (푡 , 푡 ) is a positive solution of the following equation 
 
    푔 푥 = 푥 퐼퐻 (푡 , 푡 ) − 1 + log 푥 − 	 ( , )

	
= 0.                                                             (2.5) 

 
Similarly, for fixed 푡  and arbitrary 푡 , we have ℎ (푡 , 푡 ) as a positive solution of the following equation 
 
    훾 푦 = 푦 퐼퐻 (푡 , 푡 )− 1 + log푦 + 	 ( , )

	
= 0.                                                              (2.6) 

 

By differentiating 푔 and 훾 with respect to 푥  and 푦 , we get 
	

	
= log 푥 + 퐼퐻(푡 , 푡 ), and 

	

	
= log푦 +

퐼퐻(푡 , 푡 ). Furthermore, second-order derivatives of 푔 and 훾 with respect to 푥  and 푦 are > 0	 and > 0 respectively. 

Then the functions 푔 and 훾 are minimized at points 푥 = 푒 ( , ) and 푦 = 푒 ( , ) respectively. In addition, 
푔(0) = − 	 ( , )

	
< 0	,푔(∞) = ∞ and 훾(0) = − 	 ( , )

	
< 0	,훾(∞) = ∞. So, both functions 푔 and 훾 first decrease and 

then increase with respect to 푥  and 푦  respectively. which conclude that equations (2.5) and (2.6) has unique roots 
ℎ (푡 , 푡 ) and ℎ (푡 , 푡 ) respectively. Now, 퐼퐻(푡 , 푡 ) uniquely determines GFRs and by virtue of Remark 2.3, the 
distribution function. 
 
3. Informative distance in a time interval 

In this section, we review some basic definitions and facts for measures of discrimination between two residual and 
past lifetime distributions. We introduce a measure of discrepancy between two random variables at an interval of time.  

Let 푋 and 푌 be to two non-negative absolutely continues random variable describing times to failure of two systems. 
We denote the probability density functions of 푋 and 푌 as 푓(푥) and푔(푦), failure distributions as 퐹(푥) = 푃(푋 ≤ 푥) and 
퐺(푦) = 퐺(푌 ≤ 푦) and the survival functions as 퐹(푥) = 푃(푋 > 푥) and 퐺̅(푦) = 퐺(푌 > 푦) respectively, with퐹(0) =
퐺(0) = 1. Kullback-Leibler [8] informative distance between 퐹 and 퐺 is defined by 

 
     퐼 , = ∫ 푓(푥) log ( )

( )
∞ 푑푥.                                                                                                              (3.1)  

 
where log denotes natural logarithm. Distance (3.1) is known as relative entropy and it is shift and scale invariant. However 
it is not metric, since symmetrization and triangle inequality does not hold. The application of  퐼 ,   as a distance in residual 
and past lifetimes has increasingly studied in recent years. In particular, Ebrahimi and Kirmani [6] considered the residual 
Kullback-Leibler discrimination information of non-negative lifetimes of the systems 푋 and 푌 at time 푡 as: 
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    퐼 , (푡) = ∫ ( )
( ) log ( ) ( )⁄

( ) ̅( )⁄
∞ 푑푥.                                                                                                     (3.2)        

 
Given that both systems have survived up to time 푡, 퐼 , (푡) identifies with the relative entropy of remaining lifetimes 
(푋|푋 > 푡) and(푌|푌 > 푡). Furthermore, the Kullback-Leibler distance for two past lifetimes was studied in Di Crescenzo 
and Longobardi [4] which is dual to (3.2) in the sense that it is an informative distance between past lifetimes (푋|푋 < 푡) 
and (푌|푌 < 푡). Formally, the past Kullback-Leibler distance of non-negative random lifetimes of the systems 푋 and 푌 at 
time 푡 is defined as: 
 
    퐼 ̅ , (푡) = ∫ ( )

( ) log ( ) ( )⁄
( ) ( )⁄ 푑푥.                                                                                                     (3.3) 

 
Given that at time 푡, both systems have been found to be down, 퐼 ̅ , (푡) measures the informative distance between their 

past lives.  
Along a similar line, we define a new discrepancy measure that completes studying information distance between 

random lifetimes 푋 and 푌.  
 

Definition 3.1. The interval distance between random lifetimes 푋 and 푌 at interval (푡 , 푡 ) is the Kullback-Leibler 
discrimination measure between the truncated lives (푋|푡 < 푋 < 푡 ) and (푌|푡 < 푌 < 푡 ): 
 
     퐼퐷 , (푡 , 푡 ) = ∫

( )
( ) ( ) log ( ) [ ( ) ( )]⁄

( ) [ ( ) ( )]⁄ 푑푥.                                                                   (3.4) 
 
Remark 3.1. Clearly 퐼퐷 , (0, 푡) = 퐼 ̅ , (푡), 퐼퐷 , (푡,∞) = 퐼 , (푡) and 퐼퐷 , (0,∞) = 퐼 ,  . 
 
Given that both systems 푋 and 푌 have survived up to time 푡 , and have seen to be down at time 푡 , 퐼퐷 , (푡 , 푡 ) measures 
the discrepancy between their unknown failure times in the interval (푡 , 푡 ). 퐼퐷 , (푡 , 푡 ) satisfies all properties of 
Kullback-Leibler discrimination measure and can be rewritten as: 

 
     퐼퐷 , (푡 , 푡 ) = −∫ ( )

( ) ( ) log ( )
( ) ( )푑푥 − 퐼퐻 (푡 , 푡 ),                                                  (3.5) 

 
where 퐼퐻 (푡 , 푡 ) is the interval entropy of 푋 in (2.4).   
 

An alternative way of writing the distance (3.5) is the following: 
 

     퐼퐷 , (푡 , 푡 ) = log ( ) ( )
( ) ( ) + 	 ( ) ( )∫ 푓(푥) log ( )

( )푑푥.                                                   (3.6) 
 

 
Figure 1. Informative distance between random variables in example 3.1. 

 
The following example clarifies the effectiveness of the interval discrimination measure. 

 
Example 3.1. Suppose 푋 and 푌 be random lifetimes of two systems with common support (0,1) and the density functions 
푓(푥) = 5푥 	 and  푔(푦) = 3푦  respectively. The relative entropy between 푋 and 푌 is 퐼퐷 , = 0.111. Suppose both systems 
are survived up to time 푡 ; if both systems are found to be down at time 푡 , then the distance between their unknown failure 
times must be measured by the interval distance. Three dimensional plot of interval distance between 푋 and 푌 is given in 
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Figure 1. In all areas, interval distance between 푋 and 푌 is smaller than relative entropy, for instance 퐼퐷 , (0.2,0.4) =
0.053 and 퐼퐷 , (0.6,0.8) = 0.012. 
 
     In the following proposition we decompose the Kullback-Leibler discrimination function in terms of residual, past and 
interval discrepancy measure. The proof is straightforward. 
 
Proposition 3.1. Let 푋 and 푌 are two non-negative random lifetimes of two systems. For all푡 < 푡 , the Kullback-Leibler 
discrimination measure can be decomposed as follows: 
 
     퐼 , = [퐹(푡 )− 퐹(푡 )]퐼퐷 , (푡 , 푡 ) + 퐹(푡 )퐼 ̅ , (푡 ) + 	퐹(푡 )퐼 , (푡 ) + 퐼 , (푡 , 푡 ),                   (3.7) 
 
where 
 
     퐼 , (푡 , 푡 ) = 퐹(푡 ) log ( )

( ) + 퐹(푡 ) log ( )
̅( ) + 	 [퐹(푡 ) − 퐹(푡 )] log ( ) ( )

( ) ( ) 
 
is the Kullback-Leibler distance between two trivalent discrete random variables.  
 

The proposition 3.1 admits the following interpretation. The Kullback-Leibler discrepancy measure between random 
lifetimes of systems 푋 and 푌 composed from four parts: (i) The discrepancy between the past lives of two systems at time 
푡 . (ii) The discrepancy between residual lifetimes of 푋 and 푌 that have both survived up to time 푡 . (iii) The discrepancy 
between the lifetimes of both systems in the interval (푡 , 푡 ). (iv) The discrepancy between two random variables which 
determines if the systems have been found to be failing before 푡 , between 푡  and 푡  or after 푡 . 

 
4. RESULTS ON INTERVAL ENTROPY AND INFORMATIVE DISTANCE 

 
In this section we study the properties of 퐼퐷(푡 , 푡 ) and point out certain similarities with those of 퐼 , (푡) and 퐼 ̅ , (푡). 

The following proposition gives lower and upper bounds for the interval distance. We first give definition of likelihood 
ratio ordering.  

Definition 4.1. 푋	is said to be larger than	푌 in likelihood ratio (푋 ≥ 푌) if ( )
( ) is increasing in 푥 over the union of the 

supports of 푋 and 푌. 
Several results regarding the ordering in definition 4.1. was provided in Shaked and Shanthikumar [13]. 
 

Proposition 4.1. Let 푋 and 푌 are random variables with common support (0,∞). Then 

(i) 푋 ≥ 푌 implies 
 

     log ( , )
( , ) ≤ 퐼퐷 , (푡 , 푡 ) ≤ log ( , )

( , ),                                                                                     (4.1) 
 
when 

( )
( ) is decreasing in 푥 > 0, then the inequalities in (4.1) are reversed. 

 
(ii) Decreasing 푔(푥) in 푥 > 0, implies 
 
     log ( , ) ≤ 퐼퐷 , (푡 , 푡 ) + 퐼퐻 (푡 , 푡 ) ≤ log ( , ),                                                               (4.2) 
 
for increasing 푔(푥) then the inequalities in (4.2) are reversed. 
Proof. Because of increasing 

( )
( ) in > 0 , from (3.4), we have   

  

     퐼퐷 , (푡 , 푡 ) ≤ ∫
( )

( ) ( ) log ( ) [ ( ) ( )]⁄
( ) [ ( ) ( )]⁄ 푑푥 = log ( , )

( , ) , 
 
and 
 

     퐼퐷 , (푡 , 푡 ) ≥ ∫ ( )
( ) ( ) log ( ) [ ( ) ( )]⁄

( ) [ ( ) ( )]⁄ 푑푥 = log ( , )
( , ), 
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which gives (4.1). When 
( )
( ) is decreasing, the proof is similar. Furthermore, for all 푡 < 푥 < 푡  decreasing 푔(푥) in 푥 > 0 

implies푔(푡 ) < 푔(푥) < 푔(푡 ), then from (3.5) we get 
 
    퐼퐷 , (푡 , 푡 ) ≤ − logℎ (푡 , 푡 ) − 퐼퐻 (푡 , 푡 ), 
 
and  
 
     퐼퐷 , (푡 , 푡 ) ≥ − logℎ (푡 , 푡 ) − 퐼퐻 (푡 , 푡 ), 
 
so that (4.2) holds. When 푔(푥) is increasing the proof is similar. 
 
Remark 4.1. Consider 푋 and 푌 are two non-negative random variables corresponding to weighted exponential distributions 
with positive rates 휆 and 휇 respectively and with common positive real weight function휔(∙). The densities of 푋 and 푌 are  
푓(푥) = ( )

( ) 	, and 푔(푥) = ( )
( ) 	 respectively, where ℎ(∙) denotes the Laplace transform of 휔(∙) given by ℎ(휃) =

∫ 휔(푥)푒 	푑푥	 , 휃 > 0 , therefore, for 휆 ≠ μ the interval distance between 푋 and 푌 at interval (푡 , 푡 ) is the following 
 
     퐼퐷 , (푡 , 푡 ) = log ( ) ( )

( ) ( ) + log ( )
( ) − (휆 − 휇)퐸(푋|푡 < 푋 < 푡 ).                                         (4.3) 

 
Remark 4.2. Let 푋 be a non-negative random lifetime with density function 푓(푥) and cumulative distribution function 
퐹(푡) = 푃(푋 ≤ 푡). Then the density function and cumulative distribution function for the weighted random variable 푋  
associated to a positive real function 휔(∙) are푓 (푥) = ( )

( ) 푓(푥),   and 퐹 (푡) = ( ( )| )
( ) 퐹(푡), respectively, where 

퐸 휔(푋) = ∫ 휔(푥)푓(푥)푑푥. Then, from (3.6) we have 
 
     퐼퐷 , (푡 , 푡 ) = log퐸(휔(푋)|푡 < 푋 < 푡 ) −퐸 log 휔(푋) 푡 < 푋 < 푡 .                                (4.4) 
 
A similar expression is available in Maya and Sunoj [8] for past life time. Due to (4.4) and from non-negativity of 
퐼퐷 , (푡 , 푡 ) we have 
 
     log퐸(휔(푋)|푡 < 푋 < 푡 ) ≥ 퐸 log 휔(푋) 푡 < 푋 < 푡  
 
which is a direct result of Markov inequality for concave functions. 
 
Example 4.1. For 휔(푥) = 푥  and ℎ(휃) = (푛 − 1)! 휃⁄  the distributions of random variables in Remark 4.1 called 
Erlang distributions with scale parameters 휆 and 휇 and with common shape parameter. The conditional mean of 
(푋|푡 < 푋 < 푡 ) is the following 
 
     퐸(푋|푡 < 푋 < 푡 ) = ( ) ( )∫ 푥 ( )!

푑푥 = ( , ) ( , )
( )! ( ) ( )    

 
where  훾(훼, 푥) = ∫ 푒 푢 푑푢 is the incomplete Gamma function. From (4.3) we obtain 
 
     퐼퐷 , (푡 , 푡 ) = log ( , ) ( , )

( , ) ( , ) − 푛	 log + (휆 − 휇) ( , ) ( , )
( )! ( ) ( ) .      

 
     In the following proposition, sufficient condition for 퐼퐷 , (푡 , 푡 ) to be smaller than 퐼퐷 , (푡 , 푡 ) is provided.  
 
Proposition 4.2. Consider three non-negative random variables 푋  , 푋  and 푌 with probability density functions 푓  , 푓  and 

푔 respectively. 푋 ≥ 푌 implies 퐼퐷 , (푡 , 푡 ) ≤ 퐼퐷 , (푡 , 푡 ). 
 
Proof. From (3.5) we have 
 
     퐼퐷 , (푡 , 푡 ) − 퐼퐷 , (푡 , 푡 ) = −퐼퐷 , (푡 , 푡 ) + ∫

( )
( ) ( ) −

( )
( ) ( ) log ( )

( ) 푑푥 

                                                     ≤ ∫ ( )
( ) ( ) −

( )
( ) ( ) log ( )

( ) 푑푥 

                                                     ≤ log ( )
( ) ∫

( )
( ) ( ) −

( )
( ) ( ) 푑푥 = 0, 

  

8814 



J. Basic. Appl. Sci. Res., 2(9)8809-8815, 2012 

 

 
 

where the first inequality comes from the fact that 퐼퐷 , (푡 , 푡 ) ≥ 0 and the second one follows from the increasing 
( )
( )  

in 푥 > 0.   
 
Example 4.2. Let {푁(푡), 푡 ≥ 0} be a non-homogeneous Poisson process with a differentiable mean function 푀(푡) =
퐸 푁(푡)  such that 푀(푡) tends to ∞ as 푡 tends to ∞ . Let 푅  denote the time of the occurrence of the 푛-th event in such a 

process. 푅  has the following density function 푓 (푥) = ( )
( )!

푓 (푥), 푥 > 0, 푛 = 1,2,3, … , where  

푓 (푥) = − exp −푀(푥) , 푥 > 0, clearly 푓 (푥) 푓 (푥)⁄  is increasing in 푥. It follows from proposition 3.3 that for all 
푚 ≤ 푛 퐼퐷 , (푡 , 푡 ) ≤ 퐼퐷 , (푡 , 푡 ). 
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