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ABSTRACT 
 

In this paper we present a numerical solution for an epidemic model ofhepatitis of type B. In this model 
essential factors for this epidemy are appeared. The factors are: susceptible rate, expositive rate, vaccination 
rate, infection rate and recovery rate. We use of the classical Rung-Kuttamethod of order four to find the 
numerical solutions by Matlab software. We also draw some plots in different cases and discuss on the case 
which the model implies to an epidemic. 
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INTRODUCTION 
 

Mathematical models in biology are essential means for scientific and economical programming [1, 2, 4, 5, 
6].Epidemiologists are interested in know when an epidemic will happen in population. Also how could they 
control an epidemic by changing the initial conditions and the disease factors? 
Our aim is investigate several conditions that cause an epidemic in population. So at first we introduce a model 
for HBV, then we are going to find a numerical solution for differential system corresponding to the HBV 
model. At the end, by drawing some diagrams in different conditions we could easily determine when an 
epidemic will happen in population.  

In the next section of this paper we present a mathematical model for hepatitis of type B (HBV) in an open 
society when the unit time is arbitrary. Then in section 3 we use of Rung-Kutta method to determine its 
solutions.  

In the last section by using of Matlab software we are going to discuss about the epidemic situation in a 
population by drawing some graphs with different parameters. 

First let us explain Rung-Kutta method [3]of higher-order initial-value problems. The techniques discussed 
are limited to thosethat transform a higher-order equation into a system of first-order differential 
equations.Before discussing the transformation procedure, some remarksare needed concerning systems that 
involvefirst-order differential equations. 
An ݉ order system offirst-order initial-value problems has the form 
ଵݑ݀
ݐ݀ = ଵ݂(ݑ,ݐଵ,ݑଶ , …  ,(௠ݑ,
ௗ௨మ
ௗ௧

= ଶ݂(ݐ, ଵݑ ଶݑ, , …  ௠),            (1.1)ݑ,
. 

. 

௠ݑ݀
ݐ݀

= ௠݂(ݐ, ଵݑ ଶݑ, , …  ,(௠ݑ,
forܽ ≤ ݐ ≤ ܾ,with the initial conditionsݑଵ(ܽ) = ,ଵߙ (ܽ)ଶݑ = ଶߙ , … (ܽ)௠ݑ, = ௠ߙ . 
The object is to find݉functions ݑଵ	,ݑଶ	, … ௠ݑ, that satisfy each of the differential equations together with all the 
initial conditions. 
Let an integer ܰ > 0	be chosen and setℎ = ௕ି௔

ே
. Partition the interval [ܽ,ܾ]into ܰ subintervals with the mesh 

pointsݐ௝ = ܽ + ݆�for each݆ = 0, 1, … ,ܰ. 
We use of the notation ijw , for ݆ = 0, 1, … ,ܰand݅ = 0, 1, … ,݉to denotean approximation to ݑ௜(ݐ௝). That is, 

ijw approximates the ݅th solution ݑ௜(ݐ)of (1.1) at the ݆th mesh pointݐ௝  . For the initial conditions, set 
ଵ,଴ݓ = ଵߙ ଶ,଴ݓ, = ,ଶߙ … ௠,଴ݓ, = ௠ߙ . 
Suppose that the valuesݓଵ,௝ ,ଶ,௝ݓ, … , ௠,௝ݓ   have been computed. We obtainݓଵ,௝ାଵ,ݓଶ,௝ାଵ, … ,  ௠,௝ାଵݓ
Byfirst calculating݇ଵ,௝ = ℎ ௜݂൫ݐ௝ ଶ,௝ݓ,ଵ,௝ݓ, , … , (1.2)for݅				௠,௝൯,ݓ ∈ {1, 2, … ,݉}. 
݇ଶ,௜ = ℎ ௜݂ ቀݐ௝ + ௛

ଶ
ଵ,௝ݓ, + ௞భ,భ

ଶ
ଶ,௝ݓ, + ௞భ,మ

ଶ
, … ௠.௝ݓ, + ௞భ,೘

ଶ
ቁ,for݅ ∈ {1, 2, … ,݉}. 
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݇ଷ,௜ = ℎ ௜݂ ቀݐ௝ + ௛
ଶ

ଵ,௝ݓ, + ௞మ,భ
ଶ

ଶ,௝ݓ, + ௞మ,మ
ଶ

, … ௠.௝ݓ, + ௞మ,೘
ଶ
ቁ,for݅ ∈ {1, 2, … ,݉}. 

݇ସ,௜ = ℎ ௜݂ ቀݐ௝ + ௛
ଶ

ଵ,௝ݓ, + ݇ଷ,ଵ,ݓଶ,௝ + ݇ଷ,ଶ, … ௠.௝ݓ, + ݇ଷ,௠ቁ,for݅ ∈ {1, 2, … ,݉}. 

And thenݓ௜,௝ାଵ = ௜,௝ݓ + ଵ
଺(௞భ,೔ାଶ௞మ,೔ାଶ௞య,೔ା௞ర,೔)

,	 for ݅ ∈ {1, 2, … ,݉}.
 

Note that all the values ݇ଵ,ଵ, ݇ଵ,ଶ, … ,݇ଵ,௠ must becomputed before any of the terms of the form  ݇ଶ,௜can be 
determined. Ingeneral, each ݇௟,ଵ, ݇௟,ଶ, … ,݇௟ ,௠must be computed before any of݇௟ାଵ,௜. 
In our epidemic model which will be considered in the next section, we know the initial conditions for 
differential system, soby using of Rung-kutta method and Matlab software we will determine a suitable 
approximation for the solutions of the model. Then in each case of given parameters we could obtain a lot of 
information about the population and theepidemic.  
 
THE MODEL WITH CONTINUOUS TIME 

In this section we are going to introduce a model for HBV in an open societywhen the unit time is 
arbitrary. 
We suppose that per capita transmission rate, birth rate and mortality rateare constant and we denote them by 
,ߚ  denote per unit time of susceptible people and people inthe exposed ߙAlso we assume that݉ and .ߤand	ߣ
period who are selected for vaccination. All parameters areconstant in this model. 
In the HBV model [7] we supposed that we have five compartments, susceptible, exposed, infected, vaccinated 
and recovered.We have denoted them by ܵ,ܧ,  ?and  ܴrespectively. How did we write the differential systemܸ,ܫ
We supposed that an average member of the population makes contact sufficient to transmit infection at time ݐ 
with(ݐ)ܰߚ  others per unit time, whereܰ(ݐ) represents total population size. Since the probability that a 
randomcontact by an infective with a susceptible isௌ(௧)

ே(௧)
, the number of new infections in unit time is ܰ(ݐ) ௌ(௧)

ே(௧)
 , 

giving a rate of new infections that theyare in exposed class(ݐ)ܰߚ ௌ(௧)
ே(௧) (ݐ)ܫ =  is the rate (ݐ)ܫ(ݐ)ܵߚSo.(ݐ)ܫ(ݐ)ܵߚ

ofleaving class	ܵ(ݐ)at time ݐ. Also we assumed all newborns are susceptible. So the rate of new susceptible is 
 is (ݐ)ܵߤand enter to the vaccination class. And(ݐ)ܵ	isthe rate of those who leave class(ݐ)ܵ݉ .ݐ at time (ݐ)ܰߣ
the rate of those wholeavingthepopulation by death.So 

݀ܵ
ݐ݀ = (ݐ)ܫ(ݐ)ܵߚ− + (ݐ)ܰߣ  .(ݐ)ܵ݉−

We suppose a rate(ݐ)ܧߙ of exposed individuals vaccinated so they enter tothe classܸ(ݐ) at time ݐ , and a 
rate(1 −  So .ݐ at time(ݐ)ܫ	of exposed individuals are infected and they enter to the class (ݐ)ܧ݇(ߙ
ܧ݀
ݐ݀

= (ݐ)ܫ(ݐ)ܵߚ − ߤ) + ߙ + (1 −  	.(ݐ)ܧ(݇(ߙ
We know the vaccination is not perfect, so a small fraction ߪ of vaccinated people are going to the infected 
class. So the probability of a random effect contact byan infective with a vaccinated person is ௏(௧)

ே(௧)
 , the number 

of new infectionsin unit time per infective is((ݐ)ܰߪߚ) ௏(௧)
ே(௧)

, giving a rate of new infections൫(ݐ)ܰߪߚ൯ ௏(௧)

ே(௧) 		I(t) =
	βσV(t)I(t). 
Also a rate(ݐ)ܫߛ of infected people are recovered and they enter to the classܴ  at timeݐ and a rate(ݐ)ܫߤ is the rate 
of those who leaving the population because of death. So  
ܫ݀
ݐ݀

= 	βσV(t)I(t) + (1 − α)kE(t) − (μ + γ)I(t). 
We assume a rate(ݐ)ܸߟof vaccinated people recover at time ݐ. So 
ܸ݀
ݐ݀ = 	βσV(t)I(t) + αE(t) + mS(t) − ηV(t). 
A rate(ݐ)ܫ݂ߛ of infective people and a rateߟ ௩݂ܸ(ݐ) of vaccinated individuals are recover at time ݐ. So 
dR
dt

= (ݐ)ܫ݂ߛ + ߟ ௩݂ܸ(ݐ) −  .(ݐ)ܴߤ
The rates(1− and(1 (ݐ)ܫߛ(݂ − ௩݂)(ݐ)ܸߟ left the population by death. So 
ୢ୒
ୢ୲

= −(1 − (ݐ)ܫߛ(݂ − (1− ௩݂)(ݐ)ܰߣ+(ݐ)ܸߟ −  .(ݐ)ܰߤ
 
THE NUMERICAL SOLUTIONS OF THE MODEL 
Now in this section we use of Rung-Kutta method that is mentioned inthe introduction to solve the differential 
system. We define 
ଵ݂൫ݐ, ,(ݐ)ܧ,(ݐ)ܵ ൯(ݐ)ܰ,(ݐ)ܸ,(ݐ)ܫ = (ݐ)ܫ(ݐ)ܵߚ− + (ݐ)ܰߣ  .(ݐ)ܵ݉−
ଶ݂൫ݐ, ,(ݐ)ܧ,(ݐ)ܵ ൯(ݐ)ܰ,(ݐ)ܸ,(ݐ)ܫ = (ݐ)ܫ(ݐ)ܵߚ − ߤ) + ߙ + (1 −  	.(ݐ)ܧ(݇(ߙ
ଷ݂൫ݐ, ,(ݐ)ܧ,(ݐ)ܵ ൯(ݐ)ܰ,(ݐ)ܸ,(ݐ)ܫ = βσV(t)I(t) + (1− α)kE(t) − (μ + γ)I(t). 
ସ݂൫(ݐ)ܧ,(ݐ)ܵ,ݐ, ൯(ݐ)ܰ,(ݐ)ܸ,(ݐ)ܫ = βσV(t)I(t) + αE(t) + mS(t)− ηV(t). 
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ହ݂൫ݐ, ,(ݐ)ܧ,(ݐ)ܵ ൯(ݐ)ܰ,(ݐ)ܸ,(ݐ)ܫ = −(1− (ݐ)ܫߛ(݂ − (1− ௩݂)(ݐ)ܰߣ+(ݐ)ܸߟ  .(ݐ)ܰߤ−
and we suppose that ݓଵ,଴ = ଴ܵ,ݓଶ,଴ = ଷ,଴ݓ,଴ܧ = ସ,଴ݓ,଴ܫ = ଴ܸ andݓହ,଴ = ܰ଴,where ଴ܵ,ܧ଴, ,଴ܫ ଴ܸ and ଴ܰ are the 
initial conditions in population. By using of these assumptions and Matlab programmingthe solutions are 
sketched in the next section for different parameters.

  
DISCUSSION 

 
We suppose thatܯ = 100, ܵ଴ = ଴ܧ,50 = 20, ଴ܫ = 10, ଴ܸ = 10and ଴ܰ = 100.Also ܽ,ܾ, ܿ and ݀ in the diagrams 
are the graphs of ܵ(ݐ),(ݐ)ܧ,  .respectively (ݐ)ܸ and (ݐ)ܫ
In the first case we assume thatthe parameters in the model are ݂ = ߛ,0.7 = ߙ,0.6 = ߚ,0.4 = 0.3,݇ = ߣ,0.7 =
ߟ,0.2 = 0.7, ௩݂ = 0.8,݉ = ߤ,0.4 = 0.1 and ߪ = 0.01. 
 By these assumptions we sketched the solutions in the following diagram(Diagram 1). 
 

 
 
 
 
 
By these results we observe that at first the number of susceptible are reduced very fast, and the number of 
people in exposed, infectious and vaccination groups are going to increase. So there is an epidemic in 
population. This situation continued until around 10 unit times, after that susceptible people are fewer than 
which could epidemic happened. So the number of the other groups are going to reduce. After 50 unit times 
because of ߣ >  the population grow up so the susceptible population is going to increase. Hence epidemic will ߤ
happen again but the epidemic is light. If we increase the vaccination parameter ݉ in population then the second 
epidemic will not happened and disease will control. 

In the second case we assume thatߚ = 0.1 so in this case the transmission rate is lower than the first case 
and the other parameters are similar the pervious case. In this situation the number of infected people are fewer 
than thefirst case and there is no big epidemic in population. The next diagram (Diagram 2) determines this 
situation. 

 
 

Diagram1. ݂ = ߛ ,0.7 = ߙ,0.6 = ߚ,0.4 = 0.3,݇ = 0.7, ߣ = 0.2, ߟ = 0.7, ௩݂ = 0.8,݉ = ߤ,0.4 = ߪ,0.1 = 0.01
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In the third case we assume that the mortality rate and birth rate are equalߣ = ߤ = 0.2	and the transmission 
rate is as same as the second case. So we have the following diagram (Diagram 3). 
 

 
 
 
 
 

We could observe that there is an epidemic in initial time and after some unit times the number of 
susceptible is going to be constant and the number of exposed and infected people are going to decrease. So 
there is no disease in population. 

In the fourth case, we suppose the assumptions of the third case and also we assume that the vaccination 
parameter be larger than the previous cases݉ = 0.6. In this case the number of people who receives the vaccine 
is more than the previous cases. Hence there is no epidemic in population and most of people are susceptible or 
they are vaccinated. That diagram in this case is 
 

Diagram2.݂ = ߛ ,0.7 = ߙ,0.6 = ߚ,0.4 = 0.1,݇ = 0.7, ߣ = 0.2, ߟ = 0.7, ௩݂ = 0.8,݉ = ߤ,0.4 = ߪ,0.1 =
0.01 

Diagram3.	݂ = ߛ ,0.7 = 0.6, ߙ = ߚ,0.4 = 0.1,݇ = ߣ,0.7 = 0.2 = ,ߤ ߟ = 0.7, ௩݂ = 0.8,݉ = ߪ,0.4 =
0.01 
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In the next case there is not enough vaccine in the population. So at first there is a big epidemic in the 
population thus susceptible people are going to decrease but after some time susceptible people will increase. 
Then a light epidemic will happen in population (Diagram 5). 

Also in the last case we consider the case which there is not enough vaccine in population  ߙ = ݉ =
0.1	but people to comply with health issues so the rate of transition disease is smaller than the previous 
casesߚ = 0.05. Wesee that, there is an epidemic in the population but the epidemic is so light (Diagram 6). 

 

 
 
 
 
 
 

Diagram4. ݂ = ߛ ,0.7 = ߙ,0.6 = 0.4, ߚ = 0.1,݇ = 0.7, ߣ = ߟ,0.2 = 0.7, ௩݂ = 0.8,݉ = ߤ,0.6 = ߪ,0.1 =
0.01 

Diagram5.	݂ = ߛ ,0.7 = ߙ,0.6 = 0.1 = ߚ,݉ = 0.1,݇ = 0.7, ߣ = 0.2, ߟ = 0.7, ௩݂ = 0.8, ߤ = ߪ,0.1 =
0.01 
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CONCLUSION 
 

In this paper we find a numerical solution for a HBV model. And by considering initial conditions and 
different parameters we draw some diagrams in some several cases which by these diagrams we could explain 
when an epidemic will happen in a population.  
The limitations of this research are:  

1. All the parameters are constant. 
2. In real case the parameters are regional dependent. 

The above two limitations can be a topic for further research. More precisely considering the HBV model when 
parameters are time dependent can be a topic for research from mathematical and statistical point of views when 
we restrict our self  to a specific country or a region. 
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