On a Model of Hepatitis of Type B

Tayebeh Waezizadeh and Mohammad Reza Molaei
Department of Mathematics, University of Kerman (Shahid Bahonar)
and
Research Center for Modeling in Health
Kerman University of Medical Sciences, Kerman, Iran

ABSTRACT

In this paper we present a numerical solution for an epidemic model of hepatitis of type B. In this model essential factors for this epidemic are appeared. The factors are: susceptible rate, expositive rate, vaccination rate, infection rate and recovery rate. We use of the classical Rung-Kutta method of order four to find the numerical solutions by Matlab software. We also draw some plots in different cases and discuss on the case which the model implies to an epidemic.

KEYWORDS: Hepatitis, Epidemic, HBV, Mathematical model.

INTRODUCTION

Mathematical models in biology are essential means for scientific and economical programming [1, 2, 4, 5, 6]. Epidemiologists are interested in know when an epidemic will happen in population. Also how could they control an epidemic by changing the initial conditions and the disease factors? Our aim is investigate several conditions that cause an epidemic in population. So at first we introduce a model for HBV, then we are going to find a numerical solution for differential system corresponding to the HBV model. At the end, by drawing some diagrams in different conditions we could easily determine when an epidemic will happen in population.

In the next section of this paper we present a mathematical model for hepatitis of type B (HBV) in an open society when the unit time is arbitrary. Then in section 3 we use of Rung-Kutta method to determine its solutions.

In the last section by using of Matlab software we are going to discuss about the epidemic situation in a population by drawing some graphs with different parameters.

First let us explain Rung-Kutta method [3] of higher-order initial-value problems. The techniques discussed are limited to those that transform a higher-order equation into a system of first-order differential equations. Before discussing the transformation procedure, some remarks are needed concerning systems that involve first-order differential equations.

An m order system of first-order initial-value problems has the form

$$
\frac{du_1}{dt} = f_1(t, u_1, u_2, ..., u_m), \\
\frac{du_2}{dt} = f_2(t, u_1, u_2, ..., u_m), \\
\vdots \\
\frac{du_m}{dt} = f_m(t, u_1, u_2, ..., u_m),
$$

for $a \leq t \leq b$, with the initial conditions $u_1(a) = \alpha_1, u_2(a) = \alpha_2, ..., u_m(a) = \alpha_m$.

The object is to find functions $u_1, u_2, ..., u_m$ that satisfy each of the differential equations together with all the initial conditions.

Let an integer $N > 0$ be chosen and set $h = \frac{b-a}{N}$. Partition the interval $[a, b]$ into N subintervals with the mesh points $t_j = a + jh$ for each $j = 0, 1, ..., N$.

We use of the notation w_j^i, for $j = 0, 1, ..., N$ and $i = 0, 1, ..., m$ to denote approximation to $u_i(t_j)$. That is, w_j^i approximates the ith solution $u_i(t)$ of (1.1) at the jth mesh point t_j. For the initial conditions, set

$$w_{1,0} = \alpha_1, w_{2,0} = \alpha_2, ..., w_{m,0} = \alpha_m.$$

Suppose that the values $w_{1,j}, w_{2,j}, ..., w_{m,j}$ have been computed. We obtain $w_{1,j+1}, w_{2,j+1}, ..., w_{m,j+1}$ by first calculating

$$k_{2,i} = h f_i(t_j + \frac{h}{2}, w_{1,j} + \frac{k_{1,1}}{2}, w_{2,j} + \frac{k_{1,2}}{2}, ..., w_{m,j} + \frac{k_{1,m}}{2}), \quad i = 1, 2, ..., m.$$

Then $w_{1,j+1} = w_{1,j} + \frac{k_{1,1}}{6}, w_{2,j+1} = w_{2,j} + \frac{k_{1,2}}{6}, ..., w_{m,j+1} = w_{m,j} + \frac{k_{1,m}}{6}.$

*Corresponding Author: Mohammad Reza Molaei, Department of Mathematics, University of Kerman (Shahid Bahonar) 14111-76169 Kerman, Iran. e-mail: mrmolaei@uk.ac.ir
The numerical solutions of the model

Now in this section we use of Rung-Kutta method that is mentioned in the introduction to solve the differential system. We define

\[f_1(t, S(t), E(t), I(t), V(t), N(t)) = -\beta S(t)I(t) + \lambda N(t) - mS(t). \]
\[f_2(t, S(t), E(t), I(t), V(t), N(t)) = \beta S(t)I(t) - (\mu + \alpha + (1 - \alpha)k)E(t). \]
\[f_3(t, S(t), E(t), I(t), V(t), N(t)) = \beta S(t)I(t) - (\mu + \gamma)I(t). \]
\[f_4(t, S(t), E(t), I(t), V(t), N(t)) = \beta S(t)I(t) + (1 - \alpha)kE(t) - (\mu + \gamma)I(t). \]

THE MODEL WITH CONTINUOUS TIME

In this section we are going to introduce a model for HBV in an open society when the unit time is arbitrary. We suppose that per capita transmission rate, birth rate and mortality rate are constant and we denote them by \(\beta, \lambda \) and \(\mu \). Also we assume that \(m \) denotes per unit time of susceptible people and people that are selected for vaccination. All parameters are constant in this model.

In the HBV model [7] we supposed that we have five compartments, susceptible, exposed, infected, vaccinated and recovered. We have denoted them by \(S, E, I, V \) and \(R \) respectively. How did we write the differential system? We supposed that an average member of the population makes contact sufficient to transmit infection at time \(t \) with \(B N(t) \) others per unit time, where \(N(t) \) represents total population size. Since the probability that a random contact by an infective with a susceptible \(\frac{S(t)}{N(t)} \), the number of new infections in unit time is \(N(t) \frac{S(t)}{N(t)} \), giving a rate of new infections that they are in exposed class \(\beta N(t) \frac{S(t)}{N(t)} I(t) = \beta S(t)I(t) \). So \(\beta S(t)I(t) \) is the rate of leaving class \(S(t) \) at time \(t \). Also we assumed all newborns are susceptible. So the rate of new susceptible is \(\lambda N(t) \) at time \(t \), \(mS(t) \) is the rate of those who leave class \(S(t) \) and enter to the vaccination class. And \(\mu S(t) \) is the rate of those who are recovered and they enter to the vaccination class. So \(\frac{dS}{dt} = -\beta S(t)I(t) + \lambda N(t) - mS(t). \)

We suppose a rate \(\alpha E(t) \) of exposed individuals vaccinated so they enter the class \(V(t) \) at time \(t \), and a rate \((1 - \alpha)kE(t) \) of exposed individuals are infected and they enter to the class \(I(t) \) at time \(t \). So \(\frac{dE}{dt} = \beta S(t)I(t) - (\mu + \alpha + (1 - \alpha)k)E(t) \).

We know the vaccination is not perfect, and then a small fraction \(\sigma \) of vaccinated people are going to the infected class. So the probability of a random effect contact by an infective with a vaccinated person is \(\frac{V(t)}{N(t)} \), the number of new infections in unit time per infective is \(\beta \sigma N(t) \frac{V(t)}{N(t)} I(t) = \beta \sigma V(t)I(t) \).

Also a rate \(\gamma I(t) \) of infected people are recovered and they enter to the class \(R(t) \) at time \(t \), and a rate \(\mu L(t) \) is the rate of those who are leaving the population because of death. So \(\frac{dL}{dt} = \beta \sigma V(t)I(t) + (1 - \alpha)kE(t) - (\mu + \gamma)I(t) \).

We assume a rate \(N(t) \) of vaccinated people recover at time \(t \). So \(\frac{dV}{dt} = \beta \sigma V(t)I(t) + \alpha E(t) + mS(t) - \eta V(t) \).

A rate \(\gamma I(t) \) of infective people and a rate \(\nu f_v V(t) \) of vaccinated individuals are recover at time \(t \). So \(\frac{dR}{dt} = \gamma I(t) + \eta f_v V(t) - \mu R(t) \).

The rates \((1 - f) \gamma I(t) + (1 - f_v)\eta V(t) \) left the population by death. So \(\frac{dN}{dt} = -(1 - f)\gamma I(t) - (1 - f_v)\eta V(t) + \lambda N(t) - \mu N(t) \).
\[f_b(t, S(t), E(t), I(t), V(t), N(t)) = -(1 - f) \gamma I(t) - (1 - f_v) \eta V(t) + \lambda N(t) - \mu N(t). \]

and we suppose that \(w_{4,0} = S_0, w_{2,0} = E_0, w_{3,0} = I_0, w_{4,0} = V_0 \) and \(w_{5,0} = N_0 \), where \(S_0, E_0, I_0, V_0 \) and \(N_0 \) are the initial conditions in population. By using of these assumptions and Matlab programming the solutions are sketched in the next section for different parameters.

DISCUSSION

We suppose that \(M = 100, S_0 = 50, E_0 = 20, I_0 = 10, V_0 = 10 \) and \(N_0 = 100 \). Also \(a, b, c \) and \(d \) in the diagrams are the graphs of \(S(t), E(t), I(t) \) and \(V(t) \) respectively.

In the first case we assume that the parameters in the model are \(f = 0.7, \gamma = 0.6, \alpha = 0.4, \beta = 0.3, k = 0.7, \lambda = 0.2, \eta = 0.7, f_v = 0.8, m = 0.4, \mu = 0.1 \) and \(\sigma = 0.01 \).

By these assumptions we sketched the solutions in the following diagram (Diagram 1).

![Diagram 1](image)

Diagram 1. \(f = 0.7, \gamma = 0.6, \alpha = 0.4, \beta = 0.3, k = 0.7, \lambda = 0.2, \eta = 0.7, f_v = 0.8, m = 0.4, \mu = 0.1, \sigma = 0.01 \)

By these results we observe that at first the number of susceptible are reduced very fast, and the number of people in exposed, infectious and vaccination groups are going to increase. So there is an epidemic in population. This situation continued until around 10 unit times, after that susceptible people are fewer than which could epidemic happened. So the number of the other groups are going to reduce. After 50 unit times because of \(\lambda > \mu \) the population grow up so the susceptible population is going to increase. Hence epidemic will happen again but the epidemic is light. If we increase the vaccination parameter \(m \) in population then the second epidemic will not happened and disease will control.

In the second case we assume that \(\beta = 0.1 \) so in this case the transmission rate is lower than the first case and the other parameters are similar the pervious case. In this situation the number of infected people are fewer than the first case and there is no big epidemic in population. The next diagram (Diagram 2) determines this situation.
In the third case we assume that the mortality rate and birth rate are equal \(\lambda = \mu = 0.2 \) and the transmission rate is as same as the second case. So we have the following diagram (Diagram 3).

We could observe that there is an epidemic in initial time and after some unit times the number of susceptible is going to be constant and the number of exposed and infected people are going to decrease. So there is no disease in population.

In the fourth case, we suppose the assumptions of the third case and also we assume that the vaccination parameter be larger than the previous cases \(m = 0.6 \). In this case the number of people who receives the vaccine is more than the previous cases. Hence there is no epidemic in population and most of people are susceptible or they are vaccinated. That diagram in this case is
In the next case there is not enough vaccine in the population. So at first there is a big epidemic in the population thus susceptible people are going to decrease but after some time susceptible people will increase. Then a light epidemic will happen in population (Diagram 5).

Also in the last case we consider the case which there is not enough vaccine in population $\alpha = m = 0.1$ but people to comply with health issues so the rate of transition disease is smaller than the previous cases $\beta = 0.05$. We see that, there is an epidemic in the population but the epidemic is so light (Diagram 6).
Waezizadeh and Molaei, 2012

CONCLUSION

In this paper we find a numerical solution for a HBV model. And by considering initial conditions and different parameters we draw some diagrams in some several cases which by these diagrams we could explain when an epidemic will happen in a population. The limitations of this research are:
1. All the parameters are constant.
2. In real case the parameters are regional dependent.
The above two limitations can be a topic for further research. More precisely considering the HBV model when parameters are time dependent can be a topic for research from mathematical and statistical point of views when we restrict our self to a specific country or a region.

Acknowledgements. The authors express their thanks to Iran National Science Foundation (INSF) to support this research by the grant 88000773.

REFERENCES