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ABSTRACT 
 

Many mathematical formulations of physical phenomena contain integro-differential equations. In this paper a 
numerical method is developed to solve the convection-diffusion integro-differential equations with a weakly 
singular kernel using the cubic B-spline collocation method. These equations occur in many applications such as in 
the transport of air and ground water pollutants, oil reservoir flow, in the modeling of semiconductors etc. The 
proposed method is based on collocation of cubic B-spline over finite elements, so that the continuity of the 
dependent variable and its first two derivatives throughout the solution range is obtained. The backward Euler 
scheme is used in time direction and the cubic B-spline collocation method is used for the spatial derivative. Some 
numerical examples are considered to illustrate the efficiency of the method developed.  It has been observed that 
the numerical results efficiently approximate the exact solutions. 
KEYWORDS: Cubic B-spline, Collocation method, Integro-differential equation, Weakly singular kernel, 

Convection-diffusion equation. 
Mathematics Subject Classification (2010): 35-XX, 35R09, 45KXX 
 

1 INTRODUCTION 
 

Many phenomena in various fields of engineering, biology, physics formulate the systems, including space and 
time variables, are modeled by partial differential equations.  

When the effects of the memory of the system are considered, the model involves the integral term containing 
the unknown function. Therefore, the obtained partial integro-differential equation (PIDE) consists of partial 
differentiations and integral terms. Partial integro-differential equations can describe some physical situations such 
as compression of poroviscoelastic media, convection-diffusion problems, nuclear reactor dynamics, geophysics, 
plasma physics and electromagnetic theory. 

The convection-diffusion equation is a parabolic partial differential equation, which describes physical 
phenomena where the energy is transformed inside a physical system due to two processes: convection and 
diffusion. The term convection means the movement of molecules within fluids, whereas, diffusion describes the 
spread of particles through random motion from regions of higher concentration to regions of lower concentration.  

It is necessary to calculate the transport of fluid properties or trace constituent concentrations within a fluid for 
applications such as water quality modeling, air pollution, meteorology, oceanography and other physical sciences. 

Solutions of integro-differential equations have recently attracted much attention of researchers.  
Many mathematical formulations of physical phenomena such as, convection (advection)-diffusion, contain 

integro-differential equations. Integro-differential equations are usually difficult to solve analytically so, it is 
required to obtain an efficient approximate solution. 

 
In this paper, the following convection-diffusion integro-differential equation with a weakly singular kernel is 

considered 
 

0

( , ) ( , ) ( , ) ( ) ( , ) ( , ), [0, ], 0
t

t x xxu x t m u x t b u x t K t s u x s ds f x t x L t        (1) 

where, m > 0 and b > 0 are considered to be positive constants quantifying the advection (convection) and diffusion 
processes,  respectively. The integral term is called memory term, the kernel is a weakly singular kernel. 
 

( ) ( ) , 0 1K t s t s        
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Subject to the initial condition 
 

0( ,0) ( ), 0u x g x x L                   (2) 
 
and the boundary conditions 
 

0 1(0,  ) ( ),  ( , ) ( ),  0u t f t u L t f t t      (3) 
 
where, 0 0 1( ), ( ), ( )g x f t f t  are known functions and ( , )f x t  is a given smooth function. 
If the memory term is zero, the Eq. (1) reduces to more general inhomogeneous convection- diffusion equation 
given by 
 

( , ) ( , ) ( , ) ( , ), [0, ], 0t x xxu x t m u x t b u x t f x t x L t      (4) 
 
The source term ( , )f x t , accounts for an insertion or extraction of mass of the system as it evolves with time. 
Specifically, ( , )f x t  represents the time rate of change of concentration due to external factors, such as a source or 
a sink. 
 

2 LITERATURE REVIEW 
 

The integro-differential Eq. (1) along with the constraints (2) and (3) is of primary importance in many 
physical systems, especially those involving fluid flow [1-2].  

Eq. (1) is the one dimensional version of the partial integro-differential equations which describe convection-
diffusion of quantities such as mass, heat, energy, vorticity etc. [1-3]. 

It can be seen that in Eq. (1), the kernel function has a weak singularity at the origin [4].  
This is particularly interesting in viscoelasticity, because it might smooth the solution when the boundary data 

is discontinuous [5]. 
A. F. Soliman et al. [6, 7] used finite difference formula and collocation method for the numerical solution of 

partial integro-differential equation. Haixiang Zhang et al. [8] used quintic B-spline collocation method for solving 
fourth order partial integro-differential equation with a weakly singular kernel.  A. F. Soliman et al. [9], used sixth-
degree B-spline for the numerical solution of integro-partial differential equations. Xuehua Yang et al. [10], used 
quasi-wavelet based numerical method for the solution of fourth order partial integro-differential equations with a 
weakly singular kernel. Haixiang Zhang and Xuli Han [11], used quasi-wavelet collocation method for the solution 
of time-dependent fractional partial differential equation. A. Golbabai and K. Sayevand [12], used homotopy 
perturbation method for the solution of generalized fourth-order fractional diffusion–wave equations. Yasir Nawaz 
[13], used variational iteration and homotopy methods for the solution of fourth-order fractional integro-differential 
equations. The numerical solution of fourth-order partial integro-differential equation with a weakly singular kernel 
is proposed by Xuehua Yang et al. [14], using Crank-Nicolson scheme in time direction and quasi-wavelet method 
for spatial derivatives. Quasi-wavelet based numerical method is proposed by W. T. Long et al. [15], for the solution 
of a class of partial integro-differential equations.  R. C. Mittal and R. K. Jain [16], discussed collocation method 
based on redefined cubic B-spline basis functions for solving convection-diffusion equation.  

In this paper, the approximate solution of convection-diffusion integro-differential equation with a weakly 
singular kernel is proposed using cubic B-spline collocation method. The collocation method with B-spline basis 
functions represents an economical alternative, since it only requires the evaluation of the unknown parameters at 
the grid points. 

The paper is organized into seven sections. The literature review is presented in section 2. Section 3 presents 
the detailed description about the cubic B-spline. The backward Euler Scheme, used to discretize the time derivative, 
involved in Eq. (1.1), is discussed in Section 4. In section 5, cubic B-spline collocation method is developed to solve 
convection-diffusion integro-differential equation. Numerical results are presented in section 6, while the conclusion 
is presented in section 7. 
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3 Cubic B-spline Collocation Method 
Let 0 1 2{0 ... }Nx x x x L         be the partition of 0, L .  The special step length is  

denoted by ,, 1 ii xxhh 1, 2,3,...,i N . 

Let iB be B-spline basis functions with knots at the points , 0,1,...,ix i N . Thus, an  

approximation 1( )nU x to the exact  solution 1( )nu x  at 1n   time level, can be expressed in 

terms of the cubic B- spline basis functions ( )iB x as 
1

1

1

( ) ( ) ( ) (5)
N

n
i i

i
U x c t B x






  

where, ic are unknown time dependent quantities to be determined from the boundary conditions and the 
collocation form of the integro-differential equation. 

 
The cubic B-spline ( )iB x , 1, 0,..., 1i N    can be defined as below 

 
3

2 2 1
3 2 2 3

1 1 1 1
3 2 2 3

1 1 1 13
3

2 1 2

( ) , [ , ],

3 ( ) 3 ( ) 3( ) , [ , ],
1( ) 3 ( ) 3 ( ) 3( ) , [ , ],

( ) , [ , ],
0,

i i i

i i i i i

i i i i i i

i i i

x x x x x

h h x x h x x x x x x x
B x h h x x h x x x x x x x

h
x x x x x

otherwise

  

   

   

  

  


      
       
  



 

The values of successive derivatives ( ) ( ), 1,..., 1; 0,1, 2r
iB x i N r     at nodes are listed in Table 1. 

 

Table 1: Coefficient of cubic B-spline and its derivatives at knots ix  
 

2ix 
 

1ix    

ix  

 

1ix   

 

2ix 
 

 
  Else 

( )iB x
 

0  
1 

 
4 

 
1 

 
0 

 
0 

(1) ( )iB x
 

0 3
h   

0 
 

3
h  

 
0 

 
0 

(2) ( )iB x
 

0  

2
6

h
 

 

2
12
h


 

 

2
6

h
 

 
0 

 
0 

 
4 Discretization in time: a backward Euler scheme 
The time derivative is discretized by the first-order backward Euler scheme. Let ,nktn   where k is the time step, 

)(xu n  is an approximation to the value of u(x, t) at a time point 

t = nt , n = 0, 1,…. 

Considering the temporal discrete process of Eq. (1) at time point 1 ntt , the first expression in left side of Eq.(1) 
is approximated by 

k
txutxu

txu nn
nt

),(),(
),( 1

1


 
    (6) 

Substituting Eq.(6) in Eq.(1), it can be written as 
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),(),()(),(),(
),(),(

1
0

111
1

1





 





n

t

nnxxnx
nn txfdssxusttxubtxum

k
txutxu n

  (7) 

The integral term in the above equation can be calculated as under 

))1)((,(
1

),(

),(

),(),()(

1

0

1
1

1

0
1

0
1

1
00

1

1

1

11
















































 

 









jjtxuk

dsstxu

dsstxus

dsstxusdssxust

n

j
jn

n

j

t

t
jn

n

j
n

t

t

n

tt

n

j

j

j

j

nn

   (8)  

Substituting Eq. (8) in Eq. (7), it can be written as 

),())1)((,(
1

),(),(
),(),(

1
1

0

1
1

1

11
1












 




  n

n

j
jnnxxnx

nn txfjjtxuktxubtxum
k

txutxu 



The above equation can be rewritten as 

)9(1),()(
1

)()(
1

)()()( 1

1

1
2

1
2

111 





 









  nxfkxubkxuxukxukbxukmxu n
n

j

jn
j

nnn
xx

n
x

n





where, ...,3,2,1,)1(),,()(),,()( 11
1

1
1

1  





 jjjbtxfxftxuxu jn
n

n
n   

For the special case n = 0, which is the first time step, the scheme simply leads to 

)()()(
1

)()()( 101
2

111 xfkxuxukxukbxukmxu xxx 









 (10) 

 
5  Discretization in space: cubic B-spline collocation method 
Consider a uniform mesh with the grid points in  to discretize the region 

].,0[],0[ TL   Each ¸ in  is the grid point ),( ni tx where Niihxi ,...,2,1,0,  and 

TMkMnnktn  ,...,,2,1,0, . h and k are the mesh sizes in the space and time directions,  respectively. 
The space discretization of Eq. (9) is carried out using Eq. (5) and the collocation method is implemented by 
identifying the collocation points as nodes. So, for Ni ...,,2,1,0 the following relation can be obtained as 
 

])4(
1

)4[(

)]4(
1

)2(6)(3)4[(

11
1

11
1

1

2

11

1
1

11
1
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1

1
11

12
1

1
1

1
1
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
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

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

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






















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jn
i

jn
i

jn
i
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n
i
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i
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i
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n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

kfcccbkccc

ccckccc
h

kbcc
h

kmccc








Simplifying the above relation leads to the following system of (N + 1) linear equations in 
(N + 3) unknowns 1

1
11

1
1

0
1

1 ,,...,,, 





n
N

n
N

nnn ccccc . 
 

)11(...,,1,0

,)
1

631()
1

4124()
1

631(
2

2
1

1

2

2
1

2

2
1

1
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Fk
h

kb
h

kmck
h

kbck
h

kb
h

kmc i
n
i

n
i

n
i























 


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where,  

11
1

11
1

1

2

11 )4(
1

)4( 









 


  n
i

jn
i

jn
i

jn
i

n

j
j

n
i

n
i

n
ii kfcccbkcccF





 

To obtain the unique solution of the system (11), two additional constraints are required. 
These constraints are obtained from the boundary conditions. Imposition of the boundary conditions enables to 
eliminate the parameters 1c  and 1Nc  from the system (11). 

In order to eliminate 1c  and 1Nc , boundary conditions are used as 
 

)()4(),(
)()4(),(

111

01010

tpccctxu
tpccctxu

NNNN 




  

 

)(4
)(4

111

0101

tpccc
tpccc

NNN 




  

 
After eliminating 1c  and 1Nc , the system (11) is reduced to a tri-diagonal system of (N +1) linear equations in (N 
+1) unknowns. The system can be rewritten in the following matrix form 

,...3,2,1,1  nFAC n  

where, ,...3,2,1,],...,,,[ 111
1

11
20

  nccccC Tnnnnn
N

 
and 

2

2

12 36 6( )

A

6 12 36( )

m k b k m k
h h h

p q r
p q r

p q r
m k m k b k
h h h

  
 
 
 
 
 
 
 
   

  
 

where, )
1

631(),
1

4124(),
1

631(
2

2

2

2

2

2 












 k
h

kb
h

kmrk
h

kbqk
h

kb
h

kmp  

 
In order to find the value of T

NccccC ]...,,,,[ 22
2

2
1

2
0

2  , it is first needed to find the value of 
T

NccccC ]...,,,,[ 11
2

1
1

1
0

1  . The value of 1C  is obtained, solving Eq. (10), as 
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1
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1
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1
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1
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1
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Fk
h

kb
h

kmck
h

kbck
h
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h

kmc iiii





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











 



 

where,  
 

10
1

00
1 )4( iiiii kfcccF    

 
The above Eq. (13) is a system of (N+1) linear equations in (N+3) unknowns .,...,,, 1

1
11

0
1
1  NN cccc  
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To obtain the unique solution of the system, 1c  and 1Nc  are eliminated using boundary conditions. 

The time evolution of the approximate solution 1nU is determined by the time evolution of the vector 1nC . This 

is found by repeatedly solving the recurrence relationship, after the initial vector T
NccccC ]...,,,,[ 00

2
0
1

0
0

0  , has 
been computed from the initial condition. The recurrence relationship is tri-diagonal and so can be solved using the 
Thomas algorithm. 
The initial state vector 0C  can be determined from the initial condition )()0,( 0 xgxu   which gives (N+1) 
equations in (N+3) unknowns. For determining these unknowns the following relations at the knots are used 

)0,()0,(
1...,,3,2,1),()0,(

),0,()0,0(

0

0

Nxx

ii

xx

xuLU
NixgxU

xuU






 

which give a tri-diagonal system of equations in the following matrix 
ECG 0  

where, G

4 2 0
1 4 1

1 4 1

1 4 1
0 2 4

 
 
 
 
 
 
 
 
 

  
 

 
6 Numerical Results 
In this section, the proposed method is tested on five problems.  

Let 
N
LhMnnktn  ,...,,2,1,0, , where, M denotes the final time level Mt  and N+1 is the number of 

nodes. In order to check the accuracy of the proposed method, the maximum norm errors and 2L  norm errors 
between numerical and exact solutions are given by the following definitions 

0

1
22

2 2
0

Maximum norm error: max ( , )

1norm error: ( , )

M
M i M ii N

N
M

M i M i
i

e u x t U

L e u x t U
N

  



 

   
 


 
 
The accuracy of the proposed method is tested, for different values of parameters h, k, m and b. 
 
Some important non-dimensional parameters in numerical analysis are defined as follows: 

Courant number: 
h
kmCr   

Diffusion number: 2h
kbS   

Grid Peclet number: h
b
m

S
CP r

e   

When the Peclet number is high, the convection term dominates and when the Peclet number is low, the diffusion 
term dominates. 
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Example 1 
The following convection-diffusion integro-differential equation is considered 

0,
2
1],1,0[),,(),()(),(),(),(

0




 txtxfdssxusttxubtxumtxu
t

xxxt 


 

 
with m = 0.05, b = 0.4 and the following initial condition 
 

10,sin)0,(  xxxu   
 
and boundary conditions 

Tttutu  0,0),1(),0(  
 
The exact solution of the problem is 

xttxu sin)1(),( 2  
 
The numerical solutions for two different grid sizes N = 100 and N = 50 with k = 0.0001, at different time levels M, 
are presented in Table 2. The numerical solutions for two different grid sizes N = 100 and N = 50 with k = 0.00001, 
at different time levels M, are presented in Table 3. eP  = 0.00125 and eP = 0.0025 for h = 0.01 and h = 0.02, 

respectively. Here, Peclet number eP  is low, which indicates that the diffusion term dominates. In Tables 2 and 3, 

the time increment k, the space increment 
N

h 1
  and time level M are varied to test the accuracy of the proposed 

method, which indicate that the proposed method is substantially efficient. It can be observed from the Tables 2 and 
3, that the proposed method approximates the exact solution very efficiently.  
In order to indicate the effects of the proposed method for larger time level M, the exact solution and the 
approximate solution are plotted using N=100, M=1000 and k =0.00001 as shown in Fig. 1. It is clear from the Fig. 
1 that the numerical solution is highly consistent with the exact solution, which indicates that cubic B-spline 
collocation method is very effective. 
 

 
 

Figure 1: The results at N=100, M=1000 and k=0.00001 for Example 1. 
 
 

112 



Siddiqi and Arshed, 2013 

 
Figure 2: The exact and numerical solutions at M=1000. 

Dotted line: numerical solution, Solid line: the exact solution 
 

Table 2: 


e and
2

e for k = 0.0001           Table 3: 


e  and
2

e for k = 0.00001 
h M

 
eP

 Me


 2Me  

0.01 10 
50 
100 
500 

0.0012
5 

9.4351 E-06 
1.1446 E-05 
1.1943 E-05 
3.5394 E-05 

1.3253 E-07 
3.3175E-07 
5.7312 E-07 
2.4398E-06 

0.02 10 
50 
100 
500 

0.0025 2.6417 E-05 
3.9890 E-05 
4.4030  E-05 
5.3632  E-05 

5.6276 E-07 
1.0863 E-06 
1.3976 E-06 
2.8654 E-06 

 
Example 2 
The following convection-diffusion integro-differential equation is considered 

0,
4
1,]1,0[),,(),()(),(),(),(

0




 txtxfdssxusttxubtxumtxu
t

xxxt 


 

 
with m = 0.5, b = 0.001 and the following initial condition 

10,sin2)0,( 2  xxxu   
 
and boundary conditions 

Tttutu  0,0),1(),0(  
 
The exact solution of the problem is 

xtttxu 22 sin)1(2),(   
 
The numerical solutions for two different grid sizes N = 50 and N = 10 with k = 0.0001, at different time levels M, 
are presented in Table 4. eP  = 10 and eP  = 50 for h = 0.02 and h = 0.1, respectively. Here, Peclet number eP  is 
high, which indicates that the convection term dominates. The numerical solutions for two different grid sizes N = 
100 and N = 50 with k = 0.00001, at different time levels M, are presented in Table 5. eP  = 5 and eP  = 10 for h = 

0.01 and h = 0.02 respectively. Here, Peclet number eP  is high, which indicates that the convection term dominates. 

In Tables 4 and 5, the time increment k, the space increment 
N

h 1
  and time level M are varied to test the 

accuracy of the proposed method, which indicate that the proposed method is substantially efficient. It can be 
observed from the Tables 4 and 5, that the proposed method approximates the exact solution very efficiently. 

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

u

h M
 

eP
 Me


 2Me  

0.01 10 
50 
100 
500 

0.00125 4.3771 E-06 
8.2580 E-06 
9.5573 E-06 
1.1579 E-05 

4.4106 E-08 
9.5928E-08 
1.2493 E-07 
2.2516 E-07 

0.02 10 
50 
100 
500 

0.0025 6.7929 E-06 
2.004 E-05 
2.6950  E-05 
4.0214  E-05 

1.3756 E-07 
4.1125 E-07 
5.8715 E-07 
1.2581 E-06 
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In order to indicate the effects of the proposed method for larger time level M, the exact solution and the 
approximate solution are plotted using N=100, M=1000 and k =0.00001 as shown in Fig. 3. It is clear from the Fig. 
3 that the numerical solution is highly consistent with the exact solution, which indicates that the proposed method is 
very effective.  
In Fig. 4, the exact solution is represented by solid line and the numerical solution is represented by dotted line at 
M=1000 time level.  
 

 
 

Figure 3: The results at N=100, M=1000 and k=0.00001 for Example 2. 
 

 
Figure 4: The exact and numerical solutions at M=1000. 

Dotted line: numerical solution, Solid line: the exact solution 
 

Table 4: 


e  and
2

e for k = 0.0001     Table 5: 


e  and
2

e for k = 0.00001 
 
 
 
 
 
 
 
 
 
 

Example 3 
The following convection-diffusion integro-differential equation is considered 

0,
4
1],4,0[),,(),()(),(),(),(

0




 txtxfdssxusttxubtxumtxu
t

xxxt 


 

10 20 30 40 50
x

0.5

1.0

1.5

2.0

u

h M
 

eP
 Me


 2Me  

0.01 10 
50 
100 
500 

5 6.6157 E-09 
3.3084 E-08 
6.6182 E-08 
3.3144 E-07 

3.9406 E-10 
1.9705 E-09 
3.9417 E-09 
1.9732 E-08 

0.02 10 
50 
100 
500 

10 7.1775 E-09 
3.5196 E-08 
7.1813 E-08 
3.5988 E-07 

5.8970 E-10 
2.9488 E-09 
5.8985 E-09 
2.9526 E-08 

h M
 

eP
 Me


 2Me  

0.02 10 
50 
100 
500 

10 7.0636 E-07 
3.5371 E-06 
7.0872 E-06 
3.5937 E-05 

5.8752 E-08 
2.9412 E-07 
5.8915 E-07 
2.9826 E-06 

0.1 10 
50 
100 
500 

50 3.5325 E-06 
1.7733 E-05 
3.5640 E-05 
1.8429 E-04 

7.5091 E-07 
3.7616 E-06 
7.5412 E-06 
3.8465 E-05 
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with m = 0.1, b = 0.1 and the following initial condition 
 

40,sin2)0,( 2  xxxu  
 
and boundary conditions 

Tttutu  0,0),4(),0(   
 
The exact solution of the problem is 

xttxu 2sin)1(2),(   
 
The numerical solutions for two different grid sizes N = 10 and N = 50 with k = 0.0001 at different time levels M, 
are presented in Table 6. The numerical solutions for two different grid sizes N = 10 and N = 50 with k = 0.00001 at 
different time levels M, are presented in Table 7.  

eP  = 1.25663 and eP  = 0.25132 for 
10
4

h and 
50
4

h , respectively. Here, Peclet number eP corresponds to 

10
4

h  is high, which indicates that the convection term dominates. eP  corresponds to 
50
4

h  is low, which 

indicates that the diffusion term dominates. In Tables 6 and 7, the time increment k, the space increment 
N

h 1
  

and time level M are varied to test the accuracy of the proposed method, which indicate that the proposed method is 
substantially efficient. It can be observed from the Tables 6 and 7, that the proposed method approximates the exact 
solution very efficiently. 
In order to indicate the effects of the proposed method for larger time level M, the exact solution and the 
approximate solution are plotted using N=100, M=100 and k =0.00001 as shown in Fig. 5. It is clear from the Fig. 5 
that the numerical solution is highly consistent with the exact solution, which indicates that the proposed method is 
highly effective. 
In Fig. 6, the exact solution is represented by solid line and the numerical solution is represented by dotted line at 
M=100 time level.  

      
 

Figure 5: The results at N=50, k=0.00001 and M=100 for Example 3. 
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Figure 6: The exact and numerical solutions at M=100. 

Dotted line: numerical solution, Solid line: the exact solution 
 

Table 6: 


e  and
2

e for k = 0.0001   Table 7: 


e  and
2

e for k = 0.00001  
N M

 
eP

 Me


 2Me  

10 10 
50 
100 

1.25663 1.8012 E-04 
8.1725 E-04 
1.5025 E-03 

3.6509 E-05 
1.6629 E-04 
3.0190 E-04 

50 10 
50 
100 

0.25132 6.3946 E-06 
1.7846 E-04 
6.8299 E-04 

7.5264 E-07 
1.4880 E-05 
5.6108 E-05 

 
Example 4 
The following convection-diffusion integro-differential equation is considered 

0,
3
1],1,0[),,(),()(),(),(),(

0




 txtxfdssxusttxubtxumtxu
t

xxxt 


 
 

with m = 0.005, b = 0.5 and the following initial condition 
 

10),1(22cos1)0,( 2  xxxxxu   
 

and boundary conditions 
Tttutu  0,0),1(),0(  

The exact solution of the problem is 
))1(22cos1()1(),( 22 xxxttxu    

 

The numerical solutions for two different grid sizes N = 50 and N = 100 with k = 0.0001 at different time levels 
M, are presented in Table 8. The numerical solutions for two different grid sizes N = 50 and N = 100 with k = 
0.00001 at different time levels M, are presented in Table 9. eP  = 0.0002 and eP  = 0.0001 for h = 0.02 and h = 

0.01, respectively. Here, Peclet number eP  is low, which indicates that the diffusion term dominates. In Tables 8 
and 9, the time increment k, the space increment h and time level M are varied to test the accuracy of the proposed 
method, which indicate that the proposed method is substantially efficient. It can be observed from the Tables 8 and 
9, that the proposed method approximates the exact solution very efficiently. 

In order to indicate the effects of the proposed method for larger time level M, the exact solution and the 
approximate solution are plotted using N=100, M=500 and k =0.00001 as shown in Fig. 7. It is clear from the Fig. 7 
that the numerical solution is highly consistent with the exact solution, which indicates that cubic B-spline 
collocation method is very effective. 

In Fig. 8, the exact solution is represented by solid line and the numerical solution is represented by dotted line 
at M=500 time level.  

10 20 30 40 50
x

0.5

1.0

1.5

2.0
u

N M
 

eP
 Me


 2Me  

10 10 
50 
100 

1.25663 1.9055 E-05 
9.3283 E-05 
1.8239 E-04 

3.7849 E-06 
1.8669 E-05 
3.6800 E-05 

50 10 
50 
100 

0.25132 9.4661 E-07 
4.2270 E-06 
7.1358 E-06 

7.2971 E-08 
2.8923 E-07 
6.3521 E-07 
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Figure 7: The results at N=100, M=500 and k=0.00001 for Example 4. 

 

 

 
Figure 8: The exact and numerical solutions at M=500. 

Dotted line: numerical solution, Solid line: the exact solution 
 

Table 8: 


e  and
2

e for k = 0.0001    Table 9: 


e  and
2

e for k = 0.00001 
h M

 
eP

 Me


 2Me  

0.02 10 
50 
100 
500 

0.0002 2.4282 E-05 
1.0090 E-04 
1.7172 E-04 
4.6998 E-04 

2.0070 E-06 
8.8800 E-06 
1.5778 E-05 
4.1795 E-05 

0.01 10 
50 
100 
500 

0.0001 6.6290 E-06 
3.1392 E-05 
5.9245 E-05 
2.2874 E-04 

5.0793 E-07 
2.4155 E-06 
4.6368 E-06 
1.9337 E-05 

 
Example 5 
The following convection-diffusion integro-differential equation is considered 

0,
3
1],1,0[),,(),()(),(),(),(

0




 txtxfdssxusttxubtxumtxu
t

xxxt 


 
 

with m = 0.5, b = 0.005 and the following initial condition 
 

10,cos)0,(  xxxu   
 

And boundary conditions 
0),1(),1(),1(),0(  tttuttu  

The exact solution of the problem is 
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1

2

3
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u

h M  eP
 Me


 2Me  

0.02 10 
50 
100 
500 

0.0002 2.9281 E-06 
1.2548 E-05 
2.4765 E-05 
1.1947 E-04 

2.4829 E-07 
1.1989 E-06 
2.3503 E-06 
1.0652 E-05 

0.01 10 
50 
100 
500 

0.0001 1.9020 E-06 
3.0941 E-06 
5.9627 E-06 
2.6198 E-05 

4.5422 E-08 
2.0137 E-07 
3.9130 E-07 
1.7531 E-06 
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xttxu cos)1(),(   
  

The numerical solutions at N = 100 with k = 0.0001 and k = 0.00001 at different time levels M are presented in 
Table 10 and 11, respectively. In Tables 10 and 11, the time increment k and time level M are varied to test the 
accuracy of the proposed method, which indicates that the proposed method is substantially efficient. eP  = 1 for h = 

0.01. Here, Peclet number eP  is high, which indicate that the convection term dominates. From Figures 9 and 10, it 
can be observed that the numerical solution is highly consistent with the exact solution, which indicates that the 
proposed method is very effective. 

    
Figure 9: The results at N=100, k=0.00001 and M=100 for Example 5 

 

 
Figure 10: The exact and numerical solutions at M=100. 

Dotted line: numerical solution, Solid line: the exact solution 
 

Table 10: 
2

e for N=100      Table 11: 
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e for N=100 
h M
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k=0.0001

2Me  

k=0.00001

2Me  

0.01 10 
50 
100 
500 

1.0 1.1709 E-06 
2.0104 E-05 
7.2658 E-05 
1.5005 E-03 

1.4690 E-08 
2.5430 E-07 
9.2099 E-07 
1.9062 E-05 
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1.
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3.0131 E-05 
3.3049 E-04 
1.0609 E-03 
2.1712 E-02 

3.7552 E-07 
5.0060 E-06 
1.6837 E-05 
2.8412 E-04 
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Table 12: The following table summarizes the differences of examples 1-5 
Example Exact solution Interval Initial condition Boundary conditions Peclet 

number 

eP  

1 
xttxu sin2)1(),(   

]1,0[  ( , 0) sin ,

0 1

u x x

x



 
 

(0, ) (1, ) 0,

0

u t u t

t T

 

 
 

Low 

2 
xtttxu 2sin)12(2),(   

]1,0[  2( , 0) 2 sin ,

0 1

u x x

x



 
 

(0, ) (1, ) 0,

0

u t u t

t T

 

 
 

High 

3 
xttxu 2sin)1(2),(   ]4,0[   2( , 0) 2 sin ,

0 4

u x x

x 



 
 

(0, ) (4 , ) 0,

0

u t u t

t T

 

 
 

High for 

10

4
h

and low 
for  

50

4
h  

4 

))1(222cos1(

2)1(),(

xxx

ttxu






 

]1,0[  ( , 0)
2(1 cos 2 2 (1 )),

0 1

u x

x x x

x

 



  

 

 

(0, ) (1, ) 0,

0

u t u t

t T

 

 
 

Low 

5 xttxu cos)1(),(   ]1,0[  ( , ) cos ,

0 1

u x t x

x



 
 

(0, ) ( 1),

(1, ) ( 1),

0

u t t

u t t

t T

 

  

 

 

High 

 
7 Conclusion 
 

In this paper, the convection-diffusion integro-differential equation with a weakly singular kernel was solved 
using a collocation method with cubic B-spline basis functions. The backward Euler scheme is used for time 
discretization and the cubic B-spline collocation method is used for space discretization. The proposed method 
efficiently worked to give accurate results for values of eP  upto 50. The performance of the proposed method for 

the considered problems was measured by calculating the maximum norm error and 2L -norm error, presented in 
Tables 2-11. The parameters h, k and M are varied in order to test the accuracy of the proposed method. The 
proposed method is also valid and efficient for different values of , (0 <  < 1). It is observed from the numerical 
examples, that the proposed method possesses a high degree of efficiency and accuracy. Moreover, the numerical 
results are in good agreement with the exact solutions. The numerical solution of time-fractional convection-
diffusion equations using B-spline collocation method are in progress.  
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