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ABSTRACT 
 
In this work Schrödinger quantum equation is modified by considering the electromagnetic waves 
propagating in a media instead of free space. Thus the equation can account for the prosperities of the 
medium and the absorption beside exchange of energy between the particles flux and the media. This 
modified equation is shown to explain inelastic scattering process better than the ordinary Schrödinger 
equation.  
KEYWORDS: Schrödinger Equation, electromagnetic waves, absorption. 

 
1.  INTRODUCTION 

 
 Schrödinger quantum mechanical equation (SE) is shown to be successful in explaining many 
atomic phenomena [1]. It can explain the spectra of simple atoms, elastic scattering process beside 
explaining partially behavior of elementary particles in general [2,3]. Despite these successes SE 
suffers from noticeable setbacus. For instance it can not explain the interaction of elementary particles 
like quarks where it produces severe anomalies and divergences. It is also unable to explain the 
inelastic scattering process completely. The inelastic scattering process is explained by an optical 
potential which is inserted by hand in SE  

 In this paper can attempt was made to construct a model based on the electromagnetic wave 
equation in a medium instead of in free space as in SE.  

The foundation of this new quantum mechanical equation requires finding the energy 
exchange relation between the medium and electromagnetic (E.M) waves and this is done in section 
(2.2). Section (2.3) is devoted to determine the expression of the wave number or the momentum in the 
medium.  

The new quantum mechanical equation based on the E.M wave in a medium is exhibited in 
section (2.4)   
 
2.  The energy exchange relation 

Where the electromagnetic field passed through a medium it exchanges energy and 
momentum with the medium .This cases the wave length , frequency and amplitude to change .In this 
chapter one tries  to see how the  electromagnetic field respond the properties of the medium. To see 
how the medium change the frequency and the energy of electromagnetic waves, we can write the 
wave [4,5,6] 
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Substitute equations (3) in equation (2) to get 
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This relation can be simplified further if one considers  
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When no matter exists 0  , 0  ,    , then the equation (8) become 
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In view of equation (11) it is apparent that the conductivity and electric permittivity affect the 

amplitude and frequency of the electromagnetic wave.  
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3. The wave number relation  
The medium does not affect the frequency of frequency electromagnetic wave only, but may also 

affect the wave number k. This can be done by relating k to the refractive index of the medium n and 
then relating n to   electric permittivity  in susceptibility . Utilizing the definition of k one gets [6]  

2 2 fk n
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            (13) 

Where the refractive index n is given as the ratio of the speed of light in free space c and the speed of 
light in the medium v,  
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While the term v is given by: 
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On the other hand the electric susceptibility is defined to be  
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Where   represents the polarization while E stands for the electric field intensity. The electric flux 
density is also given by [8] 
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Thus the electric permittivity is given by  
1 4           (18) 

If it happens that the polarization   is not parallel to E , then it is better to decompose    to two 
components , 1E which is parallel to E , and imaginary part 

2
E which is perpendicular to E i.e. 

[9] 
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As the result the permittivity   can be written also in a complex form;[10] 
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In view of relations (4-13), (4-15) and (4-20), it is clear that n also is a complex parameter, i.e.  
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Thus the wave number k can be given from (22) and (13) to be  
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where, 0k is the wave number in vacuum while 1k stands for the wave number in the medium. Using 
relation (27), (31) in equation (2) we obtain  
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In view of equation (28), (37) and (38) one can decide that the wave number and  electromagnetic 
amplitude are affected by the refractive index 1n  , magnetic susceptibility  as well as conductivity 

1 and relaxation time  . 
 
4.  Modified Schrödinger equation  
The ordinary Schrödinger equation  describes as; [11,12] 

 i kx tAe            (39) 
In a free space when it enter vacuum in which the field distribute it self through the expression [13,14] 
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The above expressions form which the ordinary Schrödinger equation are derived from any term which 
feel the existence of matter .This defect can be cured if are takes in to account the expression for the 
wave which is propagated a medium, where the effect of the medium manifests it self through the 
change in and amplitude energy, momentum through, the refractive index, susceptibility and 
conductivity. Thus expression  
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Is more convenient to describe the effect derived of the medium on the atomic entities (particles) than 
equation (39) . [15] 
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This equation represents the generalized Schrödinger equation (G.S.E) , which feel the existence of the 
medium via the refractive index 1n  and the terms  , and 0c which are dependent on the electrical 
and magnetic properties of the medium. It is un like ordinary Schrödinger equation (S.E)which does 
not feel the existence of the medium but feels the effect of the potential .The (S.E) this is non realistic 
for it gives the same result for particles in a certain  field divided of any medium , and particles  in the 
same field but inside a certain medium . This is in conflict with experiment where the behavior of the 
particles in a field only is different from behavior in a field inside matter at the same times. 
     
5.  Solution of generalized Schrödinger equation in free field space 
G.S.E solution for a particle in a certain medium can be simplified by considering the field to be very 
weak inside the medium i.e. by sitting  
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Utilizing equation (51) in equation (49) yields 
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Thus the energy ranges 
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are allowed. Since one consider the potential vanishes, i.e. V=0 , hence the electron 
is free i.e. 0E   .This means that the energy range of the conduction band to be 
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                                                                       (57) 
As a result a pure insulator where 0  there is  no conduction band since 00  E  .  
 

6. RESULTS AND DISCUSSION 
 
 Unlike Schrödinger equation, there are additional terms which describe the exchange of 
energy and momentum between the particle and the medium other than the potential term.  
 Equation (44) shows that the second terms in this equation reflects the absorption or gain of 
the energy of the medium. Presence of χ and ε reflects the effects of the electric polarization field and 
the electric force of the bulk matter on the particle energy.  
 The effect of the relaxation time via σ as well as the number of free electrons, which at the 
same time represents the number of ionized atoms in the matter, as well as the electrical resistance 
which manifests it self through the term ε on energy absorption is apparent via equation (45) .  The 
numbers of ions as well as the relaxation time τ beside magnetic resistance contribute to momentum 
losses as equation (46) reads 
 
6.10 Conclusion  
 

The above discussion shows that the GSE may certainly behave better than SE, since its 
expression for energy and momentum is sensitive and feels the effect of mechanical magnetic and 
electrical resistance. It's also sensitive to the number of atoms and electrons on the bulk matter. 
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