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ABSTRACT 
 
In this paper we consider generalized contractive mapping concerning generalized distance. The existence 
theorems for fixed points of ߙ -admissible maps in complete metric spaces are proved and some 
generalization of fixed point theorems are obtained using w-distance. Then as corollaries some fixed point 
theorems in ordered metric spaces are proved. Our results generalize, improve and simplify the previous 
results in the literature. 1  
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1  INTRODUCTION AND PRELIMINARY 

 
The Banach fixed point theorem for contraction mappings has been generalized and extended in many 

directions [1-8,20-22]. 
Recently, Samet, Lakzian [8], Samet et al. [15] introduced new types of generalized contractive 

mappings and established fixed point theorems for such mappings in complete metric spaces. Nieto and 
Rodriguez-Lopez [9,10], Ran and Reurins [14], Petrusel and Rus [13] presented some new results for 
contractions in partially ordered metric spaces.  

Kada, Suzuki and Takahashi [7,18] in 1996 introduced the concept of ݓ-distance on a metric space and 
prove some fixed point theorems. The study of fixed point theorem concerning generalized distance 
followed in other papers, see [7,19-21]. In this paper, Using concept of w-distance, we generalize 
contractions and prove some fixed point theorems in ordered metric spaces. Also, we introduce ߙ-admissible 
maps and we study generalized contractions and prove various fixed point theorens for generalized 
contractive mappings by using the concept of w-distance in complete metric spaces. Finally, as corollaries 
we stablish some fixed point theorems for such mappings in ordered metric spaces. Our results generalize 
and improve some results in [2-8,12-17]. 
Definition 1.1 ([7,16,21]) Let X be a metric space with metric d. Then a function ݌:ܺ × ܺ → [0,∞) is called 
a w-distance on X if the following are satisfied: 
(i) ݔ)݌, (ݖ ≤ (ݕ,ݔ)݌ + ,ݕ)݌ ,ݔ for any (ݖ ,ݕ ݖ ∈ ܺ; 
(ii) for any ݔ ∈ ,ݔ)݌ ,ܺ . ):ܺ → [0,∞) is lower semi-continuous; 
(iii) for any ߝ > 0, there exists ߜ > 0 such that ݔ)݌, (ݖ ≤ (ݕ,ݖ)݌ and ߜ ≤ ,ݔ)݀ imply ߜ (ݕ ≤  .ߝ
Let recall that a real-valued function ݂ defined on a metric space X is said to be lower semi-continuous at a 
point ݔ଴  in X if either liminf௫೙→௫బ݂(ݔ௡) = ∞  or ݂(ݔ଴) ≤ liminf௫೙→௫బ݂(ݔ௡) , whenever ݔ௡ ∈ ܺ  for each 
݊ ∈ ܰ and ݔ௡ →  .଴ݔ
  
Lemma 1.2 ([7,20]) Let X be a metric space with metric ݀ and ݌ be a w-distance on X. Let {ݔ௡} and {ݕ௡} be 
sequences in X, let {ߙ௡} and {ߚ௡} be sequences in [0,∞) converging to zero, and let ݕ,ݔ, ݖ ∈ ܺ. Then the 
following hold: 
(i) if ݌(ݔ௡,ݕ) ≤ ௡ߙ  and ݔ)݌௡ (ݖ, ≤ ݊ ௡ for anyߚ ∈ ܰ, then ݕ = (ݕ.ݔ)݌ In particular, if .ݖ = 0 and ݔ)݌, (ݖ =
0, then ݕ =  ;ݖ
(ii) if ݔ)݌௡ (௡ݕ, ≤ ,௡ݔ)݌ ௡ andߙ (ݖ ≤ ݊ ௡ for anyߚ ∈ ܰ, then ݀(ݕ௡, (ݖ → 0; 
(iii) if ݔ)݌௡ (௠ݔ, ≤ ௡ߙ  for any ݊,݉ ∈ ܰ with ݉ > ݊, then {ݔ௡} is a Cauchy sequence; 
(iv) if ݌(ݔ,ݕ௡) ≤ ݊ ௡ for anyߙ ∈ ܰ, then {ݔ௡} is a Cauchy sequence. 
Definition 1.3 ([15]) Let ܶ:ܺ → ܺ and ߙ:ܺ × ܺ → [0,∞). We say that ܶ is ߙ-admissible if  

,ݔ)ߙ  (ݕ ≥ 1 ⇒ (ݕܶ,ݔܶ)ߙ ≥ ݕ,ݔ	ݎ݋݂										1 ∈ ܺ.  
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2  MAIN RESULTS 
 
First we introduce the following notations: 
(i) We denote by Ψ the set of functions ߰: [0,∞) → [0,∞) satisfying the following hypotheses: 
(ℎଵ) ߰ is continuous and nondecreasing, 
(ℎଶ) ߰(ݐ) = 0 if and only if ݐ = 0. 
(ii) We denote by Φ the set of functions ߮: [0,∞) → [0,∞) satisfying the following hypotheses: 
(ܿଵ) ߮ is continuous, 
(ܿଶ) ߮(ݐ) = 0 if and only if ݐ = 0. 
 
Since in every metric space (ܺ, ݀), ݀ is a ݓ-distance, so our theorems are generalization of theorems in 
[8,15]. 
The following theorem is a generalization of theorem (2.1) in [15].  
 
Theorem 2.1 Let (ܺ,݀) be a complete metric space and ܶ:ܺ → ܺ be an operator. Let ݌ be a ݓ-distance on 
(ܺ, ݀) and suppose that, 
(i) ܶ is ߙ-admissible, 
(ii) there exists ݔ଴ ∈ ܺ such that ߙ(ݔ଴,ܶ(ݔ଴)) ≥ 1, 
(iii) ܶ is orbitally continuous, 
(iv) ܶ be a self-mapping satisfying  

,ݔ)ߙ  (((ݕ)ܶ,(ݔ)ܶ)݌)߰(ݕ ≤ ((ݕ,ݔ)݌)߰ − ,ݔ)݌)߮   (1)                           ((ݕ
 for ߰ ∈ Ψ and ߮ ∈ Φ. 
Then, ܶ has a fixed point. 
 Proof: Let ݔ଴ ∈ ܺ such that ߙ(ݔ଴,ܶݔ଴) ≥ 1. Define the sequence {ݔ௡} in ܺ by  
௡ାଵݔ          = ௡ݔܶ ,           for all ݊ ∈ ܰ. 
If ݔ௡ = ݊ ௡ାଵ for someݔ ∈ ܰ, then ݔ∗ = ௡ݔ  is a fixed point for ܶ. Assume that ݔ௡ ≠ ௡ାଵݔ  for all ݊ ∈ ܰ. 
Since ܶ is ߙ-admissible, we have 
(ଵݔ,଴ݔ)ߙ          = (଴ݔܶ,଴ݔ)ߙ ≥ 1 ⇒ (ଵݔܶ,଴ݔܶ)ߙ = (ଶݔ,ଵݔ)ߙ ≥ 1. 
By induction, we get 
௡ݔ)ߙ          (௡ାଵݔ, ≥ 1,         for all ݊ ∈ ܰ.                                    (2) 
Applying the inequality (1) with ݔ = ݕ ௡ିଵ andݔ =  ௡ and using (2), we obtainݔ

((௡ାଵݔ,௡ݔ)݌)߰ = ((௡ݔܶ,௡ିଵݔܶ)݌)߰ ≤  ((௡ݔܶ,௡ିଵݔܶ)݌)߰(௡ݔ,௡ିଵݔ)ߙ
≤ −((௡ݔ,௡ିଵݔ)݌)߰ ,௡ିଵݔ)݌)߮  ((௡ݔ

																																						≤  (3)                     .((௡ݔ,௡ିଵݔ)݌)߰
Using the monotone property of the ߰-function, we get 

(௡ାଵݔ,௡ݔ)݌ ≤  .(௡ݔ,௡ିଵݔ)݌
It follows that {݌(ݔ௡,ݔ௡ାଵ)} is monotone decreasing and consequently, there exists ݎ ≥ 0 such that 
௡ݔ)݌ (௡ାଵݔ, → ݊ as        ݎ → ∞. 
Letting ݊ → ∞ in (3) and using the continuity of ߰ and ߮, we obtain 

(ݎ)߰ ≤ −(ݎ)߰  ,(ݎ)߮
which implies that ߮(ݎ) = 0 and then ݎ = 0. So  
௡ݔ)݌           (௡ାଵݔ, → 0     as ݊ → ∞.                (4)                                 
Next we show that {ݔ௡} is a Cauchy sequence. If otherwise, there exist an ߝ > 0 for which we can find two 
sequences of positive integers {݊(݇)} and {݉(݇)}  such that for all positive integers ݇  such that ݊(݇) >
݉(݇) > (௡(௞)ݔ,௠(௞)ݔ)݌ ,݇ ≥ (௡(௞)ିଵݔ,௠(௞)ݔ)݌ and ߝ <  ߝ
Now, 
ߝ       ≤ ,௠(௞)ݔ)݌ (௡(௞)ݔ ≤ (௡(௞)ିଵݔ,௠(௞)ݔ)݌ +  .(௡(௞)ݔ,௡(௞)ିଵݔ)݌
That is, ߝ ≤ ,௠(௞)ݔ)݌ (௡(௞)ݔ ≤ ߝ +  .(௡(௞)ݔ,௡(௞)ିଵݔ)݌
Taking the limit as ݇ → ∞ in the above inequality and using (4), we have 
lim௞→∞ݔ)݌௠(௞) , (௡(௞)ݔ =                        (5)                               .ߝ
Also, 
(௡(௞)ିଵݔ,௠(௞)ିଵݔ)݌  ≤ (௠(௞)ݔ,௠(௞)ିଵݔ)݌ +  .(௡(௞)ିଵݔ,௠(௞)ݔ)݌
Taking the limit as ݇ → ∞ in the above inequality and using (4), we have  
lim௞→∞݌(ݔ௠(௞)ିଵ,ݔ௡(௞)ିଵ) =                             (6)                           .ߝ
For ݔ = ,௠(௞)ିଵݔ ݕ =  ௡(௞)ିଵ, we haveݕ

((௡(௞)ݔ,௠(௞)ݔ)݌)߰(௡(௞)ିଵݔ,௠(௞)ିଵݔ)ߙ = ,௠(௞)ିଵݔ)ߙ  (((௡(௞)ିଵݔ)ܶ,(௠(௞)ିଵݔ)ܶ)݌)߰(௡(௞)ିଵݔ
																							≤ ((௡(௞)ିଵݔ,௠(௞)ିଵݔ)݌)߰ +  ,((௡(௞)ିଵݔ,௠(௞)ିଵݔ)݌)߮
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Now, letting ݇ → ∞, using (5),(6) and the continuity of ߰ and ߮, we obtain ߰(ߝ) ≤ (ߝ)߰ −  which ,(ߝ)߮
implies that ߝ = 0, a contradiction with ߝ > 0. 
Hence {ݔ௡} is a Cauchy sequence. from the completeness of ܺ, there exists a ݔ∗ ∈ ܺ such that ݔ௡ →  as ∗ݔ
݊ → ∞.  
From the orbitally continuity of ܶ, it follows that ݔ௡ାଵ = ௡ݔܶ → ݊ as ∗ݔܶ → ∞ .  
Now, we show that ݔ∗ is a fixed point. We have, 
߰൫݌(ݔ௡ାଵ,ݔ௡ାଶ)൯ ≤ ௡ݔ)ߙ ൯(௡ାଶݔ,௡ାଵݔ)݌௡ାଵ)߰൫ݔ, ≤
߰൫݌(ݔ௡,ݔ௡ାଵ)൯ − ௡ݔ)݌)߮																																																																																					  ,((௡ାଵݔ,
Letting ݊ → ∞, we get  
((∗ݔ,∗ݔ)݌)߰ ≤ −((∗ݔ,∗ݔ)݌)߰                   (7)                  .((∗ݔ,∗ݔ)݌)߮
Similarly, 
߰൫݌(ݔ௡ାଵ,ܶݔ௡ାଵ)൯ ≤ ൯(௡ାଵݔܶ,௡ାଵݔ)݌൫߰(௡ାଵݔ,௡ݔ)ߙ 					≤ ௡ݔ)݌)߰ −((௡ݔܶ, ௡ݔ)݌)߮  .((௡ݔܶ,
Letting ݊ → ∞ and using the orbitally continuity of ܶ, we obtain 
߰൫(∗ݔܶ,∗ݔ)݌൯ ≤ ߰൫(∗ݔܶ,∗ݔ)݌൯ − ߮൫(∗ݔܶ,∗ݔ)݌൯.             (8)  
Using (7) and (8), we get ݔ)݌∗, (∗ݔ = 0 and ݔ)݌∗ (∗ݔܶ, = 0, so by lemma (1.2), we conclude that ݔ∗ =  .∗ݔܶ
This completes the proof.  
        
The following theorem is a generalization of theorem (2.2) in [15]. 
Theorem 2.2 Let (ܺ,݀) be a complete metric space and ܶ:ܺ → ܺ be an operator. Let ݌ be a ݓ-distance on 
(ܺ, ݀) and suppose that, 
(i) ܶ is ߙ-admissible, 
(ii) there exists ݔ଴ ∈ ܺ such that ߙ(ݔ଴,ܶ(ݔ଴)) ≥ 1. 
(iii) if {ݔ௡} is a sequence in ܺ such that ݔ)ߙ௡ (௡ାଵݔ, ≥ 1 for all n and ݔ௡ → ݊ as ݔ → ∞, then ߙ(ݔ௡,ݔ) ≥ 1 
for all n, 
(iv) ܶ be a self-mapping satisfying  

,ݔ)ߙ  (((ݕ)ܶ,(ݔ)ܶ)݌)߰(ݕ ≤ ,ݔ)݀)߰ ((ݕ −   (ݕ,ݔ)߮
 for ߰ ∈ Ψ and ߮ ∈ Φ. 
Then ܶ has a fixed point. 
 Proof: Following the proof of Theorem (2.1), we know that {ݔ௡} is a Cauchy sequence in the complete 
metric space (ܺ, ݀). Then, there exists ݔ∗ ∈ ܺ such that ݔ௡ → ݊ as ∗ݔ → ∞. On the other hand, from (ii) and 
(iii) we have  
(∗ݔ,௡ݔ)ߙ             ≥ 1																	for	all									݊ ∈ ܰ.           (9)                      
Now, from (ii) and (iv) we get  

߰൫݌(ݔ௡ାଵ,ݔ௡ାଶ)൯ ≤ ௡ݔ)ߙ ൯(௡ାଵݔ,௡ݔ)݌௡ାଵ)߰൫ݔ, 	≤ ௡ݔ)݌)߰ ((௡ାଵݔ, − ௡ݔ)݌)߮  .((௡ାଵݔ,
Letting ݊ → ∞ and using the continuity of ߰ and ߮, we obtain (∗ݔ,∗ݔ)݌ = 0. 
Also, by (iv) and (9) we have 

((∗ݔܶ,௡ାଵݔ)݌)߰ ≤ ௡ݔ)ߙ ௡ݔ)݌)߰(∗ݔ, ((∗ݔ, ≤ ௡ݔ)݌)߰ ((∗ݔ, − ௡ݔ)݌)߮ ,∗  .(ݔ
letting ݊ → ∞, using the continuity of ߰ and ߮ and the fact ݔ)݌∗, (∗ݔ = 0, we have (∗ݔܶ,∗ݔ)݌ = 0. So by 
lemma (1.2) we have ܶݔ∗ =          .ܶ is a fixed point of ∗ݔ ,that is ,∗ݔ
 
Corollary 2.3 Let (ܺ, ݀,≤) be an ordered metric space and ܶ:ܺ → ܺ be a continuous and nondecreasing 
mapping w.r.t ≤. Let ݌ be a ݓ-distance on (ܺ, ݀) and suppose that, 
(i) ܶ be a self-mapping satisfying  
(((ݕ)ܶ,(ݔ)ܶ)݌)߰  ≤ ((ݕ,ݔ)݌)߰ − ,ݔ)݌)߮   ((ݕ
 for all ݕ,ݔ ∈ ܺ with ݔ ≤ ߰ ,ݕ ∈ Ψ and ߮ ∈ Φ, 
(ii) there exists ݔ଴ ∈ ܺ such that ݔ଴ ≤  ,଴ݔܶ
(iii) ܶ is orbitally continuous, 
(iv) the metric ݀ is complete. 
Then, ܶ has a fixed point. 
 Proof: Define the mapping ߙ:ܺ × ܺ → [0,∞) by 

,ݔ)ߙ (ݕ = ൜1													݂݅	ݔ ≤ ,ݕ
.݁ݏ݅ݓݎℎ݁ݐ݋													0

  

It is enough to show that ܶ is ߙ-admissible. 
Let ݔ, ݕ ∈ ܺ  such that (ݕ,ݔ)ߙ ≥ 1 . By the definition of ߙ , this implies that ݔ ≤ ݕ . Since ܶ  is a 
nondecreasing mapping w.r.t ≤ , we have ܶݔ ≤ ݕܶ , which gives us that (ݕܶ,ݔܶ)ߙ = 1 . Then ܶ  is ߙ -
admissible. From (ii), there exists ݔ଴ ∈ ܺ such that ݔ଴ ≤ (଴ݔܶ,଴ݔ)ߙ ଴. This implies thatݔܶ = 1. Therefore, 
all the hypotheses of Theorem (2.1) are satisfied, and so ܶ has a fixed point.        
Corollary 2.4 Let (ܺ, ݀,≤) be an ordered metric space and ܶ:ܺ → ܺ be a continuous and nondecreasing 
mapping w.r.t ≤. Let ݌ be a ݓ-distance on (ܺ, ݀) and suppose that, 
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(i) ܶ be a self-mapping satisfying  
(((ݕ)ܶ,(ݔ)ܶ)݌)߰  ≤ −((ݕ,ݔ)݌)߰   ((ݕ,ݔ)݌)߮
 for all ݕ,ݔ ∈ ܺ with ݔ ≤ ߰ ,ݕ ∈ Ψ and ߮ ∈ Φ, 
(ii) there exists ݔ଴ ∈ ܺ such that ݔ଴ ≤  ,଴ݔܶ
(iii) if {ݔ௡} is a nondecreasing sequence in ܺ such that ݔ௡ → ݔ ∈ ܺ as ݊ → ∞, then ݔ௡ ≤  ,for all n ݔ
(iv) the metric ݀ is complete. 
Then, ܶ has a fixed point. 
 Proof: Define the mapping ߙ:ܺ × ܺ → [0,∞) by 

(ݕ,ݔ)ߙ = ൜1												݂݅	ݔ ≤ ,ݕ
.݁ݏ݅ݓݎℎ݁ݐ݋												0

  

The reader can show easily that ܶ is ߙ-admissible, Now, let {ݔ௡} be a sequence in ܺ such that ݔ)ߙ௡ (௡ାଵݔ, ≥
1 for all n and ݔ௡ → ݔ ∈ ܺ as ݊ → ∞. By the definition of ߙ, we have ݔ௡ ≤  ௡ାଵ for all n. From (iii), thisݔ
implies that ݔ௡ ≤ ௡ݔ)ߙ for all n, which gives us that ݔ (ݔ, = 1 for all n. Thus all the hypotheses of Theorem 
(2.2) are satisfied, and so ܶ has a fixed point.       
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