

Generalized Distance and Fixed Point Theorems for Weakly Contractive Mappings

E. Graily ^{*a*}, S. Mansour Vaezpour ^{*b*}

 ^a Department of Mathematics, Science and Research Branch, Islamic Azad University(IAU), Tehran, Iran
^b Department of Mathematics and Computer Science, Amirkabir University of Technology, Hafez Ave., P. O. Box 15914, Tehran, Iran

ABSTRACT

In this paper we consider generalized contractive mapping concerning generalized distance. The existence theorems for fixed points of α -admissible maps in complete metric spaces are proved and some generalization of fixed point theorems are obtained using w-distance. Then as corollaries some fixed point theorems in ordered metric spaces are proved. Our results generalize, improve and simplify the previous results in the literature.¹

KEYWORDS: Fixed point; Generalized distance; Generalized cotraction; Ordered metric space.

1 INTRODUCTION AND PRELIMINARY

The Banach fixed point theorem for contraction mappings has been generalized and extended in many directions [1-8,20-22].

Recently, Samet, Lakzian [8], Samet et al. [15] introduced new types of generalized contractive mappings and established fixed point theorems for such mappings in complete metric spaces. Nieto and Rodriguez-Lopez [9,10], Ran and Reurins [14], Petrusel and Rus [13] presented some new results for contractions in partially ordered metric spaces.

Kada, Suzuki and Takahashi [7,18] in 1996 introduced the concept of w-distance on a metric space and prove some fixed point theorems. The study of fixed point theorem concerning generalized distance followed in other papers, see [7,19-21]. In this paper, Using concept of w-distance, we generalize contractions and prove some fixed point theorems in ordered metric spaces. Also, we introduce α -admissible maps and we study generalized contractions and prove various fixed point theorems for generalized contractive mappings by using the concept of w-distance in complete metric spaces. Finally, as corollaries we stablish some fixed point theorems for such mappings in ordered metric spaces. Our results generalize and improve some results in [2-8,12-17].

Definition 1.1 ([7,16,21]) Let X be a metric space with metric d. Then a function $p: X \times X \rightarrow [0, \infty)$ is called a w-distance on X if the following are satisfied:

(i) $p(x,z) \le p(x,y) + p(y,z)$ for any $x, y, z \in X$;

(ii) for any $x \in X$, $p(x, .): X \to [0, \infty)$ is lower semi-continuous;

(iii) for any $\varepsilon > 0$, there exists $\delta > 0$ such that $p(x, z) \le \delta$ and $p(z, y) \le \delta$ imply $d(x, y) \le \varepsilon$.

Let recall that a real-valued function f defined on a metric space X is said to be lower semi-continuous at a point x_0 in X if either $\liminf_{x_n \to x_0} f(x_n) = \infty$ or $f(x_0) \le \liminf_{x_n \to x_0} f(x_n)$, whenever $x_n \in X$ for each $n \in N$ and $x_n \to x_0$.

Lemma 1.2 ([7,20]) Let X be a metric space with metric d and p be a w-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X, let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0, \infty)$ converging to zero, and let $x, y, z \in X$. Then the following hold:

(i) if $p(x_n, y) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for any $n \in N$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if $p(x_n, y_n) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for any $n \in N$, then $d(y_n, z) \to 0$;

(iii) if $p(x_n, x_m) \le \alpha_n$ for any $n, m \in N$ with m > n, then $\{x_n\}$ is a Cauchy sequence;

(iv) if $p(y, x_n) \le \alpha_n$ for any $n \in N$, then $\{x_n\}$ is a Cauchy sequence.

Definition 1.3 ([15]) Let $T: X \to X$ and $\alpha: X \times X \to [0, \infty)$. We say that T is α -admissible if $\alpha(x, y) \ge 1 \Rightarrow \alpha(Tx, Ty) \ge 1$ for $x, y \in X$.

¹AMS Subject Classification. 47H10; 54H25.

Corresponding Author: E. Graily, Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran. Email: e.graily@srbiau.ac.ir, Fax:+98-21-66497930.

2 MAIN RESULTS

First we introduce the following notations:

(i) We denote by Ψ the set of functions $\psi: [0, \infty) \to [0, \infty)$ satisfying the following hypotheses:

 $(h_1) \psi$ is continuous and nondecreasing,

 $(h_2) \psi(t) = 0$ if and only if t = 0.

(ii) We denote by Φ the set of functions $\varphi: [0, \infty) \to [0, \infty)$ satisfying the following hypotheses:

 $(c_1) \varphi$ is continuous,

 $(c_2) \varphi(t) = 0$ if and only if t = 0.

Since in every metric space (X, d), d is a w-distance, so our theorems are generalization of theorems in [8,15].

The following theorem is a generalization of theorem (2.1) in [15].

Theorem 2.1 Let (X,d) be a complete metric space and $T: X \to X$ be an operator. Let p be a w-distance on (X, d) and suppose that,

(i) T is α -admissible,

(ii) there exists $x_0 \in X$ such that $\alpha(x_0, T(x_0)) \ge 1$, (iii) T is orbitally continuous,

(iv) *T* be a self-mapping satisfying

$$\alpha(x, y)\psi(p(T(x), T(y))) \leq \psi(p(x, y)) - \varphi(p(x, y))$$

(1)

for $\psi \in \Psi$ and $\varphi \in \Phi$.

Then, T has a fixed point.

Proof: Let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Define the sequence $\{x_n\}$ in X by

 $x_{n+1} = Tx_n$, for all $n \in N$. If $x_n = x_{n+1}$ for some $n \in N$, then $x^* = x_n$ is a fixed point for T. Assume that $x_n \neq x_{n+1}$ for all $n \in N$. Since *T* is α -admissible, we have

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1 \Rightarrow \alpha(Tx_0, Tx_1) = \alpha(x_1, x_2) \ge 1.$$

By induction, we get

 $\alpha(x_{n}, x_{n+1}) \ge 1, \qquad \text{for all } n \in N.$ (2)Applying the inequality (1) with $x = x_{n-1}$ and $y = x_n$ and using (2), we obtain $\psi(p(x_{n-1}, x_{n+1})) = \psi(p(Tx_{n-1}, Tx_n)) \le \alpha(x_{n-1}, x_n)\psi(p(Tx_{n-1}, Tx_n))$

$$\leq \psi(p(x_{n-1}, x_n)) - \varphi(p(x_{n-1}, x_n))$$

$$\leq \psi(p(x_{n-1}, x_n)). \qquad (3)$$

Using the monotone property of the ψ -function, we get

 $p(x_{n}, x_{n+1}) \leq p(x_{n-1}, x_n).$ It follows that $\{p(x_n, x_{n+1})\}$ is monotone decreasing and consequently, there exists $r \ge 0$ such that $p(x_n, x_{n+1}) \rightarrow r$ as $n \to \infty$. Letting $n \to \infty$ in (3) and using the continuity of ψ and φ , we obtain $\psi(r) \leq \psi(r) - \varphi(r),$

which implies that $\varphi(r) = 0$ and then r = 0. So

 $p(x_{n}, x_{n+1}) \to 0 \quad \text{as } n \to \infty.$ (4) Next we show that $\{x_n\}$ is a Cauchy sequence. If otherwise, there exist an $\varepsilon > 0$ for which we can find two sequences of positive integers $\{n(k)\}$ and $\{m(k)\}$ such that for all positive integers k such that n(k) > 0 $m(k) > k, p(x_{m(k)}, x_{n(k)}) \ge \varepsilon$ and $p(x_{m(k)}, x_{n(k)-1}) < \varepsilon$ Now,

 $\varepsilon \le p(x_{m(k)}, x_{n(k)}) \le p(x_{m(k)}, x_{n(k)-1}) + p(x_{n(k)-1}, x_{n(k)}).$ That is, $\varepsilon \leq p(x_{m(k)}, x_{n(k)}) \leq \varepsilon + p(x_{n(k)-1}, x_{n(k)}).$ Taking the limit as $k \to \infty$ in the above inequality and using (4), we have $\lim_{k\to\infty}p(x_{m(k)},x_{n(k)})=\varepsilon.$ (5)Also,

 $p(x_{m(k)-1}, x_{n(k)-1}) \le p(x_{m(k)-1}, x_{m(k)}) + p(x_{m(k)}, x_{n(k)-1}).$

Taking the limit as $k \to \infty$ in the above inequality and using (4), we have $\lim_{k\to\infty} p(x_{m(k)-1}, x_{n(k)-1}) = \varepsilon.$ (6)For $x = x_{m(k)-1}, y = y_{n(k)-1}$, we have $\alpha(x_{m(k)-1}, x_{n(k)-1})\psi(p(x_{m(k)}, x_{n(k)})) = \alpha(x_{m(k)-1}, x_{n(k)-1})\psi(p(T(x_{m(k)-1}), T(x_{n(k)-1})))$ $\leq \psi(p(x_{m(k)-1}, x_{n(k)-1})) + \varphi(p(x_{m(k)-1}, x_{n(k)-1})),$

Now, letting $k \to \infty$, using (5),(6) and the continuity of ψ and φ , we obtain $\psi(\varepsilon) \le \psi(\varepsilon) - \varphi(\varepsilon)$, which implies that $\varepsilon = 0$, a contradiction with $\varepsilon > 0$.

Hence $\{x_n\}$ is a Cauchy sequence. from the completeness of X, there exists a $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$.

From the orbitally continuity of *T*, it follows that $x_{n+1} = Tx_n \to Tx^*$ as $n \to \infty$. Now, we show that x^* is a fixed point. We have,

$$\begin{split} \psi(p(x_{n+1}, x_{n+2})) &\leq \alpha(x_n, x_{n+1})\psi(p(x_{n+1}, x_{n+2})) \leq \\ \psi(p(x_n, x_{n+1})) - & \varphi(p(x_n, x_{n+1})), \\ \text{Letting } n \to \infty, \text{ we get} \\ \psi(p(x^*, x^*)) &\leq \psi(p(x^*, x^*)) - \varphi(p(x^*, x^*)). \quad (7) \\ \text{Similarly,} \\ \psi(p(x_{n+1}, Tx_{n+1})) &\leq \alpha(x_n, x_{n+1})\psi(p(x_{n+1}, Tx_{n+1})) \leq \psi(p(x_n, Tx_n)) - \varphi(p(x_n, Tx_n)). \\ \text{Letting } n \to \infty \text{ and using the orbitally continuity of } T, \text{ we obtain} \\ \psi(p(x^*, Tx^*)) &\leq \psi(p(x^*, Tx^*)) - \varphi(p(x^*, Tx^*)). \quad (8) \\ \text{Using } (7) \text{ and } (8), \text{ we get } p(x^*, x^*) = 0 \text{ and } p(x^*, Tx^*) = 0, \text{ so by lemma } (1.2), \text{ we conclude that } x^* = Tx^*. \\ \text{This completes the proof.} \end{split}$$

The following theorem is a generalization of theorem (2.2) in [15].

Theorem 2.2 Let (X, d) be a complete metric space and $T: X \to X$ be an operator. Let p be a w-distance on (X, d) and suppose that,

(i) T is α -admissible,

(ii) there exists $x_0 \in X$ such that $\alpha(x_0, T(x_0)) \ge 1$.

(iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$ as $n \to \infty$, then $\alpha(x_n, x) \ge 1$ for all n,

(iv) *T* be a self-mapping satisfying

$$\alpha(x, y)\psi(p(T(x), T(y))) \le \psi(d(x, y)) - \varphi(x, y)$$

for $\psi \in \Psi$ and $\varphi \in \Phi$. Then *T* has a fixed point.

Proof: Following the proof of Theorem (2.1), we know that $\{x_n\}$ is a Cauchy sequence in the complete metric space (X, d). Then, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. On the other hand, from (ii) and (iii) we have

 $\alpha(x_n, x^*) \ge 1$ for all $n \in N$. (9) Now, from (ii) and (iv) we get

$$\psi(p(x_{n+1}, x_{n+2})) \le \alpha(x_n, x_{n+1})\psi(p(x_n, x_{n+1})) \le \psi(p(x_n, x_{n+1})) - \varphi(p(x_n, x_{n+1})).$$

Letting $n \to \infty$ and using the continuity of ψ and φ , we obtain $p(x^*, x^*) = 0$.
Also, by (iv) and (9) we have

 $\psi(p(x_{n+1}, Tx^*)) \le \alpha(x_n, x^*)\psi(p(x_n, x^*)) \le \psi(p(x_n, x^*)) - \varphi(p(x_n, x^*)).$ letting $n \to \infty$, using the continuity of ψ and φ and the fact $p(x^*, x^*) = 0$, we have $p(x^*, Tx^*) = 0$. So by lemma (1.2) we have $Tx^* = x^*$, that is, x^* is a fixed point of T.

Corollary 2.3 Let (X, d, \leq) be an ordered metric space and $T: X \to X$ be a continuous and nondecreasing mapping w.r.t \leq . Let p be a w-distance on (X, d) and suppose that,

(i) T be a self-mapping satisfying

- $\psi(p(T(x), T(y))) \le \psi(p(x, y)) \varphi(p(x, y))$
- for all $x, y \in X$ with $x \le y, \psi \in \Psi$ and $\varphi \in \Phi$,
- (ii) there exists $x_0 \in X$ such that $x_0 \leq Tx_0$,
- (iii) *T* is orbitally continuous,
- (iv) the metric d is complete.

Then, T has a fixed point.

Proof: Define the mapping $\alpha: X \times X \to [0, \infty)$ by

 $\alpha(x, y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{otherwise} \end{cases}$

It is enough to show that T is α -admissible.

Let $x, y \in X$ such that $\alpha(x, y) \ge 1$. By the definition of α , this implies that $x \le y$. Since *T* is a nondecreasing mapping w.r.t \le , we have $Tx \le Ty$, which gives us that $\alpha(Tx, Ty) = 1$. Then *T* is α -admissible. From (ii), there exists $x_0 \in X$ such that $x_0 \le Tx_0$. This implies that $\alpha(x_0, Tx_0) = 1$. Therefore, all the hypotheses of Theorem (2.1) are satisfied, and so *T* has a fixed point.

Corollary 2.4 Let (X, d, \leq) be an ordered metric space and $T: X \to X$ be a continuous and nondecreasing mapping w.r.t \leq . Let p be a w-distance on (X, d) and suppose that,

(i) *T* be a self-mapping satisfying

 $\psi(p(T(x), T(y))) \le \psi(p(x, y)) - \varphi(p(x, y))$

for all $x, y \in X$ with $x \le y, \psi \in \Psi$ and $\varphi \in \Phi$,

(ii) there exists $x_0 \in X$ such that $x_0 \leq Tx_0$,

(iii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to x \in X$ as $n \to \infty$, then $x_n \leq x$ for all n,

(iv) the metric d is complete.

Then, *T* has a fixed point.

Proof: Define the mapping $\alpha: X \times X \to [0, \infty)$ by

 $\alpha(x, y) = \begin{cases} 1 & if \ x \le y, \\ 0 & otherwise. \end{cases}$

The reader can show easily that *T* is α -admissible, Now, let $\{x_n\}$ be a sequence in *X* such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$ as $n \to \infty$. By the definition of α , we have $x_n \le x_{n+1}$ for all n. From (iii), this implies that $x_n \le x$ for all n, which gives us that $\alpha(x_n, x) = 1$ for all n. Thus all the hypotheses of Theorem (2.2) are satisfied, and so *T* has a fixed point.

REFERENCES

- R. P. Agarwal, M. A. El-Gebeilly and D. O'Regan, *Generalized contractions in patially ordered metric spaces*, Appl. Anal., 87(2008), 109-116
- [2] L.B. Ciric, A generaliation of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
- [3] L.B. Ciric, Coincidence and fixed points for maps on topological spaces, Topol. Appl., 154(2007), 3100-3106.
- [4] J. Esmaily, S.M. Vaezpour, Coincidence and Comman Fixed Point Results for Generalized Weakly Ccntractions in Ordered Uniform Spaces, J. Basic. Appl. Sci. Res., 2(4) 4139-4148 (2012).
- [5] J.X. Fang, Y. Geo Common fixed point theorems under strict contractive conditions in menger spaces, Nonlinear Analysis, 70(2009), 184-193.
- [6] T. Gnana Bhaskar, V. Lakshmikantham, *Fixed point theorems in partially ordered metric spaces and applications*, Nonlinear Anal., 65 (2006), 1379-1393.
- [7] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44 (1996), 381-391.
- [8] H. Lakzian, B. Sammet *Fixed point for* (,)*-weakly contractive mappings in generalized metric spaces*, Applied mathematic letters., 25(2012), 902-906.
- [9] J. J. Nieto, R. Rodriguez-Lopez, *Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations*, Order, 22(2005), 223-239.
- [10] J. J. Nieto, R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partialy ordered sets and applications to ordinary differential equations, Acta Math. Sinica, English Series, 23(2007), 2205-2212.
- [11] Donal. O'Regan, Adrian Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008), 1241-1252.
- [12] D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, proc. Amer. Math. Cmput., 195(2008), 86-93.
- [13] A. Petrusel, I. A. Rus, Fixed point theorems in ordered L-spases, Proc. Amer. Math. Soc., 134(2006), 411-418.
- [14] A. C. Ran, M. C. B.Rurings, A fixed point theorems in partially ordered sets and some applications to metric equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.
- [15] B. Sammet, C. Vetro, P. Vetro, Fixed point theorems for -contractive type mappings, Nonlinear Analysis, 75(2012), 2154-2165.
- [16] N. Shioji, T.Suzuki, W.Takahashi, Contractive mappings, Kannan mappings and metric completeness, proceeding of the american mathematical society, vol 16, 10 (1998), 3117-3124.

[17] N. Shobkolaei, S.M. Vaezpour, S.Sedghi, A common fixed point theorem on ordered partial metric

spaces, J. Basic. Appl. Sci. Res., 1(12) 3433-3439 (2011).

- [18] T. Suzuki, *Fixed point theorems in complete metric spaces*, in "Nonlinear Analysis and Convex Analysis" (W.Takahashi,Ed), Vol.939,pp.173-182,RIMS,Kokyurku,1996.
- [19] T. Suzuki, W. Takahashi, *Fixed point theorems and charactrizations of metric completeness*, Topol.Methods Nonlinear Anal.8(1996),371-382.
- [20] T. Suzuki, Several fixed point theorem in complete metric spaces, Yokohama Math. J., 44(1997) 61-72.
- [21] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458.
- [22] Y. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl., 341 (2008), 883-893.