

J. Basic. Appl. Sci. Res., 3(4)173-181, 2013

© 2013, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Salman Meraji Department of Computer Engineering, Islamic Azad University, Tehran South
Branch Tel: +98_912_271_1510 Fax : +98_21_220_89327 E-Mail: salman_meraji @yahoo.com

A Batch Mode Scheduling Algorithm for Grid Computing

Salman Meraji*, M. Reza Salehnamadi

Department of Computer Engineering, Islamic Azad University, Tehran South Branch

ABSTRACT

Nowadays, computational grids have been wildly used to share geographically distributed heterogeneous
resources, because of high demand of computational power. One of the most important problems in
computational grids is scheduling. Max-min and min-min are simple and well known scheduling algorithms for
grid computing. The drawback of min-min algorithm is the schedule produced by min-min is not optimal with
respect of load balancing and max-min's relative time to finish assigning tasks is too high. To overcome these
drawbacks, a new two phase grid scheduler is proposed with simple min-min algorithm in the first phase and a
new rescheduling technique in the second phase. To evaluate the performance of proposed algorithm and
comparing it with other algorithms, Three main objective functions are measured in grid scheduling which are
make span, resource utilization and matching proximity. Algorithms are tested using Expected to compute
model of benchmark. The results of simulation shows improvement in all three objective functions i.e. make
span is minimized while resource utilization and matching proximity are maximized.
KEYWORDS: Scheduling; Computational Grids; min-min; max-min; make span; resource utilization;

matching proximity.

1. INTRODUCTION

The computational grid has provided a reliable infrastructure that helps researchers solving massive
applications over geographically distributed nodes by sharing heterogeneous resources such as super computers,
work stations, networks, softwares and even simple desktop workstation [1]. Scheduling is one of the most
important tasks of computational grid. While Sahu et al.[2] introduced five major objective functions and
metrics to assess a grid scheduler performance, resource utilization, makespan and matching proximity looks
usually have been used for performance measurement. Resource utilization is measured based on idle time of
resources and effective job scheduling is measured by high resource throughput. Moreover, makespan is the
time difference between the start time of the first job and the finish time of the last job [3], [4]. Matching
proximity indicates the degree of proximity of a given schedule to the schedule produced by the Minimum
Execution Time (MET) method [2]. The main goal of this research is to design and implement a new scheduling
algorithm to minimize makespan and maximizing resource utilization and matching proximity.

Braun et al.[5], [6] have studied the relative performance of eleven static heuristic but they have just
considered makespan as comparison criterion. Izakian et al.[7] have provided a comparison of six heuristic
including min-min and max-min with respect of makespan and flow time criteria. They also proposed a new
heuristic [8] later named min-max. Xhafa et al. compared two types of scheduling algorithms in immediate
mode aka online mode [9] and batch mode [10]. Their two researches concerns more than two scheduling
objective functions in grid computing. Sahu et al. [2] provides a complete analogy of twelve different
scheduling algorithm and introduced five major objective function to evaluate them. finally Alharbi [11]
proposed a new scheduling algorithm named mact-min and compared it with min-min and max-min. Scheduling
of tasks on heterogeneous grid resources is an NP-complete problem, so choosing best heuristic can be applied
with respect of MT(Meta Tasks) conditions and available resources. The applications to be executed are
composed of a collection of indivisible tasks that have no dependency among each other, usually referred to as
MT. To increase efficient usage of resources and mapping tasks different scheduling algorithms have been
proposed. Among these heuristics, min-min [5], [6], [7], [8], [10], [11], [12] and Genetic algorithm [5], [6]
achieve the best results in makespan and max-min for resource utilization [10], [13].

The main goal of this study is to propose a new scheduling algorithm to improve task assignment
performance by schedulers through minimizing makespan amounts and maximazing resource utilization
percentage and matching proximity. Generally, Grid scheduling algorithms can be divide in two major groups :
Online Mode and Batch Mode [8]. In online mode, tasks are mapped to the first available resources serially.
MET(Minimum Execution Time) and MCT(Minimum Completion Time) are the most popular algorithms of
online mode scheduling. In batch mode, tasks are grouped together in MT and then the group is scheduled in
some predefined times called mapping events. Many heuristics have been proposed for batch mode scheduling
among which min-min and max-min are the simplest and most popular ones [14]. Unlike traditional scheduling
algorithms which make steady decisions in order to assign a single task to a resource, the propose algorithm
using state of the art rescheduling technique. One of the biggest difficulties in grid computing is dynamic nature
of grid resources. Rescheduling is a technique to relieve the dynamic problem. The propose scheduler decision

173

Meraji and Salehnamadi, 2013

making process to assign tasks is update in each step according to new MT conditions. The drawback of min-
min algorithm is the schedule produced by min-min is not optimal when the number of smaller tasks are more
than the large tasks. That's because of min-min chooses smaller tasks first which makes use of resource with
high processing power and makes resources load imbalance. To overcome this limitation, a two step scheduling
algorithm propose. In first step the proposed algorithm run min-min algorithm and then in the second phase
reschedule tasks with respect to the makespan and the resource that produced it. To evaluate our proposed
algorithm it is compared with min-min that obtained one of the best in makespan and matching proximity and
max-min in terms of resource utilization. The proposed algorithm outperforms min-min and max-min in all of
these three performance criteria.

The scientific contribution of this study are as follows. 1. proposing a new scheduling schema based on
rescheduling technique. 2. Considering multi conflicting objectives to evaluation and capture different aspects of
scheduling problem in grid computing. 3. Improving the overall makespan amounts by 13% compared to min-min.
4. Improving the overall resource utilization percentage compared to max-min. 5. Using matching proximity
formula to calculate the degree of proximity of a given schedule to the schedule produced by the MET method.

The rest of the paper is organized as follows. In section 2, Grid scheduling algorithms will discuss briefly.
Section 3 studies the main objectives of Grid Scheduling. In section 4 the new scheduling algorithm is presented
and also some illustrative examples are discussed. Section 5 shows computational results and a comprehensive
comparison between our proposed algorithm and two well known algorithms, min-min and max-min.
2- Grid Scheduling algorithms
In this section some well known heuristics for grid scheduling are explained briefly.
2-1 MET(Minimum Execution Time)

MET assigns each task, in an arbitrary order, to the machine with the best expected execution time for that
task. In this algorithm a task is assigned to the machine on which it can be executed in minimum time regardless
of that machine's availability. Allocating job without considering machine availability might lead to load
imbalance on grid machines [2], [5], [6].
2-2 MCT(Minimum Completion Time)

MCT assigns each task, in arbitrary order, to the machine with the minimum expected completion time
(ready time of machine + job execution time on the selected machine) for that task. Allocating job in this
manner may result in execution of jobs on less faster grid machines [2], [5], [6].

2-3 Min-Min
Min_min heuristic begins with the set U of all unmapped tasks. Then, the set of minimum completion

times, M, is found. Next, the task with the overall minimum completion time from M is selected and assigned to
the corresponding machine. Finally, the newly mapped task is removed from U, and the process repeats until all
tasks are mapped (i.e., U is empty) [5], [15]. The main difference between min-min and MCT is that min-min
considers all the unmapped tasks during mapping decision but MCT only considers one task at a time. min-min
procedure is shown in algorithm 1. Min-min flowchart is shown in figure1

1. For all tasks 풕풊 in MT (in an arbitrary order)

2. For all Machines 풎풋 (in a fixed arbitrary order)

3. 푪풊풋 = 푬풊풋 + 풓풋

4. Do until all tasks in 푴푻 are mapped

5. For each task in 푴푻 f ind the earliest completion time and
the machine that obtains it.

6. find the task 풕풌 with the minimum earliest completion time.

7. assign task 풕풌 to the machine 풎풍 that gives the earliest
completion time.

8. delete task 풕풌 from 푴푻

9. update 풓풍

10. update 푪풊풍 for all i

11.End Do.

Algorithm 1. Min-Min Algorithm

 calculate 퐶 = 퐸 + 푟 for all tasks all
machines; M=Ø; U= all unmapped

tasks

all 퐶 s

calculate 퐶 =min(퐶) ∀ i=
1,2,...,m; M= M∪ 퐶

select 퐶 = min(퐶), 퐶 ∈

Allocate task 푡 to machine
푚 ; 푟 = 푟 + 퐸 ; U = U - 푡

U = empty ?

Stop

Yes

No

Yes
No

Fig. 1 The Min-Min work flow

174

J. Basic. Appl. Sci. Res., 3(4)173-181, 2013

2-4 Max-Min
Max-min is very similar to min-min. The Only difference between them is that in step 2, max-min selects

the task with overall maximum completion time instead of minimum completion time. The pseudo code for the
algorithm is like algorithm 1 just instead of minimum in line 6 is replaced by maximum [5], [15].

3- Grid Scheduling Objectives
Due to the NP-completeness nature of the mapping problem, the proposed heuristics try to find acceptable

solutions that tradeoff between cost and performance. Static heuristic algorithms have been developed under
some assumptions. The following assumptions are gathered from various literatures [5], [13]:

 Each resource executes only one task at a time i.e. there is no multi-tasking between resources.
 The number of tasks and resources is known prior.
 Estimated of tasks expected execution times are known before or at the time the task is submitted.
 The applications to be executed are composed of a collection of indivisible tasks that have no

dependency among each other, usually referred to as metatask.
 There are no priorities or deadlines between the tasks.
 The estimated times store in separate machine. The scheduler also runs on a separate machine and

controls the execution of jobs

3-1 Makespan
In static heuristics, the accurate estimate of the expected execution time for each task on each machine is

known in advance. These times are stored in an ETC (Expected Time to Compute) matrix where ETC (푡 	 , 푚)
is the estimated execution time of task i on machine j. The main objective of the heuristic scheduling algorithms
is to minimize the completion time of last finished task.
The makespan is computed as follows:
Let task set T = 푡 , 푡 , 푡 , …. , 푡
be the group of tasks submitted to scheduler and
Let Resource set R = 푚 , 푚 , 푚 , …. , 푚
Be the set of resources available at the time of task arrival makespan produced by any algorithm for a schedule
can be calculated as follows:

(1) makespan = max(CT (푡 , 푚))
(2) 퐶푇 = 		푅 퐸푇 		

where 퐶푇 is Completion Time of task i on resource j, 퐸푇 		 expected execution time of job i on resource j. and
		푅 is the ready time or availability time of resource j; the time when machine mj complete execution of all the
prior assigned tasks.

3-2 Matching Proximity
Matching Proximity is one of the grid performance parameters. Matching proximity indicates the degree of

proximity of a given schedule to the schedule produced by the MET method which assigns a job to the machine
having the smallest execution time for that job. Matching proximity is an additional performance parameter of
batch mode methods. A large value for matching proximity means that a large number of jobs is assigned to the
machine that executes them faster [2]. It define as follows:

(3) Matching Proximity=
∑ [][][]	∈

∑ [][[]]∈

3-3 Resource Utilization
Resource utilization is very essential criterion for the users and grid managers. The resource utilization is

defined using the completion time of a machine, which indicates the time at which machine m will finalize the
processing of the previous assigned jobs as well as those already planned for the machine [2]. It is defined as
follows:

(4) Resource Utilization=
∑ []∈

.

In formula (4), i indicates the machines, Completion[i] is the completion time of the final job on machine

i. Nb-machines indicates the number of machines and makespan is calculated using formula (1)

4- The Proposed Algorithm

In this section, the proposed scheduling algorithm, is called Best-Min. The best-min algorithm uses min-
min to get the makespan in first step and reschedule the tasks in the second phase in order to reduce the

175

Meraji and Salehnamadi, 2013

makespan. There is a condition in algorithm that best-min should consider all the resources in grid environment
and this is caused to maximize resource utilization as well.

4-1 best-min algorithm
In this section, the proposed scheduling algorithm will be described. The proposed algorithm uses the

state of the art rescheduling technique. The algorithm is presented in algorithm 2. At the first step, best-min,
starts with executing min-min. As described in section 2-3, since min-min starts mapping the tasks with
minimum execution times first, it makes faster resources busy and slower resource idle. As a result, min-min
produces a good makespan comparing to other heuristics. On the other hand, the main drawback of the min-min
algorithm is its poor load balanced and resource utilization. Hence, best-min runs min-min first to find the
makespan of the whole system and the resource (푅) that produces that makespan. Makespan and 푅 are used in
the rest of the best-min algorithm. In the second step, the best-min finds the tasks that are assigned to 푅
according to ETC matrix or MT conditions, and chooses the task(푇) with maximum execution time(Max ET) on
푅 . Then, the completion time of the task 푇 is calculated for all the other resources.

 The minimum completion time of 푇 on all the resources is called Min CT. Min CT is compared against
the makespan produced by min-min. If Min CT is less than makespan then the task is rescheduled on the
resource that produced it and the available time for all resources is updated. Otherwise, 푇 is scheduled in
current resource(푅) and scheduler looks for the next task with Max ET. This will be continued till all resources
have been considered and all tasks have been mapped.

Comparing the Min CT of the task 푇 on other resources and the makespan produced by min-min results
in best-min's makespan to never be bigger than min-min's makespan. Also best-min has a good resource
utilization. As mentioned, the reason for this is that the scheduler should consider all the available resources to
schedule tasks.

The best-min flowchart is also shown in figure 2. Figure 2 only shows the second phase of proposed
algorithm since best-min runs min-min in the first step.

1. For all tasks ti in MT (in an arbitary order)
2. For all Machines mj (in a fixed arbitrary order)
3. Cij = Eij + rj
4. Do until all tasks in MT are mapped
5. For each task in MT f ind the earliest completion time
and the machine that obtains it.
6. Find the task tk with the minimum earliest
completion time.
7. Assign task tk to the machine ml that gives the
earliest completion time.
8. Delete task tk from MT
9. Update rl
10. Update Cil f or all i
11.End Do.
12.For all Machines
13.Compute Makespan = max(CT(R))
14.End For // The machine that produced the makespan is
identified as Rj
15.For all Machines
16. For all Tasks
17. Find the task Ti with the Max ET in Rj
18. Find the Min CT of task Ti
19. End for
20. If Min CT < Makespan
21. Update the Ready Time of both machines.
22. Reschedule task Ti to the Machine that produces
it.
23. End if
24.End for.

Algorithm 2. Best-Min Heuristic

Find Min CT for 푇 & Resource that
produce it (푅)

Reschedule 푇 in 푅 & Update ready
time of all resources

Find Task 푇 with Max ET in 푅

min-min's output; Find makespan and
resource that produced it (푅)

Min CT<
Makespan

?

Find task
푇 with
next Max
ET in 푅

All Resource
considered ? Stop

Find resource with
next Min CT

Yes

No

Yes

No

Fig. 2 The Best-min work flow

176

J. Basic. Appl. Sci. Res., 3(4)173-181, 2013

4-2 An Illustrative Example
In this section, best-min algorithm is checked by an example. Consider a grid environment with three resources
and three tasks. The ETC matrix for this grid system is defined in Table 1. The performance of the different
heuristic algorithms is shown at figure 3. MET assigns each task to the resource with the minimum execution
time. So all the tasks are assigned to 푅 and makespan becomes 67. Max-min assigns 푇 and 푇 to 푅 and 푇 to
푅 with a makespan of 45. Min-min assigns 푇 and 푇 to 푅 at first and finally maps 푇 to 푅 therefore the
makespan is 44. Min-min algorithm is illustrated at figure 4.
Best-min algorithm assigns 푇 to 푅 in the first step. In the second step 푇 is mapped to 푅 and finally 푇 is
assigned to 푅 and makespan is reduced to 25. In the first phase according to min-min algorithm makespan is
44 time units and 푅 is the resource that produce it. In the second phase the task with maximum execution time
(Max ET) is identified and that is 푇 . The Min CT of 푇 is 23 and on 푅 with respect of all the resources except
푅 . So 푇 is rescheduled to 푅 . The second Max ET in 푅 is 푇 . Min CT of 푇 in	푅 and 푅 is 70. Comparing the
Min CTs of 푇 (70) in 푅 against 푅 with makespan (44) prove that 푇 has to schedule in current resource (푅).
The completion times of 푅 , 푅 and 푅 are 25, 0 , 22 right now. Finally the Third Max ET in 푅 is 푇 and Min
CT of 푇 is 23 and on 푅 . So 푇 is rescheduled to 푅 . Therefore the makespan of whole system is 25 time units.
Best-min heuristic is shown at figure 5.

The resource utilization for all heuristics is shown in figure 6. As you can see, the best-min has the best
resource utilization among all using formula (4), the sum of completion times of final jobs is 70, so best-min's
resource utilization is 92%. Similarly max-min and min-min resource utilizations' are 69% and 52%
respectively.

The matching proximity amount for MET is always one because according to formula (3) the degree of
proximity of a given schedule to the schedule produced by the MET method is evaluated. Min-min produces
0.971 while best-min and max-min respective amounts are 0.957 and 0.766. The matching proximity for four
heuristics is shown in figure 7.

Table 1 Example of A Grid System

 R1 R2 R3

T1 45 23 22

T2 45 70 22

T3 25 63 23

67
45 44

25

MET Max-Min Min-Min Best-Min

Makespan

Fig. 3 The Makespan

0

10

20

30

40

50

R1 R2 R3

T1 T2 T3

Fig. 4 The Min-min mapping process

0
5

10
15
20
25
30

R1 R2 R3

T1 T2 T3

Fig. 5 The Best-min mapping process

177

Meraji and Salehnamadi, 2013

5- Performance Analysis
For comparison of our proposed heuristic with other scheduling algorithms, ETC model is used as

benchmark experiments[5], [6] is used. This model is based on ETC matrix for 512 tasks and 16 machines.
Twelve different instances of the ETC matrices (512x16) are used. These instances are based on task
heterogeneity, machine heterogeneity and consistency. The twelve combinations are shown in Table 2. The
amount of variance between the execution times of tasks in the MT for a given machine is defined as task
heterogeneity. In environments with high task heterogeneity, different applications with simple, large and
complex tasks are submitted to execute in grid system. Machine heterogeneity represents the variation of
execution times for a given task across the resources. A grid system containing similar resources is represented
as low machine heterogeneity, while high machine heterogeneity represents computing resources of different
types. To capture different aspects of realistic mapping situations, different ETC matrix consistencies are
defined. An ETC matrix is defined consistent if a machine 푚 executes task t faster/slower than machine 푚 ,
then 푚 executes all the tasks faster/slower than 푚 . Inconsistent ETC matrix means that a machine 푚 executes
some tasks faster than machine 푚 and some other tasks slower than 푚 or vise versa. The instances are labeled
as x_yyzz. X means the type of consistency. The values of x could be c(consistent), i(inconsistent) and s(semi
consistent). Yy indicates the task heterogeneity level. Yy could be Hi or Lo. Hi means high heterogeneous, and
Lo means low heterogeneous. Zz indicates machine heterogeneity and again it could be Hi or Low. Hi means
high heterogeneous, and Lo means low heterogeneous. The combination of ETC instances are shown at table 2.

A computer program in java language is developed for proposed best-min, max-min and min-min
algorithms. The Java program produces respective schedule for tasks and calculates the values of various
objective functions explained in section 3.

The makespan of the scheduling algorithms for the twelve different instances of the ETC matrices are
shown in table 3. As you can see, best-min algorithm produces minimum makespan in all twelve matrices. min-
min is the second algorithm with minimum makespan for all instances and max-min is ranked three.

Geometric mean of all twelve matrices are calculated to show the overall improvement in makespan.
Figure 8 shows the geometric mean of makespan for twelve instances.

Figure 9 show the values of resource utilization for the three algorithms. Best-min gives the maximum
resource utilization for seven instances and max-min gives the max in other five instances. Min-min is the worst
heuristic with the respect to the resource utilization criterion. According to simulation results best-min gives the

33.34%

68.89%
52.21%

92%

MET Max-Min Min-Min Best-Min

Resource Utilization

Fig. 6 The Resource Utilization

1
0.766

0.971 0.957

MET Max-Min Min-Min Best-Min

Matching Proximity

Fig. 7 The Matching Proximity

Consistency Heterogeneity

Semi- inconsistent Inconsistent Consistent Machine Task

s_hihi i_hihi c_hihi high high

s_hilo i_hilo c_hilo low high

s_lohi i_lohi c_lohi high low

s_lolo i_lolo c_lolo low low

Table 2. Combinations of Heterogeneity and Consistency

178

J. Basic. Appl. Sci. Res., 3(4)173-181, 2013

best resource utilization in all consistence and all semi-consistence (except s-lolo) instances. S-lolo's amounts in
best-min and max-min are very close to each other (best-min 97.7% and max-min 97.8%). Also max-min is a
bit better (around 1 to 1.5%) in all inconsistence instances. Resource utilization's amounts are also provided in
table 4.

Figure 10 shows the obtained matching proximity of the three heuristics for the twelve different instances

of the ETC matrices. For eight instances min-min gives the best matching proximity. Best-min gives maximum
matching proximity for the remaining four instances while max-min gives the worst amounts in all twelve
instances. According to matching proximity simulation results best-min produced better amounts in four

s-lolo
 s-lohi
 s-hilo
 s-hihi
 c-lolo
 c-lohi
 c-hilo
 c-hihi
 i-lolo
 i-lohi
 i-hilo
 i-hihi

2865

120547

86238

4043719

4433

208437

133645

7906326

2280

79691

60140

3174557

Best-Min

3480

137234

98409

4650968

4968

268803

148263

8243812

2665

104746

76357

3632431

Min-Min

5483

323924

168730

8713869

6553

410806

205736

11348675

4732

243027

148852

6830643

Max-Min

Table 3. The makespan results of methods

Fig. 8 Comparison Results on makespan

227471.05

131857.96 112189.44

0

100000

200000

300000

Max-Min Min-Min Best-Min

Makespan

i-hihi

i-hilo

i-lohi

i-lolo

c-hihi

c-hilo

c-lohi

c-lolo

s-hihi

s-hilo

s-lohi

s-lolo

Best-Min 0.962 0.935 0.966 0.938 0.971 0.966 0.987 0.970 0.977 0.961 0.968 0.963

Min-Min 0.883 0.821 0.877 0.817 0.911 0.879 0.902 0.866 0.875 0.813 0.885 0.829

Max-Min 0.976 0.949 0.975 0.949 0.958 0.948 0.961 0.954 0.978 0.946 0.967 0.956

Table 4. The Resource Utilization results of methods

179

Meraji and Salehnamadi, 2013

consistence instances. That's because of min-min assigns tasks to resource with high processing power
especially in consistent matrices.

6- Conclusions

Due to the importance of scheduling in Grid computing, presenting a new scheduler that can optimize two

or more conflicting objective functions at the same time is promising. Min-min and max-min are the simplest
and most well known scheduling algorithms for grid computing. However, when the number of small tasks is
more than the number of large tasks in a meta-task, the makespan produced by Min-min becomes big.
Furthermore, resource utilization is relatively low in min-min. In contrast max-min gives high resource
utilization while fail in producing good makespan results. To overcome these two disadvantages, a new grid
scheduling heuristic (best-min) is proposed. Best min is executed in two phase and try to minimize makespan
while maximize resource utilization and matching proximity.

REFERENCES

[1] Foster I., Kesselman C., 2004, "The Grid 2: Blueprint for a New Computing Infrastructure", Second
Edition, Elsevier and Morgan Kaufmann Press.

[2] Sahu R., Chaturvedi A.K. ,Jan 2011, "Many-Objective Comparison of Twelve Grid Scheduling Heuristics ",
International Journal of Computer Applications ", Vol13, pp. 9-17.

[3] Pop F., Dobre C., Cristea V. , jun 2008, "Evaluation of Multi-Objective Decentralized Scheduling for
Applications in Grid Environment", IEEE, ICCP, pp.231-238.

Fig. 9 Comparison Results on Resource Utilization

0

0.5

1

1.5

i-hihi i-hilo i-lohi i-lolo c-hihi c-hilo c-lohi c-lolo s-hihi s-hilo s-lohi s-lolo

Matching Proximity

Best-Min Max-Min Min-Min

Fig. 10 Comparison results on Matching Proximity

0.00%

50.00%

100.00%

150.00%

i-hihi i-hilo i-lohi i-lolo c-hihi c-hilo c-lohi c-lolo s-hihi s-hilo s-lohi s-lolo

Resource Utilization

Best-Min Max-Min Min-Min

180

J. Basic. Appl. Sci. Res., 3(4)173-181, 2013

[4] Chang H.J., Wu J.J., Liu P., Aug 2009, " Job Scheduling Techniques for Distributed Systems with
Heterogeneous Processor Cardinality", 10th International Symposium on Pervasive Systems, Algorithms, and
Networks , pp.57-62.

[5] Braun T.D., Siegel H.J., Beck N., 2001, "A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems", Journal of Parallel and Distributed
Computing, Vol. 61, pp.810-837.

[6] Braun T., Siegel H., Beck N., Boloni L., Maheshwaran M., Reuther A., Robertson J., Theys M., Yao B.,
Hensgen D., R.Freund, 1999, "A Comparison Study of Static Mapping Heuristics for a Class of Meta-tasks on
Heterogeneous Computing Systems", In 8th IEEE Heterogeneous Computing Workshop(HCW’99), pp. 15-29.

[7] Izakian H., Ajith A., Vaclav S., 2009, " Comparison of Heuristics for Scheduling Independent Tasks on
Heterogeneous Distributed Environments", International Workshop on HPC and Grid
Applications(IWHGA2009), China, IEEE Press, pp. 8-12.

[8] Izakian H., Ajith A., Vaclav S., 2009, "Performance Comparison of Six Efficient Pure Heuristics for
Scheduling Meta-Tasks on Heterogeneous Distributed Environments" , Journal of Neural Network World,
Volume 19, Issue 6, pp. 695-710.

[9] Xhafa F., Carretero J., Barolli L., Durresi A., 2007, "Immediate Mode Scheduling In Grid Systems",
International Journal Of Web & Grid Services, Volume 3, No 2, pp219-236.

[10] Xhafa F., Barolli L., Durresi A., 2007, "Batch Mode Scheduling In Grid Systems", International Journal Of
Web & Grid Services, Volume 3, No 1, pp19-37.

[11] Maheswaran M., Ali S., Siegel H.J., Hensgen D., Freund R.F., 1999, "Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems", Journal of Parallel and Distributed Computing
59,Volume 9, Issue 3, pp 107-131.

[12] Meihong W., Wenhua Z. , 2010, "A comparison of four popular heuristics for task scheduling problem in
computational grid ", 6th International Conference on Wireless Communications Networking and Mobile
Computing (WiCOM) ,IEEE, pp 1-4.

[13] Alharbi F., May 2012, "Multi Objective Heuristic Algorithm For Grid Computing ", International Journal
Of Computer Applications, Vol 46, Issue 18, pp 39-45.

[14] Yu K.M., Chen C.K., 2008, "An Adaptive Scheduling Algorithm for Scheduling Tasks in Computational
Grid", in IEEE Seventh International Conference on Grid and Cooperative Computing, pp185-189.

[15] Ibarra O.H., Kim C.E., Apr 1977, "Heuristic algorithms for scheduling independent tasks on non identical
processors", Journal of Association for Computing Machinery, Vol.24, Issue.2, , pp280-289.

181

