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ABSTRACT 
  
Most of the classifiers suffer from the curse of dimensionality during classification of high dimensional image and 
non-image data. In this paper, we introduce a new supervised nonlinear dimensionality reduction (S-NLDR) 
algorithm called supervised dimensionality reduction based on evolution strategy (SDRES) for both image and non-
image data. The SDRES method uses the power of evolution strategy (ES) algorithm to find low dimensional 
embedding of high dimensional labeled data. The new algorithm makes the interclass dissimilarity larger than the 
intraclass dissimilarity while finding low dimensional embedding values. Simulation studies on some well-known 
benchmark datasets demonstrate that SDRES generally gives better results in dimensionality reduction and 
classification as compared to other famous S-NDLR methods such as WeightedIso, supervised S-Isomap, supervised 
locally linear embedding (SLLE), enhanced supervised locally linear embedding (ESLLE) and supervised local 
tangent space alignment (SLTSA). 
KEYWORDS: nonlinear dimensionality reduction; supervised classification; evolution strategy, manifold learning. 
 

1. INTRODUCTION 
 
The problem of classification or supervised learning is about predicting the unknown class of a new 

observation, based on the class membership information about the available dataset. Typically speaking a set of 
patterns of features along with correct classification, known as training data, is available and the task is to classify a 
new set of patterns, known as test data. Many decision-making problems fall into the general category of 
classification [1]. In a number of practical applications digital images are used for classification of objects; most 
examples may deal with the classification of handwritten digits, motor vehicle number plates, human face images 
and so on. The higher dimensions of the image data and in some cases non-image data, deteriorate the performance 
of any classifier and needs a reduction in the dimension before the application of the classification method such as 
K-NN. Fortunately most of the high dimensional data is intrinsically low dimensional. Thus, the problem of 
classification of high dimensional data can be solved by first mapping the data into low dimensional subspace and 
then applying the classification method [2]. 

Recently a class of nonlinear dimensionality reduction (NLDR) methods, based on the concept of manifold 
learning, have captured the attention of researchers. For classification purposes, supervised versions of these 
manifold learning methods known as supervised nonlinear dimensionality reduction (S-NLDR) are presented by 
different authors. Commonly used examples are WeightedIso [3], Supervised S-Isomap [4], Supervised Locally 
Linear Embedding (SLLE)  [2, 5], Modified Supervised Locally Linear Embedding (MSLLE) [6], Enhanced 
Supervised Locally Linear Embedding (ESLLE) [7], and Supervised LTSA[8-9]. 

In this paper, we introduce a new method for classification of high dimensional image and non-image labeled 
data. The new method uses the concept of Evolution Strategy (ES) to reduce dimensionality of the labeled data 
points and then uses estimation method discussed by Li [8] to find low dimensional embedded points for out-of-
sample high dimensional data points. We call the new method supervised dimensionality reduction based on 
evolution strategy (SDRES). A comparative analysis of the performance of the new method with some well-known 
S-NLDR methods shows very promising results. 

 The rest of the paper is organized as follows: in Section 2 an overview of the related work is presented. In 
Section 3 a brief description of evolutionary algorithms and evolution strategy algorithm is given. The proposed 
method is described in detail in Section 4. Discussions on the experimental results are given in Section 6. 
Conclusion and future work are presented in Section 7. 
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2. RELATED WORK 
 
In recent years, a number of nonlinear dimensionality reduction methods have been developed under the 

assumption that data points lie on an underlying manifold embedded in a high-dimensional space [7]. Among them, 
two representative algorithms are isometric mapping (Isomap) [10] and locally linear embedding (LLE) [11]. Both 
these methods are unsupervised dimensionality reduction methods and could not be directly used for the purpose of 
classification. Different authors develop supervised versions of these methods by modifying the computation of 
pairwise distances between data points so that the interclass dissimilarities become larger compared to intraclass 
dissimilarities.  A brief description of some well known supervised versions of Isomap and LLE is given in the 
following subsections.  

 
2.1. WeightedIso 

The WeightedIso changes first step of the standard Isomap algorithm. It proceeds by first computing the K 
nearest neighbors of each data point x and denotes with Ksame the set of nearest neighbors having the same class label 
as x. Then “move” each nearest neighbor in Ksame closer to x by re-scaling their Euclidean distance by a constant 
factor 1 ,  ( >1).   Remaining steps of the algorithm remain same as of the unsupervised Isomap. 

 
2.2. Supervised Isomap 

In S-Isomap Euclidean distance D is replaced by D , where 
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The parameter  is used to prevent ( , )i jD x x to increase too fast when ( , )i jD x x  is relatively large. Thus, 

the value of β should depend on the density of the dataset. Usually, it is set to be the average Euclidean distance 
between all pairs of data points. The parameter   (0≤  ≤1) gives a certain chance to the points in different classes 
to be “more similar” so that the dissimilarity in different classes may be smaller than that in the same class. 

  
2.3. Supervised LLE 

Among different versions of SLLE, we choose the one given in [5], due to its simplicity of application. The 
SLLE uses the idea of adding distance between samples in different classes as  

max( )D D D         (2) 
where D is the pairwise Euclidean distance matrix for the complete dataset without considering the class label 

information, and D is the distance matrix integrating with the class label information. If the data points are from 
different classes, then 1ij   and 0ij  otherwise. Here (0,1) controls the amount to which class 
information should be incorporated. When α = 0, SLLE is equivalent to the original unsupervised LLE; when α = 1, 
the result is the fully supervised LLE (called 1-SLLE). This supervised version of LLE behaves as a nonlinear Fisher 
mapping where ߙ controls the nonlinearity. 

 
2.4. Enhanced Supervised LLE 

In ESLLE [7] the author uses the same logic as used by Geng et al. [4] in S-Isomap. In the ESLLE algorithm 
Euclidean distance D is replaced by D as given in the following equation 
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The characteristics of parameters α and β are already explained in section 2.2 above.  
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2.5. Supervised LTSA 
Supervised LTSA also use the idea of artificially increasing the shift distances between points belonging to 

different classes, but leaving them unchanged if samples are from the same class. The new pairwise distance matrix 
is given as D D     , where the shift distance ρ is assigned a relatively very large value in comparison with the 

distance between any pairs of points, 1ij  if the data points are from different classes, and 0 otherwise.  
We choose above mentioned S-NLDR methods due to their similar approach of using class information by 

increasing distance between data points of different classes. Supervised NLDR methods do not explicitly provide 
any mapping function for out-of-sample data points, it can be learnt by estimation method [8, 12-13] or by some 
nonlinear interpolation techniques, such as Generalized Regression Networks (GRN) [14]. To summarize, the 
general classification procedure has three steps as follows: 

i. Map high dimensional data into a lower dimensional space using any S-NLDR method.  
ii. Find mapping function for out-of-sample data points using estimation method or GRN.  

iii. Map the given query data point in a low dimensional space using the mapping function and then 
predict its class label using a classifier. 

  
3. EVOLUTION STRATEGY (ES) ALGORITHM 

 
Evolutionary algorithms (EAs) are generic, population-based, meta-heuristic optimisation algorithms that use 

biology-inspired mechanisms like mutation, crossover, natural selection and survival of the fittest [15].  It is widely 
believed that the specific potential of EAs originates from their parallel search by means of entire populations [16]. 
Evolution Strategies (ESs), along with Genetic Algorithms (GAs), are one of the variants of EAs. The emphasis in 
ES techniques is not on the acquisition of a structure with high fitness, as in GA, but for a behavior that is rated well 
by the fitness function  [17]. 

In our new supervised NLDR  method we use ES algorithm proposed in [17-18], to find low dimensional 
embedding in case of class information. The authors of the ES algorithm introduce the concept of competing 
subpopulations in the process of crossover and then a dynamic time variant mutation (TVM) operator was used [17-
18]. We use this particular ES algorithm in our method due to its fast convergence and more precise results [17]. A 
brief structure of ES algorithm is given below, for detail of the algorithm the readers are referred to see Hashem et al. 
1997) and  Watanabe and Hashem (2004). 

 
3.1. The Evolution Strategy Algorithm  
i)  Initial Population 
The initial population is generated by using uniform random numbers (URN). The individuals of the 

population are represented by 1 2, ,....y y y , where  1 1 2, , ...., T
ny u u u  and -100 < ui < 100. The µ denotes the 

number of individuals in the population. 
ii) Competing Subpopulation-based Arithmetical Crossover 
Divide the parent population consisting of µ individuals into equal sized l competing subpopulations. Define 

,max
t
jy  as an elite individual that maximizes a cost function, at time t, within the j-th subpopulation and

t
jy  as a 

mean strength of the j-th subpopulation except the ,max
t
jy , define the crossover operation for the competing 

subpopulation j to produce two offspring as follows : 

1 ,max (1 )t t t
j jy y           (4) 

2 ,max(1 )t t t
j jy y           (5) 

where α is selected from URN[0, l] 
iii) The Time-Variant Mutation 
The TVM is defined for a child i, as 

  ( ). (0,1)         1, 2,...,i i i it N n           (6) 

where (0,1)iN is the Gaussian random value with zero-mean and unity variance, and ( )t is the time-variant 
mutation step generating function at the generation t, which is defined by  
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The value of r is selected from the URN[0, l], T is the maximal generation number and γ is a real-valued 

parameter greater than unity.  
iv) Evaluation 
After the mutation operation, each child is evaluated in its cost function (fitness) for a possible solution in each 

generation.  
v) Alternation of Generation 
The µ + µ individuals are ordered in proportional to the amount of the cost function, and the best µ individuals 

are selected for the next generation. 
 

4. SUPERVISED DIMENSIONALITY REDUCTION BASED ON EVOLUTION STRATEGY (SDRES) 
 
For any classification algorithm, the goal is to map the data into a feature space in which members of different 

classes are clearly separated [4]. To achieve this goal we artificially increase the pairwise distances between samples 
belonging to different classes, but leaving them unchanged if samples are from the same class. After constructing 
modified pairwise distance matrix, we find pairwise geodesic distances between all the points to find actual 
distances between these points in curvilinear space. In order to find low dimension embedded points we use the ES 
algorithm to minimize SSE between pairwise Euclidean distances among low dimensional embedded points and the 
geodesic distances among corresponding high dimensional data points. Implementation steps of SDRES algorithm 
are; 
Algorithm: Supervised Dimensionality Reduction based on Evolution Strategy (SDRES)  
Input: D-dimensional N data points X D

i    (where i = 1, 2,…, N),  along with class labels. 

Output: d-dimensional embedded points Y D
i   (where i = 1, 2,…, N), 

PHASE I: Compute pairwise geodesic distances between all data points 
1. Compute all possible pairwise Euclidean distances ( , )i jd x x between high dimensional dmatrix withto form a 

N×N matrix ED with 0-diagonals.   

2. Compute new distance matrix ED  by adding distance between data points from different classes as 

max( )E E ED D D    , where 1ij   if the data points are from different classes, and 0 otherwise. Here

(0,1)  controls the amount to which class information should be incorporated. 

3. Compute neighbourhood graph G from ED : Put an edge between nodes i and j if Xi and Xj are “close”.  
There are two variations: 
(i) K-nearest neighbours. Nodes i and j are connected by an edge if i is among K nearest neighbours of j or j is 

among K nearest neighbours of i. Set edge lengths equal to ( , ).i jd x x  

(ii) -neighbourhoods. Nodes i and j are connected by an edge if ( , ) .i jd x x   

4. Use Floyd Warshall algorithm to find the N×N matrix GD of geodesic distances from G. 
PHASE II: Find low dimensional optimal values of anchor points 

5. Randomly select aN  high dimensional data points (called anchor points) and initialize the coordinates of 
corresponding low dimensional points using URN[a, b]. Place these low dimensional points in set-A. 

6. Randomly select two points from set-A. Find optimal coordinates of these points by using the ES algorithm to 
minimize the difference between the Euclidean distance between these points and geodesic distance between 
corresponding high dimensional data points. Move these optimal points to set-B.  

7. Randomly select a point from set-A and compute Euclidean distances between this point and all the points in the 
set-B. 
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8. Find optimal coordinates of the new point by using the ES algorithm to minimize SSE between Euclidean 
distances from Step-7 and geodesic distances between corresponding high dimensional data points, where 

    2

1
SSE , , .BN

k j G k jj
d y y d x x


  Move new optimal point to set-B.  

Repeat steps 7-8 until set-A is empty. Now set-B becomes a low dimensional representation of high dimensional 
anchor points. 
PHASE III: Find low dimensional optimal values of non-anchor points 

9. Select a point r from non-anchor points and initialize its low dimensional coordinates using URN[a, b]. 
10. Compute all possible Euclidean distances between r and points in set-B. 
11. Find optimal coordinates of the new point r by using the ES algorithm to minimize SSE between Euclidean 

distances from Step-10 and geodesic distances between corresponding high dimensional data points. 
Repeat steps 9-11 for all non-anchor points. 

The above SDRES algorithm involves following parameters,  
i. K for K-array neighbourhood or ε for ε-balls 
ii. The number of anchor points and  
iii. Range [a, b] for initialization of low dimensional points 

For computational purpose, we use K=8 and 10 for all the datasets.  The number of anchor points should be at 
least twice the number of classes so that at least two points represent are selected from each class. A proportional 
allocation method can be used to allocate anchor points to different classes. The selection of anchor points from 
different classes should be done entirely at random.  Range for initialization of low dimensional embedding values 
does not affect the results greatly. However, if we take a wider range say [-100, 100], the ES algorithm may take 
more time to converge. For our sample datasets we use a range of [-10, 10], for all the data points. 
Other parameters of SDRES are related to implementation of ES algorithm. These are population size µ, sub-
population size m and dependency parameter ߛ. We take µ=60, m=6 and 8=ߛ, as suggested in [18]. 

Convergence/termination of the DRES algorithm depends on the convergence/termination of ES algorithm. 
We set the termination condition of ES algorithm as; if the improvement in the optimal value of low dimensional 
point is less than 710 10 or if the generation number reaches its maximum value of 500.  
The complete procedure for classification process is summarized as below: 
i. Map high dimensional data into lower dimensional subspace using SDRES method. 
ii. Find low dimensional mapping for out-of-sample data point using estimation method (discussed in subsection 

6.2). 
iii. Find class membership for out-of-sample data point using ĸ-NN classifier.  
4.1. Advantages of SDRES algorithm 
(i) Most of the algorithms mentioned in section-2 use eigenvalue decomposition of a square matrix constructed 
from high dimensional data points. The DRES algorithm does not require this step, so the problem of an ill-
condition matrix does not arise. 
(ii)  The DRES algorithm is memory efficient as it does not require storing all the points, rather it stores only 
anchor points both in high and low dimensional spaces.  
4.2. Limitations of SDRES 

The main drawback of our proposed algorithm is that it takes a long time during the training phase due to its 
incremental structure. This drawback makes it inefficient in the case of a very large training dataset. This problem 
can be overcome by selecting a small representative training dataset from each class.  

 
5. PERFORMANCE EVALUATION CRITERIA 

 
Commonly used performance evaluation criteria for classification is the error rate (ER).  If unlimited cases 

for training and testing part are available, the ER can readily be obtained as the ER on the test cases. The simplest 
technique for estimating error rates, the holdout method, is a single train and test experiment [19]. The sample cases 
are broken into two groups of cases: a training group and a test group. The classifier is independently derived from 
the training cases, and the error estimate is the performance of the classifier on the test cases. A single random 
partition of training and test cases can be somewhat misleading. Random resampling can produce better estimates 
than a single train and test partition.   
In this study, we use 10-fold cross validation resampling method to find error rate. The original dataset is randomly 
divided into ten equal-sized subsets. Then in each fold, one subset is used as a testing set and the union of the 
remaining ones is used as training set. After 10-folds, the average result is taken as the final ER. We use standard 
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deviation (SD) of 10-fold results as a performance consistency indicator of any S-NLDR method. For Olivettie faces 
and Lübeck University face datasets, we use leave-one-out resampling method due to a small number of images 
available for each subject. 
 

6. EXPERIMENTAL RESULTS AND DISCUSSION 
 
In this section, we present results of several examples to illustrate the performance of our ES based SNLDR 

algorithm. Test datasets include non-image and high dimensional grayscale image datasets.  
6.1 Datasets 

In order to demonstrate the performance of our proposed method, experiments on several image and non-
image benchmark datasets are carried out. Table-1 gives summary information about used datasets.  Some sample 
images from different image datasets are shown in Figure-1 to Figure-7. 

 
Table 1. Summary Information of datasets used 

Sr. 
No. 

 Dataset No. of 
classes 

No. of 
instances 

No. of 
dimensions 

Resampling 
Method 

 Source 

1. Iris 3 150      4 10-fold http://archive.ics.uci.edu/ml/datasets/Iris 
2. Wine 3 178    13 10-fold http://archive.ics.uci.edu/ml/datasets/Wine 
3. ISOLET 6 500  617 10-fold http://archive.ics.uci.edu/ml/datasets/ISOLET 
4. Optical recognition of 

handwritten digits 
6 600    64 10-fold http://archive.ics.uci.edu/ml/datasets/Optical+Recognition

+of+Handwritten+Digits 
5. CMU faces 6 184 40×44=1760 10-fold http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images 
6. Yale-B 4 550 3632=1152 10-fold http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html 
7. UMIST faces 3 100 4537=1665 10-fold http://www.cs.toronto.edu/~roweis/data.html 
8. MNIST digits 5 500 2828=784 10-fold http://www.cs.toronto.edu/~roweis/data.html 
9. Olivettie faces 7   70 6464=4096 Leave-one-out http://www.cs.toronto.edu/~roweis/data.html 
10. Lübeck Univ. faces 5   65 3648=1728 Leave-one-out http://www.inb.uni-luebeck.de/lehre-de/ss08/ 

ni1/ueb3/faces.mat/view?set_language=en 
11. Student faces dataset 6 500 4864=3072 10-fold Data is captured in our lab using Logitech Quickcam Pro 

5000 Webcam with a white background. Images are used 
without any cropping. 

 

 
Figure 1. Sample Images from CMU face dataset 

 

 
Figure 2.  Sample Images from Yale-B face images dataset 

 
Figure 3.  Sample Images from UMIST face images dataset 
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Figure 4.  Sample Images from MNIST handwritten digits dataset 

 
Figure 5.  Sample Images from Olivettie faces dataset 

 
Figure 6.  Sample Images from Lübeck Uni. face dataset 

 
Figure 7. Sample images from student faces dataset 

 
6.2 Experimental Setup 

The number of neighboring points K is a common parameter for all the supervised NLDR methods except 
SDRES. We take two different values of K=8 and 10. Different researcher most commonly uses these values of K. 
Target dimension d is 2. The value of λ in WeightedIso is 10, α in S-Isomap is 0.5 and β is set to an average 
Euclidean distance of all pairwise distances, whereas the value of ρ in SLTSA is set to max(D). These parameter 
values are suggested by the respective authors. The value of α in SLLE and SDRES is set to 1, to make full use of 
class information. As an out-of-sample mapping function, we use Estimation method discussed in [8]. The authors 
construct a mapping function by assuming that new points come from those parts of the high-dimensional space that 
have already been explicitly mapped. The low dimensional representative point of high dimensional new point 

1Nx   is obtained as; 

1 1( )N j N jy y L x x 
          (7) 

where jx  is nearest neighbour about 1Nx  , jy  is corresponding low dimensional point, jx   and jy are respectively 

the mean of K nearest neighbours of jx  and jy . The transformation matrix L is obtained as 

( )( )j j j jL y y x x    , where (.)+ is the Moor-Penrose generalized inverse of a matrix. Finally, to predict class 
labels for training and test data, the non-parametric ĸ-NN (ĸ = 9) classifier with the Euclidean metric is used due to 
its simplicity. 
6.3 Results 

We run all the algorithms on above mentioned datasets. For most of the datasets, results for K=8 are 
marginally better than K=10, therefore we present results only for K=8. Table 2 shows the percentage mean error 
rate (PMER) and SD for 10-fold or leave-one-out resampling method for different S-NLDR methods. We did not 
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present results for S-Isomap because it produces disconnected geodesic distance graphs for all the datasets, except 
Olivettie faces. For every dataset, best value of PMER is represented by bold face.  
 

Table 2. PMER and SD for Supervised NLDR Methods 
Sr. 
No. 

Datasets WeightedIso SLLE ESSLE SLTSA SDRES 
PMER SD PMER SD PMER SD PMER SD PMER SD 

1. Iris  26.7 0.17 4.0 0.06 10.7 0.09 4.0 0.06  4.0 0.06 
2. Wine 25.6  0.09 24.0 0.09 24.0 0.09 24.0 0.09 24.0 0.09 
3. ISOLET  38.6 0.09 74.1 0.13 68.4 0.15 43.4 0.12 54.1 0.07 
4. Optical recognition of 

handwritten digits  
  4.8 0.05 33.9 0.11 32.4 0.08   5.0 0.05 4.8 0.03 

5. CMU faces 28.1 0.12 56.0 0.15 53.8 0.16 64.0 0.10 28.0 0.14 
6. Yale-B faces  14.6 0.04  35.9 0.10 39.1 0.08  13.6 0.06 13.2 0.05 
7. UMIST faces  66.7 0.11 71.5 0.13 75.0 0.18 77.0 0.12 52.5 0.14 
8. MNIST digits   18.0   0.06 43.9 0.08 41.4 0.09 19.4 0.06 17.7 0.05 
9. Olivettie faces   35.8 0.21 62.5 0.16 68.0 0.15 77.7 0.05 57.5 0.08 
10. Lübeck University faces   7.7 0.10 13.8 0.17 12.3 0.13   1.5 0.05   1.5 0.05 
11. Student faces dataset 60.4 0.1 Crashed Crashed  0.2 0.01  0.2 0.01 

 
An overview of Table 2 reveals that no single algorithm performs best for all the datasets. However, the 

performance of SDRES is significantly better than other S-NLDR methods. For non-image data i.e. Iris, Wine, and 
Optical recognition of handwritten digits the SDRES method gives best performance when compared with other S-
NLDR methods. For image data, it gives the minimum error rate for six datasets.  i.e. CMU faces, Yale-B faces, 
UMIST faces, MNIST faces, Lübeck University faces, and Student faces dataset. For remaining one dataset i.e. 
Olivettie faces the SDRES method gives the second best performance. Small values of SD for different datasets are 
an indication of consistence performance of the SDRES algorithm across 10-fold or leave-one-out samples. 

 
7. CONCLUSIONS 

 
A new ES based method for supervised NLDR mapping is proposed in this paper. The new method takes into 

account class membership to enhance discriminating ability of low dimensional embedding.  
We compare the proposed method with other supervised mapping techniques such as WeightedIso, SLLE, ESLLE 
and SLTSA on a number of image and non-image datasets in order to gain insight into what methods are suitable for 
data classification. The SDRES method yields very promising classification results in our experiments and comes 
out to be the best method. 

The only disadvantage we come across during experimentation with different datasets is that SDRES method 
takes a long time during the training phase, which is due to its incremental structure.   
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