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ABSTRACT 
 
In this paper nonlinear model predictive control (NMPC) based on multiple neural networks (MNNs) is considered. 
The control scheme includes a process model and an optimizer. MNNs are used to model the process and the model 
is then used in an NMPC scheme to control the process. Ensembles of artificial neural networks show improved 
generalization and noise-robustness capabilities in comparison to a single neural network (SNN). A genetic 
algorithm (GA) based optimizer is developed to determine a solution for the control trajectory. This optimizer is 
then combined with the sequential quadratic programming (SQP) technique. The resulting optimizer is named 
GASQP. As an application example of the developed algorithm, the real-time control of a continuous stirred tank 
heater (CSTH) is considered. Application results demonstrate that the developed  method improves the control 
performance of the system. 
KEYWORDS: Nonlinear Model Predictive Control,  Multiple Neural Networks, Genetic Algorithm,  Sequential 

Quadratic Programming , Continuous Stirred Tank Heater. 
 

1. INTRODUCTION 
 

NMPC has received substantial attention over the past years. NMPC expresses the model predictive control 
(MPC) arrangement that uses nonlinear models for prediction and permits a non-quadratic cost function and nonlinear 
constraints on the process variables [1]. MPC has made a considerable impact on control engineering. MPC is one of 
the most appropriate control techniques which denote a class of control techniques in which a dynamic process model 
is employed to predict and enhance process performance. Linear MPC which employs a linear model for prediction 
was effectively used for years in numerous advanced industrial applications. Because many processes are nonlinear and 
linear models are often insufficient to describe extremely nonlinear processes and reasonably nonlinear processes 
which have large operating changes, different NMPC methods have been established [2]. 

The MPC technique optimizes the process outputs over some predetermined future time interval called the 
prediction horizon N. At the each time step, the future outputs are predicted using a dynamic model of the process. 
This model is used to compute the current and future control actions (the control horizon) Nu (Nu ≤ N), which 
minimize a user-specified performance index. After the Nuth time step, it is presumed that the control action is 
constant. Only the first of the resulting optimal inputs is applied to the process. This complete process is repeated at 
each time step [3]. 

One of the major limitations of the MPC techniques is the application of a linear model to the prediction of 
future process states. When the technique is applied to nonlinear processes, the model mismatch can degrade the 
control performance. As a solution to this problem, neural network (NN) based nonlinear models have already been 
proposed for the MPC. 

Neural network ensemble is a learning example where a group of a finite number of neural networks is trained 
for the same task. Ensembles of artificial neural networks give enhanced generalization abilities that outperform 
those of SNNs [4]. There are numerous  ensemble techniques, but the most prevalent include some elaboration of 
bagging [5], boosting [6] and stacking [7]. We concentrated on bagging in neural network ensembles. Bagging is 
anticipated by Breiman [5] founded on bootstrap sampling. It produces several training sets from the initial training 
set and then trains a component neural network from each of those training sets [8]. The resulting MNN can be used 
as a prediction model for control purposes. 

A second problem is the selection of the optimization algorithm, since the lack of suitable optimization tools 
hinders the practical utility of NMPC. GA based optimization was employed as a possible optimization method. 

GAs are search algorithms founded on mechanism of natural selection giving robust search abilities in complex 
space, and in this manner offering an effective method to problems necessitating efficient global searches [9]. This 
work employs GA to implement the optimizer in NMPC. In addition this optimizer is further modified by including 
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the SQP technique [10] to improve the computation of manipulating variables. Unlike SQP, GA is a global search 
algorithm. It simultaneously searches for solutions in several regions, thus increasing the probability of finding the 
global optimum. Therefore, combining GA as a global search technique with SQP as a local search algorithm would 
increase the accuracy and speed of convergence. The optimizer executes GA until an approximate suboptimal 
solution is obtained. The outcome is further improved using the SQP technique. 

The outline of this article is organized as follows. Section 2 briefly reviews NMPC. Process modeling is 
explained in Section 3. In Section 4, the optimization of the nonlinear control problem by the GA and SQP is 
explained. The CSTH case study is described in Section 5. Results and discussions are given in Section 6.  Finally, 
Section 7 presents the conclusions of this work. 

 
2. Nonlinear Model Predictive Control 

A basic structure of NMPC is shown in Fig. 1. The components of the plan consist of a process, a model and 
a control block. The control block includes an optimizer, objective function and constraints.  

 
 

Neural networks are used for experimental modeling of the process. The model will predict the process 
characteristics over a prediction horizon N, enabling the controller to incorporate future set point changes or 
disturbances. 

The manipulating input applied to the process in NMPC is computed by the recurring solution of a finite 
horizon open loop optimal control problem subject to the system dynamics, input and state constraints. Based on 
measurements acquired at time t, the controller foresees the future dynamic behavior of the system over a prediction 
horizon N and computes (over a control horizon Nu ≤ N) the inputs such that a scheduled open-loop performance 
objective functional is optimized. If there were no disturbances and no model discrepancy, and if the optimization 
problem could be solved for infinite horizons, then one could apply the input profile determined time t = 0 to the 
system for all times t ≥0. However, this is not generally probable. Due to disturbances and model mismatch, the 
actual system performance is not the same as the predicted performance. To solve this problem feedback is 
considered in the system. In order to include some feedback mechanism, the open-loop manipulated input profile 
obtained will be applied to the plant only until the next measurement becomes obtainable. The time difference 
between the measurements can fluctuate, however often it is presumed to be fixed, i.e. the measurement will occur 
every δ sampling time units. Using the new measurement at time t + δ, the entire procedure (prediction and 
optimization) is repeated to determine a new input profile with the control and prediction horizons moving ahead 
[11]. The overall principle of MPC is demonstrated in Fig 2. 

Usually, the objective function, given below by Eqn. 1, includes two parts. The first part is known as the cost 
of predicted control errors, the differences between the set point 푦  and the predicted values of the output 푦 over 
the prediction horizon N. The second part represents the penalties for the changes of the control value [12]. 

퐽(푘) = 퐴(푦 (푘 + 푝|푘)− 푦(푘 + 푝|푘)) + 퐵(∆푢(푘 + 푝|푘)) 																																																																										(1) 

From the following optimization problem: 
푚푖푛

∆푢(푘|푘), … ,∆푢(푘 +푁 − 1|푘)					{퐽(푘)}																																																																																																																																			(2) 

 

Fig. 1. Nonlinear model predictive control plan 
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Subject to: 
푢 ≤ 푢(푘 + 푝|푘) ≤ 푢 																														,																푝 = 0, … ,푁 − 1																																																																											(3) 
∆푢 ≤ ∆푢(푘 + 푝|푘) ≤ ∆푢 																						,																푝 = 0, … ,푁 − 1																																																																											(4) 
푦 ≤ 푦(푘 + 푝|푘) ≤ 푦 																															,																푝 = 0, … ,푁																																																																																					(5) 
The future control increments, ∆푢(푘),	 are determined as: 
∆푢(푘) = [∆푢(푘|푘) … 	∆푢(푘 +푁 − 1|푘)] 																																																																																																																														(6) 
Only the first element of the determined sequence in Eqn. 6 is actually applied to the process, i.e. 
푢(푘) = ∆푢(푘|푘) + 푢(푘 − 1)																																																																																																																																																								(7) 
This whole procedure is then repeated for the next sampling time step. 

 
3. Process Modeling Using Multiple Neural Networks 

Recently, ensemble techniques have become very popular as methods for improving the generalization 
performance of unstable learners such as neural networks [13]. 

Bagging, an abbreviation for “bootstrap aggregation”, is extensively accepted as one of the most prevalent 
neural network ensemble methods. In this method, from a data set T comprising N examples one produces bootstrap 
re-samples {푇∗} by drawing with replacement N training patterns. The left over examples  푉 = 푇 − 푇∗ are usually 
used for validation purposes. Thus one generates B different members 휑∗  of the ensemble, the outputs of which on a 
test point x are finally averaged to create the aggregate prediction [14]. 

The bagging algorithm shown in Fig.3, can be summarized as: 
i) Take a training set  푇 = {(푡 ,푥 )}     
ii)  For i = 1 to B:  

a) Make a new training set  {푇∗}  by generating bootstrap re-samples of T. Each bootstrap 
re-sample 푇∗ consists of N data pairs, sampled at random with replacement from T. 

b) Train an estimator  휑∗  with the set  푇∗ and add it to the ensemble. 
iii) Using an appropriate weight 푤  for each network aggregates these bootstrap versions by 

averaging to form a bagged prediction 휑   as: 
휑 = ∑ 	푤 휑∗(푥) 																																																																																																																																					(8) 

Fig. 2. Principle of model predictive control 
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Recent advances in machine learning show that weighted ensembles of ANNs for regression can significantly 

improve prediction accuracy, generalization capability, and robustness against outliers when compared to SNNs. 
The weighting function employed in this work is given in [15] as: 

푤 =
exp	(−훼푒 )

∑ exp	(−훼푒 )																																																																																																																																																																			(9) 

where 푒  is the prediction error of the i-th model, B is the number of individual models in the ensemble, and  
훼 is a weighting coefficient. Setting 훼 = 0 results in the arithmetic mean for the weighting function. 
Some of the advantages of the bagging algorithm are as follows: 

i) It is easy to implement. 
ii)  It is very robust to noise. The noise-robustness property of the bagging algorithm is principally significant 

when the training data are contaminated with noise. 
iii) Bagging decreases variance or model discrepancy over diverse data sets from a specified distribution, 

without increasing bias, which results in a reduced overall generalization error and enhanced stability. 
iv) Bagging changes a collection of over-fitted neural networks into a better than perfectly-fitted network. 

Therefore, the conventional lengthy model selection is no longer needed. This could even counterbalance 
the computational overhead needed in bagging that includes training many neural networks. 

 
4. Optimizer 

GAs are flexible optimization algorithms with a probabilistic element that offers a method to search poorly 
understood, irregular spaces. Any GA begins with a population of randomly formed solutions, chromosomes, and 
progresses toward better solutions by applying genetic operators. GA is modeled on genetic processes taking place 
in nature [9].  

GA works through function evaluation, not through differentiation or other such means. Thus GA is able to 
search for an optimum control sequence in a nonlinear control problem such as NMPC. 

GA requires the problem of minimization to be stated in the form of an objective function. A set of variables 
for a given problem is encoded into a string (chromosome), and passed to an objective function to evaluate the 
fitness of that chromosome. GA selects parents from a pool of strings (population) according to the basic criteria of 
“survival of the fittest”. Some members of the population undergo transformations by means of crossover and 
mutation operators to form new solutions.  The crossover operator combines two parents to form a child. Mutation is 
a process by which GA is reinforced to reach the optimal solution through changing of a value with a probability 푃  
(the mutation probability) at a randomly selected point in the chromosome [16]. 

In this paper, the techniques proposed in [2] for GA is employed. The technique enables GA to be adopted in 
NMPC applications to calculate the control sequence. As shown in Fig. 4, the optimum string computed at time step 
k is modified to generate a new string which is always selected as one of a the strings at the (k+1)-th control step. 

Fig. 3. Bagging 
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Furthermore, some of the best individuals at the k-th control interval are also included into the current initial 
population. This strategy improves the quality of current population and the stability of the NMPC algorithm. 

 
 
 
 

Using the string shown in Fig. 4, the objective value J(k+1) at the (k+1)-th control interval is computed and 
compared with J(k). If J(k+1) is smaller than J(k) then this string is selected as the feasible solution, and its first 
element u(k+1|k+1) is applied to the plant. Otherwise, the optimization is performed as usual to compute the 
manipulating inputs [2]. 

In the GASQP developed in this work, GA determines approximate global estimates of the manipulating 
variables. These estimates are then used as the initial values for the SQP technique to improve the accuracy of the 
computed values.  
 
5. Process Description 

The CSTH [17] is used as the case study in this paper. Hot and cold water flow into the mixing tank, heated 
further using steam through a heating coil and drained from the tank through a long pipe. The configuration is shown in 
Fig. 5. The inputs are the cold water (CW) temperature, hot water (HW) temperature and steam valve. Outputs are 
level, cold and hot water flow and temperature. Manipulating CW will regulate the water tank temperature. The aim of 
simulation is to determine the dynamic responses of the temperature for specified variation in CW. 

The CSTH is well mixed and therefore the temperature in the tank is assumed the same as the outflow 
temperature. The tank has a circular cross section with a volume of 0.8l m3 and height of 50 cm. The initial values of 
temperatures of the hot and cold water feeds were set to 50 ℃ and 24 ℃, respectively. The maximum achievable 
temperature at the standard operating conditions is 65 ℃. For the temperature tests, the level was held constant at a 
set point of  20.48 cm. The sampling time used is 10 seconds. A normally distributed noise with zero mean and a 
standard deviation of 2 ℃ were added to the simulated tank temperature. 

 

 
 

 
 

6. RESULTS AND DISCUSSION 
 
Numerous techniques have been used in bagging algorithm. These techniques include early stopping, epoch, 

NeuralBag, SECA and SimAnn [18]. In this work, the weighted forms of the early stopping (W-early stopping) and 

Fig. 4. The choice of initial population per iteration 

Fig. 5. The continuous stirred tank heater 
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epoch (W-epoch) methods are implemented and then compared with each other. MNNs were combined using the 
weighted averaging approach. An MNN, consisting of 10 individual networks each of which having a single hidden 
layer with 10 hidden neurons, is developed to model the nonlinear dynamic relationship between the cold water 
temperature and the water temperature in the tank. An appropriate model structure for each component network was 
determined using cross validation. Table 1 shows the mean squared error of MNN resulting from various types of 
ensemble neural networks on the training and testing data averaged over 50 experiments. The best result in each case 
is highlighted in bold. 

Table 1. Mean squared errors (in units of ퟏퟎ ퟒ)  
CSTH single NN early stopping W-early stopping epoch W-epoch 

Training data 8.43 4.86 4.72 2.14 1.77 
Testing data 9.59 5.69 5.48 3.23 2.82 
 
In this work, for construction of MNN the weighted epoch algorithm is employed. The NMPC algorithm is 

then developed using MNNs to control the tank temperature. The NMPC parameters are listed in Table 2.  
The optimization method used is GA. For GA, the mutation probability is set to 0.1, population size is 10 and 

maximum number of generations is 20. For GASQP the maximum number of generations is 10. The tuning 
parameters of the PID controller are:  푘 = 6 , 휏 = 30 and 휏 = 2  as given by [17]. 

Fig. 6 compares the conventional PID with the NMPC based GA and the NMPC based GASQP for the  given 
set point changes. 

 
Table 2. Values of the NMPC parameters 

Variables Signification Values 
N Prediction horizon 7 
Nu Control horizon 5 

Ymin Minimum temperature of the controlled variable 24 ℃ 
Ymax Maximum temperature of the controlled variable 65 ℃ 
Umin Minimum temperature of the manipulated variable 10 ℃ 
Umax Maximum temperature of the manipulated variable 60 ℃  
∆Umax Maximum change in manipulated variable 20 

A Output weight 1 
B Control weight 0.1 

  
 
 

Table 3 compares the performance of the three algorithms using the mean squared error (MSE) and percent 
of overshoot.  

 
 
 

Fig. 6. Output responses for multiple set point changes in CSTH 
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Method Mean squared error percent overshoot % 

conventional PID 0.1412 10.13 
NMPC based GA 0.0561 1.55 

NMPC based GASQP 0.0409 0 
 

Computational times at all sampling times of the NMPC based GA and the NMPC based GASQP are 
compared in Fig. 7. It is evident that the suboptimal NMPC algorithm based on GASQP has a considerably reduced 
demand on computational complexity. 

These results show that NMPC based GA outperformed the conventional PID controller. In addition, the 
NMPC based GASQP method, developed in this work, provided improved control performance with lower 
computational load when compared against the NMPC based GA. 

 

 
 

7. Conclusion 
 
In this paper, an implementation of the NMPC using an MNN model is proposed. Compared with a SNN 

model, in MNN the generalization, stability, smoothness and noise-robustness capabilities of neural network are 
improved. The component networks in an MNN were selected and combined in an attempt to obtain a better 
predictive model. In this work, several techniques were employed to construct MNNs. Among the discussed 
methods, the weighted epoch algorithm has shown better generalization performance compared to the other 
techniques. To determine the optimum control action an NMPC optimizer based on GA is used. In addition, GA was 
combined with SQP to develop the GASQP optimizer. The simulation  results demonstrated that the NMPC based 
on GASQP technique provided enhanced control performance and reduced computational load when compared 
against the NMPC based on GA.  
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