

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

© 2013, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Maryam Mehraban, Department of Computer Engineering, South Tehran Branch, Islamic AZAD
University, Tehran, Iran. E-mail address: Mar.mehraban@gmail.com, maryam.mehraban65@yahoo.com

A Prediction-Based Replica Replacement Strategy in Data Grid

Maryam Mehraban, Ahmad Khademzadeh, M.Reza Salehnamadi

Department of Computer Engineering, South Tehran Branch, Islamic AZAD University, Tehran, Iran

ABSTRACT

Data Grid provides services for sharing and managing huge amount of data files around the world. For the high
latencies of the Internet, it becomes a big challenge to access such large and widely distributed data fast and
efficiently on data grids. Data replication is one of the methods. However; it is bounded by two factors: size and
number of available storage and bandwidth of sites within the Data Grid. Therefore, Replica replacement is the
crucial step to replication strategy. This paper proposed a replica replacement strategy called Prediction Replica
replacement (PRA) was applied into replica replacement during data replication. The PRA framework can
automatically decide on which replica file to be deleted whenever the storage element of the grid site is full. The
performance evaluation of PRA and other replication algorithms are carried out by optorSim simulation. The result
shows that Prediction Replica replacement Strategy performs better than other replication strategies.
KEYWORDS: Data Grid, Replica, Replacement, Replication, OptorSim.

1. INTRODUCTION

In recent years, applications such as bioinformatics, climate transition, and high energy physics produce large

datasets from simulations or experiments. Managing this huge amount of data in a centralized way is ineffective
due to extensive access latency and load on the central server. In order to solve these kinds of problems, Grid
technologies have been proposed. Data Grids aggregate a collection of distributed resources placed in different
parts of the world to enable users to share data and resources [1, 2, 3]. Data replication is an important technique to
manage large data in a distributed manner. The general idea of replication is to place replicas of data at various
locations. Data replication has been used in database systems [4], parallel and distributed systems [5, 6, 7], mobile
systems [8], and Data Grid systems [9, 10, 11].

Data replication has two direct improvements on the performance of Data Grid. One is to speed up the data
access, which leads to a shorter execution time of the grid jobs; and the other one is to save the bandwidth between
nodes, which can avoid the network congestion while the sudden frequently requirement of some data. But
Replication is also bounded by two factors: the number and size of storage available at different sites within the
Data Grid and the bandwidth between these sites [12]. Sites have limited storage space and cannot accommodate
replicas of every data file on the grid, while network have limited capacity for transferring them. A grid must
therefore have a replica management system that manages the data files in grid environment with the aim to
optimize the performance of the grid. One of the most important strategies is replica replacement strategy, which is
the main focus of this paper. The main rule of replica replacement is to make a room for the newly created replica
by finding the victim replica to be replaced by the newly created replica. Replica replacement strategy plays a vital
rule in enhancing the performance of grid.

Due to the capacity of the storage device of each site is limited, replica replacement, deleting replicas to
make room for new replicas, is indispensable whenever the capacity of the SE (Storage Element) is insufficient
during replication. This caused another problem: which replicas will be replaced from the SE. Common
disadvantage of all replacement replica strategies is disability in General prediction to access information in the
near future A replacement strategies wisely is the method that chosen to eliminate replica with the least likely to be
available in the future and the hot replica with cold replica to prevent Therefore, how to select replicas that will be
less likely accessed in the future, is one of the key problems in the process of replication, and also is the core
problem to be solved in this paper. Therefore, if there is not enough storage during replication, a well-designed
replication replacement algorithm will be needed. Our proposed Replica Replacement technique, PRA finds the
best candidate replicas for replacement. At present, most replica replacement strategies have been adapted from
page replacement algorithms in Operating

System (OS), such as LRU (Least Recently Used), LFU (Least Frequently Used). LRU and LFU could cause
replicas that are beneficial for future jobs to be wastefully removed. Both of this method, basically lists all files
according to their access frequency from the time the replica was created and also keep tracks on how often these
replicas are being accessed throughout their existence. These strategies do not provide enough weight age to judge
a replica's future access. Therefore, deleting replica according to the LRU and LFU method could cause the
valuable replica in the future to be removed as well. In addition, when the removed replica is requested in the near
future, it will then have to replicate again into the storage element. This might take longer job execution time since

928

Mehraban et al., 2013

the replication process of transferring the replica back into the storage element will have to take place again. Using
an efficient algorithm has also played an important role in reduce Mean Job Time, Total Number of Replications,
Effective Network Usage and Percentage of Storage Filled/Available. This paper proposed a replica replacement
strategy called Prediction Replica replacement (PRA) was applied into replica replacement during data replication.
The PRA framework can automatically decide on which replica file to be deleted whenever the storage element of
the grid site is full based on information such as data-access frequency, Priority replica, age, free space on storage
elements to which data will be replicated or deleted and Future transfer cost. The difference between PRA and the
old methods, PRA allocated greater weight to the newly created replicas, Prevent removal of replicas that have
been stored in the storage element recently. Also, reduces the computational overhead. The reason of that is
because the PRA invoke the deletion function with minimum number if there is a need to perform the replacement
process. In other words, the process of replacement in PRA occurs with minimum number as it deletes minimum
number of files to make a free space for the newly created replica. Such an approach considers both the users
satisfaction by deleting the less valuable file and resource satisfaction by deleting only one file. Also, Deleting
files According to file size and Storage space required is done. Since most of the datasets in the scientific data grid
scenario are read-only, the overhead of updates will not be considered in the replication strategies.

The main contribution of this paper is providing efficient mechanism for Replica replacement in Grid data.
More specifically, the following contributions are achieved in this paper:

1) Present a new replica replacement strategy, which is Prediction Replica Replacement Strategy, abbreviated
to PRA. The PRA improves the temporal locality property and apply of decisions based on information such as
data-access frequency, Priority replica, age, free space on storage elements to determine the victim file.

2) The PRA strategy is evaluated and our simulation results show that the jobs with PRA strategy took the
least relative delay-time to complete, also shows better performance and efficiency of the data access on Data
Grids; compared with other two LRU and LFU strategies.

 The rest of this paper is organized as follows: Section 1.1 provides a brief description on existing work in
dynamic replication strategies and how they determine the victim file. We include the details of our proposed
strategy in Section 2. We show the simulation setup, parameters configurations and performance metrics used to
compare with related replication strategies; and the performance results are then presented in section 3. Finally, we
summarize some conclusions in Section 4.

1.1 RELATED WORKS

In [13, 14, 15], they proposed a prediction-based replica replacement algorithm using a two-stage process to
evaluate the popularity of a replica. They considered some bandwidth with replica size. It is combined prediction
and cost function together to predict. The simulation results demonstrated that their algorithm contributed to better
grid performance. The work in [16] suggested a replica replacement algorithm based on economic model and
opportunity cost, the files have been evaluated using zipf-like distribution prediction model and then weighted
using the file transfer cost model. If the needed replica has a higher weight than the replica with the lowest weight
in the local storage, that file will be deleted and the new replica will be transferred into the local site.

L.H. Ai and S.W. Luo [17] present a job-attention replica replacement strategy, abbreviated to JARRS.
JARRS makes its replacement strategy based on grid locality analysis. The locality analysis is based on the
traditional replica replacement strategies.

Jianhua.J, Huifang Ji2, Gaochao Xu[18] present an Associated Replica Replacement Algorithm Based on
Apriori Approach for Data Intensive Jobs in Data Grid, abbreviated to ARRA. ARRA is introduced in two parts.
In the first part, access behaviors of data intensive jobs are analyzed based on Apriori algorithm, which is a famous
data mining algorithm. In the second part, replica replacement rules are generated and applied.

Madi.M, Yusof Y and Hassan S [18] present an exponential based replica replacement strategy, abbreviated
to ERRS. File Evaluation stage - in this stage assigned a prediction value based on exponential growth/decay
model to each file according to historical information; File Elimination - in this stage the victim file is chosen
Based required storage capacity and replica value.

2. THE PROPOSED MODEL

The proposed replica replacement strategy termed as PRA is applied when the selected site for placing the
newly created replica has insufficient storage capacity to store the underlying replica. Prior to that, it is assumed
that information about access history on which file to be replicated and where the replica is to be stored is
available [19]. PRA is a strategy that selects a victim file from the files that are stored in target storage in order to
make sufficient storage space for the underlying replica.
 The PRA performs replica replacement through two main stages:
 File Evaluation stage - in this stage we assign a prediction value to each file according to historical information

and transfer cost. also, This stage is composed of three parts:
 Evaluation of replica popularity -.we apply Half-life model to determine the replica popularity.

929

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

 Evaluation of future transfer cost - The cost factor often affected by some factors such as replica size and
bandwidth.

 Prioritization of replica - we determine replica value base on replica popularity and future transfer cost.
 File Elimination Stage - in this stage we eliminate the files from being a victim Based on the size of the newly

created replica and needed storage capacity.
 Details of the stages are included in the following subsections.

2.1 File Evaluation Stage

In this stage, firstly Evaluates replica popularity and future transfer cost locally and then determines replica
value for selection the victim file.

2.1.1 Evaluation of replica popularity

We believe that popular replicas are more likely to be available in the future. However, recent access
frequency is more important, but older frequency access records are also important. Each site maintains the history
of files accessed in that site. At a regular time interval each site calculates replica popularity Based on the age and
data-access frequency of previous periods. We apply concept of Half-life to determine the replica popularity and
Integration the age and data-access frequency. Half-life is mentioned in many domains, such as physics,
chemistry, and medicine. Half-life indicates the time required for the quantity to decay to half of the initial value,
where the quantity may be radioactive element or chemical element.

Information gathered at different time intervals has different weights in order to distinguish the importance
between history records. The rule of setting weight uses the concept of Half-life .In our algorithm, the weight
represents the quantity, and a time interval represents the time for half-life. That is, the weight of the records in an
interval decays to half of its previous weight. Setting different weight is used to evaluate the importance for
history records. Older history records have smaller weights. It means that the recent history access are worthier for
referencing than previous [20]. The selection of the popular file is based on the weights given to the file. Figure 1
indicates the concept. At the first time interval, there is only an access history in the first time interval, which is
T1. The weight of records in this time interval is 20. At the second time interval, there are two access history in
two time interval T1 and T2. Because T1 has existed for a time interval, the weight of T1 becomes 2-1 and the
weight of T2 is 20. We can derive the weight of records in different table at the nth time interval from the above
rule [20].
 The weight of T1, T2, …, and Tn is 2-(n-1), 2-(n-2), …2-(n-n). This weight is used to find a more popular file, as
explained in the following [20].

Fig 1: The diagram of half-life for the weight in different time interval [20]

 Then we define an Access Frequency (AF) [20] to exhibit the importance for access history in different time
intervals. Assume NT is the number of time intervals passed, F is the set of files that there are in a target storage
element. aij indicates the number of accesses for the file i at time interval j. The Access Frequency for file F is
represented as:

 (1)

930

Mehraban et al., 2013

 For instance, a file X has been accessed 4 times and 5 Time and 10 Time in the first time interval, the
second time Interval and the Third time interval respectively. Then AF(X) is (4×20) + (5×2-1) + (10×2-2). AF puts
different weights for access records of different time intervals. According to Equation (1) we calculate the AFs of
all files that have been requested. A file with the largest AF is chosen as the popular file.

 One of the important points in this method is choosing appropriate the length of Time intervals; because
that if the length of time interval is too short, the information about data access history is not enough. On the
contrary, the information could be overdue and useless if the length is too long. Using the concept Half-life causes
more weight to be given recent access history. Prevent removal of replicas that have been stored in the storage
element recently. The reason this work is that the newly created replicas likely can be accessed many times in the
future. While because that newly created replicas and low access frequency may be removed. It will also prevent
the creation of multiple replicas.

2.1.2 Evaluation of future transfer cost

The cost factor is an important factor during the whole replica replacement process, which is often affected
by some factors such as replica size and bandwidth. Too much bandwidth consumption may block the network and
improve the possibility of fault appearance during the transfer process. Consequently, the lower the total cost is,
the better the performance of replacement algorithm is. In [21], they chose the best one-the one with the largest
bandwidth to transfer the related replica in the beginning of the transfer process. However, some problems
happened in the real applications. Because that the replacement of the storage element, the needed file in the best
site will be deleted, which will cause the whole replacement to be delayed greatly. In order to address these
problems, some changes will be made in our algorithm [16]. We define the bandwidth B(f) as the mean of the
bandwidth of all the replicas in the data grid and NR is the number of replica of file f and Bi is the bandwidth of the
i-th replica, which is:

 (2)
 So the cost of the replica, C(f), is defined as:

 (3)
S(f) : the size of the file

2.1.3 Prioritization of replica

Prioritization of replicas determined based on replica value in each storage element. We define the replica
value V(F) That it consists of future transfer cost of replica and popular replica.

 (4)

 The factor weightings α and β defined in V(F) must be chosen such that
α + β =1 (5)

 α and β are coefficients of the formulas; and Their value Determined based on The importance of access
history or popular replica. A resource with highest rank ensures better aggregate response time compared to
resource with lower rank. In this experiment, considered α=0.7 and β=0.3. Using of these coefficients is because
that improved results and Prioritization of replicas. So that in the list of Candidate replicas, the first priority is the
replicas that had the lowest access with the lowest cost replacement. Then, replicas will be deleted that had the
lowest access with the highest cost replacement. In this case, Due to the low access number, used less likely in the
future. The third priority is the replicas that have the highest popularity and lowest cost replacement. However;
Total Access is high but because that Low cost replacement, they are appropriate candidates for removal. Even in
their case it is possible that due to the low cost, they can be accessed remotely. In the end, it still was not enough
space available, copies of which have the greatest value and replacement cost are selected.

2.2 File Elimination Stage

This stage uses the results of file evaluation stage in order to decide which file to be the victim and which one
to be eliminated from deletion. Firstly, all replicas that have not been achieved during its presence in the storage
space are the victims. If it did not create enough space for the newly created replica; our algorithm beginning to
replace files that accessed to them.

One approach is to select the less valuable file to be the victim for deletion function. However, this approach
has a drawback which is the increasing of the number of victim files until there is enough space for the underlying

931

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

replica, as it depends on the file value [19]. For example, assume that we have 9 files stored in one storage element
with free storage space 300 MB as shown in Table 1. Also assume that we have a file with size 900 MB need to be
placed.

 In the above example shown in Table 1, the victim file is File2, as it is the less valuable file, but we still
need to delete one more file, so the next victim file is File7. So we need to delete two files in order to room one
file, in some cases the number of victim files may reach to five as they have small size. That means the system
may lose 5 files that are considered stable file to room one file [19].

Table 1: example of data files stored in on storage element with their corresponding file value and file size

 Another approach is to delete the file, which has a larger size compared to other files. However, this approach
is infeasible as in some cases the file that got large size may have the highest value among other files and the
system still needs it. Therefore, our approach considered three criteria including file size and predicted transfer
cost and file popularity to reduce the number of files replicated and Bandwidth consumption.
 The steps of the elimination stage are as follows:
1- Calculate file value based on popularity and future transfer cost.
2-Calculate how much of storage capacity we need in order to room the underlying replica, by applying the
following equation:

S = F Size – free space (6)
RS=S/ 2K K>=0 (7)
 Where RS is the required space to host the underlying replica and F Size is size of Input file

3-Eliminate the files those sizes greater than or equal to RS
4-If there is no file that sizes greater than or equal to RS, PRA executes the file replacement algorithm considering
the N value, at first K=0. Then we increment K by one and this process is continued until a set of files that meet
the criterion is located.
5- Sort the files in ascending order based on File Value. Then identify the victim file. File that has the lowest File
Value. The above algorithm is shown by flowchart.

Fig 2: The steps of the elimination stage

We refer to the example shown in Table 1. We target files that sizes greater than or equal to RS. Therefore,

in the above example: RS = 900 – 200 = 700. Completing the elimination stage, that is removing files with sizes

calculate file value based on
popularity and future transfer cost

S = F Size – free space
,K=0

RS= S / 2^K
N ++;

IF f_i => RS
insert f_i in list of Candidate files

if list is empty

yes

Sort the files in ascending order
based on File Value and Victims file

that has the lowest File Value

No

File Size File Value File name
400 45 File 1
500 32 File 2
700 40 File 3

1200 55 File 4
1100 50 File 5
1300 60 File 6

900 35 File 7
800 45 File 8

1500 65 File 9

932

Mehraban et al., 2013

less than or equal to 700, we obtain files in Table 2. The file with the least value is File7; hence it will be identified
as the victim file.

Table 2: the targeted files for deletion function
File Size File Value File name

900 35 File 7
700 40 File 3
800 45 File 8

1100 50 File 5
1200 55 File 4
1300 60 File 6
1500 65 File 9

 Perhaps the ineffectiveness of this method is that when we're forced to delete files with size up and the maximum
value. But Remove several small files to obtain enough space, In addition to being the victim of more files, may be
Total values of several small files more be than a big file. Such an approach considers two important factors. These
factors are deleting the less valuable file and resource satisfaction by deleting the minimum number of files.

 The pseudo code of replica replacement algorithm is depicted as bellow.

Fig 3: pseudo code 1.Modified Replication Optimiser

 PRA Optimizer will direct the Storage Element to store replicas that are created by the optimizer as well as to
remove files according to the criteria set by the PRA algorithm. The Storage Element will then execute the
command and thus stores or removes the particular file. The algorithm as shown in the pseudo code 1, described
the overall operation of the implemented replication optimiser. In the pseudo code 1, if Requested file exist at the
site do nothing and if requested file there is not at sit and the file size is larger than the storage space can be
accessed remotely. But if there are not enough storage space and The file size is smaller than the storage space,
used PRA Method for deletion.
 In the pseudo code 2, generated a list of file that are larger than required space and placed in the array Alocal.
Then we will remove the lowest File Value. If the list was empty, by using the formula RS=RS/2K, The list is
filled with smaller replica.

Fig 4: pseudo code 2. PRA Algorithm

933

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

3. SIMULATION SETUP AND METRICS
OptorSim is used to evaluate the performance of PRA algorithm. OptorSim was developed by European Data

Grid projects and is written in Java. It provides a framework to simulate the real grid environment. It is developed
to test the Dynamic Replication strategies. Using the modules, we can easily compare the effectiveness of different
replica optimization algorithms within this environment. OptorSim contains a number of elements including
Computing Elements (CEs), Storage Elements (SEs), Resource Broker (RB), Replica Manager (RM) and Replica
Optimiser (RO) [22].
 Grid topology is that of the CMS testbed which consists of 8 routers and 20 grid nodes. In the CMS
configuration, each grid site is allocated a CE and initially empty storage capacity of 50GB, except for the CERN
and FNAL sites [17]. For the CMS testbed, CERN and FNAL were given SEs of 100 GB capacity and no CEs. All
master files were stored at one of these sites. Every other site was given 50 GB of storage and a CE with one
worker node[23].Jobs stored in Storage Element and Processed in the Computing Elements. Routers send requests
to other sites. Data Replication strategies assumes that the data are read-only. Grid topology shown in Figure 5.

Fig 5: Grid topology for CMS [23]

 We ran the simulation process with 100,200,300,400,500 jobs including 6 job types. Jobs are submitted with a
fixed probability such that some jobs are more popular than others. Each job is submitted at 25 millisecond
intervals. Each job type requires specific files for execution. The order of the files accessed in a job is sequential
and has been set in the job configuration file. The number of files in our simulation process is 97. The size of the
files is randomly generated from 100MB to 2000MB.

4.1 Simulation Setup

The performance metrics we chose to evaluate the proposed system are: Mean JobExecution Time (MJET),
Efficient Network Usage (ENU), Average Storage Usage (ASU) and Total Number of Replications (TNR). These
metrics are described below.
 Mean Job Execution Time - The mean job execution time is defined as the total time to execute all the jobs
divided by the number of jobs completed. The total time includes the time that elapses from when a job enters the
queue in a site to await execution until the time when the job finishes its processing and leaves the site. An
ordinary grid user would require the fastest possible turnaround time for the job, and so this metric is considered
the most important of the evaluation metrics. It is defined by [19, 24] and calculated by the following equation:

 (8)
where i is the number of jobs processed through the system.
 Efficient Network Usage - File replication is essential to a distributed Grid system but it takes time and uses
network bandwidth. Thus, a good balance must be found where any replication is in the interest of reducing future
network traffic. We define effective network usage as a measure of how well the optimization strategy uses the
network resources. It is defined by [19, 24] and calculated by the following equation:

 (9)
Where ܰ௥௘௠௢௧௘	௙௜௟௘	௔௖௖௘௦௦௘௦	is the number of accesses that Computing Element reads a file from a remote site,
௙ܰ௜௟௘	௥௘௣௟௜௖௔௧௜௢௡ is the total number of file replication occurs, and ௟ܰ௢௖௔௟	௙௜௟௘	௔௖௖௘௦௦௘௦is the number of times that

Computing Element reads a file locally and ௟ܰ௢௖௔௟	௙௜௟௘	௔௖௖௘௦௦௘௦ is the number of times that Computing Element

934

Mehraban et al., 2013

reads a file from a remote site that is The ratio files transferred to files Requested. A lower value indicates that the
utilization of network bandwidth is more efficient and the optimization strategy used is better at placing files in the
right places.
Average Storage Usage - Storage usage can be calculated for each site as a percentage of capacity reserved by files
according to the total capacity for the underlying storage. The average of the all storage elements in the grid can
reflect the total system storage cost. It is defined by [24] and calculated by the following equation:

 (10)
Where,
U: is the storage usage for each site in MB
n: is the number of sites in the grid
c: is the total capacity of the storage medium.

 Total Number of Replications - Represents the number of replication has been done. so a low value indicates
that the Victim Files is selected correctly. This metric represents the total created replicas for files requested by the
client in a simulation session. Increase the replica number indicates that number of replicaton has increased.
Replication causes not only increased bandwidth consumption, But also I/O disk and CPU is consumed. Therefore,
must be controlled the frequency of replication to avoid heavy server and load network. The PRA is compared
with LFU and LRU strategies.

3.2 SIMULATION RESULTS

The order in which a job requests files is determined by the job’s access pattern. There are various access

pattern generators used in optorSim. In this work Sequential Access Pattern Generator is used. When compared to
LRU and LFU, PRA Algorithm performs better. An ordinary grid user would want the fastest possible turnaround
time for their jobs and thus consider Mean Job Execution Time the most important evaluation metric [15].

This algorithm minimizes the Mean Job Execution time and thus the data access time can be improved and
even with increasing the numbers of job, it shows better performance. Fig 6 demonstrates the Mean Job Execution
Time. Choosing the correct victim replica reduces the number of replacements. Since PRA strategy is
implemented based on the past access frequency And future transfer cost and file (replica) size it is able to show
better accuracy as the time increases and consequently a better prediction of replica value would happen[24]. This
makes PRA to reduce the changes of replicas to be deleted or replaced unless it is worthwhile. As a result, PRA is
able to process jobs faster than LFU and LRU algorithm.

Fig 6: Mean Job Execution Time

 Fig 7 demonstrates the Number of Replications. It is important to reduce the number of replication; and it
means that selected the correct victim replica.

935

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

Fig 7: Number of Replications

 Figure 8 demonstrates Average Storage Used. The difference between PRA and other algorithms is the replica
replacement techniques used in deciding the replicas for deletion. As regards that The proposed algorithm is
considered several factors simultaneously for select the victim replica And Prevents deletion of important replica
and select the suitable victim replica, it could cause Consumption storage capacity is reduced. Thus, PRA has
advantages to dynamically choose the replicas for replacement while satisfying storage capacity constraints. The
ASU of our algorithm is lower compared to the LFU or LRU algorithm. The reason is that LFU and LRU always
replicate, so the large value of file replication will increase the ASU value.

Fig 8: Average Storage Used

 Fig 9 demonstrates Effective Network Usage. Effective Network Usage used to quantify use of network
bandwidth. The ENU values are ranged between 0 and 1.The less ENU the better performance is, the data locality
increases, and reduced bandwidth consumption. Thus the LFU and LRU strategy shows a poor performance in
utilizing the bandwidth usage available in the network. This is because in LRU and LFU number of deleted files
resulting from performing the replacement process is large. Consequently performing the replication will be
increased as well. As a result the ENU will be large. Better performance of the proposed strategy is because victim
replica less valuable in the future. It indicates that with PRA algorithm we can expect less replicates which leads to
its better performance than LRU and LFU.

936

Mehraban et al., 2013

Fig 9: Effective Network Usage

 The simulation also provides wider evaluation range for the algorithms as the job loads increases. While the
performances of LRU and LFU were almost similar in most of the cases, the PRA showed improvement in the
mean job time taken to execute the assigned jobs. It also has the lowest number of replicas created which are
optimally placed in the network. Therefore, this indicates that PRA is the most suitable replica replacement
strategy that can be used in the data grid environment [24].

4. CONCLUSION

In this research, a Prediction Replica replacement algorithm is proposed. The algorithm consists of two stages.
First, concept of half-life was introduced and using the half-life to determined the replica popularity and
Integration the age and data-access frequency. Then future transfer cost is calculated using two factors: replica size
and bandwidth. To calculate the bandwidth, all replica of each file is considered. Finally, Replica value is
calculated according to replica popularity and future transfer cost of replica in the first stage. Of course, Different
weights to each factor is given. Giving more weight to the popularity has Leads to Prioritization of replicas. In the
second stage, PRA (The proposed model) within the list of replicas that Provider space required, deletes or
replaces the replicas that are least worth. The proposed model simulated with optorsim and Compared with LRU
and LFU.
 The simulation results show that PRA successfully increases data grid performance than other replication
strategies such as LRU and LFU. By using PRA, the mean job execution time and Number of Replications can be
minimized, the network is used more effectively and storage space is saved. In other words, the mean job
execution time using PRA is about 30% faster than LFU, and faster about 28% than LRU. The reason of that is
because the PRA invoke the deletion function with minimum number if there is a need to perform the replacement
process. In other words, the process of replacement in PRA occurs with minimum number as it deletes minimum
number of files to make a free space for the newly created replica. However, in LRU and LFU the deletion
function is invoked many times in one replacement process and need to check every deletion process the storage
space of the underlying Storage Element. As a result, LRU and LFU will take longer time to perform the
replacement process. The less Effective Network Usage the better performance is. Thus the LFU and LRU strategy
shows a poor performance in utilizing the bandwidth usage available in the network. Effective Network Usage
using PRA is about 14% faster than LFU, and faster about 11% than LRU. This is because in LRU and LFU
number of deleted files resulting from performing the replacement process is large. Therefore, the probability of
reading the files remotely will be increased; consequently performing the replication will be increased as well. As
a result the ENU will be large. The large number of deleted files by LRU and LFU affects the Number of
Replications metric as the number of Replications will be decreased. PRA outperforms the LFU by 10% and LRU
by 9% in the Number of Replications metric. Average Storage Used using PRA is about 7% faster than LFU, and
faster about 6.5% than LRU. This is because in proposed model considering various factors, Prevent the removal
of important replica and several replication. These factors are: locality, size, transfer cost and popularity of replicas
considerations effectively to achieve the best performance possible.
 Also, this strategy by predicting the transfer cost that will be incurred for replicas at grid sites, replacement of
replicas with high cost can be avoided.

937

J. Basic. Appl. Sci. Res., 3(4)928-939, 2013

 As this approach deals only with data replacement strategies, further works can be combined with scheduling
algorithm and replication algorithm to improve the overall system performance. We have not tested our strategies
in the real grid systems. It will be an important part of our future work. We will also make some extensions to our
current approach to further improve its performance. Another further works can be added parallel transfer for
improve access time and Job Execution Time.

REFERENCES

[1] Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S. The data grid: towards an architecture for the
distributed management and analysis of large scientific datasets. Journal of Network and Compute
Applications 2000;23(3):187–200.

[2] Foster I. The grid: a new infrastructure for 21st century science. Physics Today 2002;55(2):42–7.

[3] Allcock B, Bester J, Bresnahan J., Chervenak AL, Kesselman C, Meder S, Nefedova V, Quesnel D, Tuecke S,
Foster I, Secure. efficient data transport and replica management for high-performance data-intensive
computing, in: Proceedings of the First Eighteenth IEEE Symposium on Mass Storage Systems and
Technologies, 2001.

 [4] Wolfson O, Milo A. The multicast policy and its relationship to replicated data placement. ACM Transactions
on Database System 1991;16(1):181–205.

[5] Bae MM, Bose B. Resource placement in torus based networks. IEEE Transactions on Computers 1997;
46(10):1083–92.

[6] Loukopoulos T, Lampsas P, Ahmad I. Continuous replica placement schemes in distributed systems, in:
Proceedings of the 19th International Conference on Supercomputing, 2005, pp. 284–292.

[7] Rehn-Sonigo, V, Optimal replica placement in tree networks with QOS and bandwidth constraints and the
closest allocation policy, Technical Report, No. 6233, INRIA, 2007.

[8] Tu M, Li P, Xiao L, Yen I-L, Bastani FB. Replica placement algorithms for mobile transaction systems. IEEE
Transactions on Knowledge and Data Engineering 2006;18(7):954–70.

[9] Rahman RM, Barker K, Alhaij R. Replica placement strategies in data grid. Journal of Grid Computing
2008;6(1):103–23.

[10] Ranganathana K, Foster I. Identifying dynamic replication strategies for a high performance data grid, in:
Proceedings of the International Grid Computing Workshop, 2001, pp. 75–86.

[11] Abawajy, JH, Placement of file replicas in data grid environments, in: ICCS 2004, in: Lecture Notes in
Computer Science, 2004, pp. 66–73.

[12] Srikumar, V., Rajkumar, B., Kotagiri, R.: A Taxonomy of Data Grids for Distributed Data Sharing,
Management, and Processing. ACM Computing Surveys 38, 2006.

[13] Teng, M., Junzhou, L.: A prediction-based and cost-based replica replacement algorithm research and
simulation. In: 19th International Conference on Advanced Information Networking and Applications
(AINA 2005), 2005, pp. 935–940.

[14] T. Tian and J. Luo, "A Prediction-based Two-Stage Replica Replacement Algorithm," in 11th International
Conference on Computer Supported Cooperative Work in Design, (CSCWD 2007), 2007, pp. 594-598.

[15] Tian, T., Luo, J.: A VO-Based Two-Stage Replica Replacement Algorithm. In: Network and Parallel
Computing, 2010, pp. 41–50.

[16] Zhao, W., Xu, X., Xiong, N., Wang, Z.: A Weight-Based Dynamic Replica Replacement Strategy in Data
Grids. In: Asia-Pacific Services Computing Conference, 2009, pp. 1544–1549.

[17] L.H. Ai and S.W. Luo, Job-attention Replica Replacement Strategy, in: Proceedings of 8th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2007, pp. 837-840.

[18] Jianhua.J, Huifang Ji2, Gaochao Xu . ARRA: an Associated Replica Replacement Algorithm Based on
Apriori Approach for Data Intensive Jobs in Data Grid, Key Engineering Materials Vols. 439-440, 2010, pp
1409-1414.

938

Mehraban et al., 2013

 [19] Madi.M, Yusof Y, Hassan S, A Novel Replica Replacement Strategy for Data Grid Environment. ICSECS
2011, Part III, CCIS 181, , 2011 pp. 717–727.

 [20] Ruay-Shiung Chang, Hui-Ping Chang, Yun-Ting Wang A dynamic data replication strategy using access-
weights in data grids. Springer Science+Business Media, LLC 2008, DOI 10.1007/s11227-008-0172-6,
2008,pp. 277–295.

[21] Ma Teng, and Luo Junzhou, “A Prediction-based and Cost-based Replica Replacement Algorithm Research
and Simulation”, Proceedings of the 19th International Conference on Advanced Information Networking
and Applications, IEEE Computer Society, 2005, pp. 935-940.

[22] David G.Cameron, Ruben Carvajal-Schiaffion, Jamie Ferguson,A.paul Miller, Caitriana Nicholson, Kurt
Stockinger, Floriano Zini, “ OptorSim v2.1 Installation and User Guide”, October 4, 2006.

 [23] D. G. Cameron, A. P. Millar, C. Nicholson, University of Glasgow, Glasgow G12 8QQ, OPTORSIM: A
SIMULATION TOOL FOR SCHEDULING AND REPLICA OPTIMISATION IN DATA GRIDS, , .

 [24] Soosai Al, Sulaiman Na, Dynamic Replica Replacement Strategy in Data Grid, In: Proceeding :Computing
Technology and Information Management (ICCM), 2012 8th.

949

