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ABSTRACT 
 

In this paper, the effect of compressive axial loading on natural frequency of the composite shell and the influences 
of geometrical parameter and the fiber orientation on the buckling load and natural frequency are studied. Bucking 
and free vibration of cylindrical laminate composite shell are inspected regarding to three approaches; classical 
theory of laminate, first order shear deformation, finite element method. The composite is taken into account as 
orthotropic laminate. Substituting strain-displacement based on love’s first approximation into strain-stress equation 
lead to yield equilibrium equations respect to displacement components. The boundary conditions are considered 
clamp on one side and free on other. The components of displacement are considered as double Fourier’s series 
which is more general and precise. A remarkable accuracy has been admitted by comparing the results with other 
available references. 
KEYWORDS; Vibration, Buckling, Cylindrical Shell, First order of Shear Deformation, Classical Theory. 

 
INTRODUCTION 

 
Cylindrical shells have diversity applications in industrial. Some of prominent parameters in cylindrical shells 

subjected to axial loading are the magnitude of buckling load and the effect of axial loading on their vibration. 
Buckling is so important in some structures like missiles and aircrafts, because some of their components may 
buckle through the applied loading. As it is known, the applied loading on structure influences the natural frequency. 
Besides, the natural frequencies of the shell should be known so that it prevents the resonance phenomena. 
According to this, the reduction of weight in aero structures is so essential. Therefore, it is required that cylindrical 
shell would be made of composite material in order to increase the strength of structure in comparison to its weight. 
The structure is optimized economically. The other benefits of composite materials are the high stiffness and the 
anticorrosion properties. Buckling and vibration of the cylindrical shell attract researcher’s regard in mechanical and 
other engineering sciences.  Singer and et al. [1] studied the stability of the cylindrical shell under axial compressive 
loading and critical loading for bucking. Cheng and Ho [2] presented an analytical theory for buckling of cylindrical 
shell composite problem.  Xavier, and Chew [3] investigated the buckling and vibration of orthotropic laminate 
composite cylindricalshell by using the first and higher order of layerwise’s theories. Reddy and et al. [4] studied the 
dynamic stability of cross ply laminate composite of cylindrical shell under a combine axial static and periodic 
loading. Hawkes and Soldatos [5] studied the vibration of three dimensional axisymmetric hollow cylindrical shell 
by using the Navier solution method. Lam and Loy [6] examined the effect of the boundary conditions on rotating 
thin wall cylindrical shell by using the law’s first order approximation theory and Galerkin solution method.  Suzuki 
and et al. [7] examined the vibration of the composite cylindrical circular vessel by a power series and minimum 
Lagrangian. Hua and Lam [8] studied the frequency characteristics of a thin rotating cylindrical shell using the 
generalized differential quadrature method. Zhang [9] analyzes vibration of cross-ply laminated composite 
cylindrical shells using the wave propagation approach. Jack and Vinson [10] reviewed the mechanical behavior 
shells composed of isotropic and composite materials. 

  
1. Theoretical formulation and equilibrium equations 

Consider a laminate composite cylindrical shell with radius R , thickness t and length of L . For the following 
analysis, a Cartezian coordinates system (ܴ,ߠ,  is adopted with the origin at the center of cylinder. Based on shell (ݖ
classical theory, the equilibrium equation will be as follows [6,10]; 
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Based on shear deformation theory, the equilibrium equations will be as follows [11]; 
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Which x and   are the slops in x z and z  . 1 2,I I and 3I are defined as follows [10,11];
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k is described as density of each layer. The equations of composite shells based on classical theory of laminate are 
defined as follows [10, 11]; 
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Which A, B, D and H are respectively extensional stiffness matrix, coupling stiffness matrix, bending stiffness 
matrix and shear stiffness matrix which are defined as bellow [6,10,11]; 
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Fig. 2 shows configuration of layers in composite. ,u v andw are the components of displacement in axial, 
circumferential and radial direction. 
 
 
 
 
 
 
 
 
 

ok is considered as correction shear factor with magnitude of 
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PROBLEM RESPONS AND SOLUTION METHOD 
 

There are differentmethods to compute the response of the problem, but each method has its own benefits and 
disadvantage. Among various methods, Double Fourier Series is more efficientand accurate. This is more general 
than the single series. However the heavy mathematical calculations associated with this type of method have 
restricted its wide application, due to the invention of advanced computing machines and methods, this method of 
reactance calculation is now widely adopted. Now, by applying the boundary conditionsforthe cylindrical shell 
which is free and; 
For the free boundary condition on 0x  ; 

0x x x xN N Q M     
For the clamped boundary condition clamped on x L ; 

0x
w wu v w
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
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      
 

 

 
Substituting equations 4 and 6 in the equilibrium equations, classical shell theory will give the following equations; 
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For the first order shear deformation theory, the equations will be; 
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ijL isthe differential operator which its equations came in appendix . In order to satisfy the boundary conditions, 

xu ,v ,w , ,    are described as double Fourier series; 
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mnT is the time function of displacement component and mn mn mn mn mnA , B ,C , D ,E  are shape function of the natural 
modes which are calculated by solving the free vibration. m is the number of longitudinal half wave and n  is the 
number of circumferential half wave. The values of i  , m  and m  are calculated regarding to the considering 
boundary conditions as follows; 

1 3 4 1     , 2 1    

sinh sin
cosh cos

m m
m

m m

 
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



 

cosh cos 1m m     
For solving the equation of (9) and (10), the Galerkin method is applied. 
 

a. Buckling Analysis 
In science, buckling is a mathematical instability, leading to a failure mode. Theoretically, buckling is caused 

by a bifurcation in the solution to the equations of static equilibrium.In practice, buckling is characterized by a 
sudden failure of a structural member subjected to high compressive stress, where the actual compressive stress at 
the point of failure is less than the ultimate compressive stresses that the material is capable of withstanding. 
Mathematical analysis of buckling makes use of an axial load eccentricity that introduces a moment, which does not 
form part of the primary forces to which the member is subjected. When load is constantly being applied on a 
member, such as column, it will ultimately become large enough to cause the member to become unstable. Further 
load will cause significant and somewhat unpredictable deformations, possibly leading to complete loss of load-
carrying capacity. In order to calculate the buckling load, static solution is done (i.e. the time terms will be 
neglected). Substituting (12) and (13)in the (9) and (10) and simplifying them will yield the bellow system of 
equations.Forthe classical shell theory; 

  0T
ij mn mn mnC A B C     , 1,...,3i j   

For the first order shear deformation shell theory; 
 , 1,...,5i j   
 

The determinant of the coefficient ijC   should be zero. So the buckling load equation will be obtained; 
2

1 2 3 0N N      
 is buckling load. By solving the equation, shell buckling load corresponding to the	௜isconstant coefficient and ܰߛ
different ݉ and ݊	 will be obtained. The lowest value of the loadis the critical buckling load(ܰ). 
 

b. Free Vibration 
In order to find solution for free vibrations, ௠ܶ௡(ݐ) = ݁௜ఠ೘೙௧is considered which ߱௠௡is natural frequency. 
Considering axial compressive loading (which is a fraction of the buckling load), the natural frequency and the 
mode shapes will be obtained. Applying similar procedure to the buckling analysis, the system of equation will be 
resulted for the classical shell theory; 

 2 0T
ij mn ij mn mn mnK M A B C           , 1,...,3i j   

For the first order shear deformation theory the equation will be as follows; 

 2 0T
ij mn ij mn mn mn mn mnK M A B D C E           , 1,...,5i j   

 ௜௝൧are respectively the stiffness and mass matrix of the structure. The determinate of the coefficient willܯ௜௝൧andൣܭൣ
be zero. So the frequency equation for the shell classical theory will be obtained; 
 

  0T
ij mn mn mn mn mnC A B C D E   

(12d) 
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For the first order shear deformation theory; 
10 8 6 4 2

1 2 3 4 5 6 0                 
 
Which i and i   are the constant coefficient. By solving two above equations, the frequencies will be achieved. 
Substituting the frequencies in the (18) and (19) the constant coefficient and modes shape will be acquired. 
 

2. RESULTS AND DISCUSSIONS 
 

In order to check the accuracy of the obtained results from the presented analysis, the values of the buckling 
load obtained from the two analytical methods (i.e. classical shell theory and first order shear deformation theory of 
the shell) and finite element methodresults are compared.As it is shown, the results admit remarkable accuracy. Also 
in order to check the accuracy of the analysis, the natural frequencies for the shell are given in the table 2. And the 
mechanical properties for the table 1 and table 2 and figures are as follows; 

11 19E GPa   ,  22 7.6E GPa   ,  12 4.1G GPa   ,  13 4.1G GPa   ,  23 4.1G GPa  

12 0.26    ,  31643kg m   
Note that the geometrical characteristics for table 1 and 2 and figures will be; 
 

a. For the Figures; 

1R m   ,  6L m   ,  0.002t m   ,  1 2 3 3
tt t t    

b. For the table 2 

1R m   ,  20L m   ,  0.002t m   ,  1 3
3
8
tt t    ,  2 4

tt 
 

The frequency of a steel sample is obtained by modal analysis. The frequencies are determined by an available 
commercial cod and the results are given in the table 3. It shows that the experimental data and the analytical results 
are well accorded.  
The mechanical and geometrical properties for the tables 3 are given as bellows; 
 

11 200E GPa   ,   22 200E GPa   ,  12 76.9G GPa   ,  13 76.9G GPa   ,  23 76.9G GPa  

12 0.3    ,  37800kg m    ,  22.1R mm   ,  118.1L mm   ,  1t mm  
 

3n  3n  In Fig.3 and Fig. 4 the critical buckling load and base natural frequency regarding to t/R for two 
methods CST and FSDT are shown. As the ratio increases, the critical buckling load and base frequency decrease. 
Fig. 5 depicts the effect of L/R on the critical load for the composite cylindrical shell. As it is illustrated, the 
parameter L/R could be defined even as the slenderness of the cylindrical shell which has adverse relation with the 
buckling load. Fig. 6 shows that as the slenderness of the cylinder increases, the natural frequency decreases. In the 
Fig. 7 and Fig.8, the effect of the orientation angle on the buckling load and frequency for the CST are shown.The 
base frequencies for all fiber orientations occur at ݊ = 3 .For other circumferential waves bigger than natural 
circumferential waves which critical loading of the buckling and base frequency occur in them, as the angle of fiber 
orientation increases, the frequency and buckling load increase. And for the smaller waves, as the angle of the 
orientation increases, the buckling load and base frequency decrease. It is also observed that the orientation of the 
fibers has less impact on the critical buckling load and base frequency. Fig. 9 illustrates the impact of the axial 
loading on the shell natural frequency. As the axial compressive loading increases, the natural frequency decreases. 
When the axial loading is equal to the critical loading of the buckling, the base frequency will be zero.  It is noted 
that the base frequency and critical loading occur at݉ = 1,݊ = 3. 

 
Table.1Comparison of critical buckling load (N/m) for clamp-free shell, [90/0/90] 

 FSDT CST Commercial cod 
m=1 , n=3 15500.8 15560.5 14950 

error 3.68 41.1 - 
 
 

6 4 2
1 2 3 4 0         

(21) 

(20) 
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Table.2 Comparison of natural frequencies of the clamp-free shell [90/0/90] for m=1 

N FSDT CST Ref[5] Ansys 
1 2.454 2.454 2.55 2.25 
2 0.977 0.978 1.23 1.17 
3 2.403 2.403 2.52 2.39 
4 4.588 4.589 4.86 4.55 
5 7.419 7.420 7.57 7.42 
6 10.88 10.88 10.56 10.95 
7 14.98 14.98 15.3 15 
8 19.71 19.71 19.45 19.91 
9 25.06 25.07 25 25.6 
10 31.05 31.06 31.11 31.11 

 

Table.3 comparison of natural frequencies of the clamped-free shell with experimental test, [0] 
 Present Method Practical Test %error 

m=1 , n=1 1947.96 1904 2.3 
m=1 , n=2 1497 1507 0.66 
m=1 , n=2 3945 3980 0.88 
m=2 , n=3 4935.95 4960 0.48 
m=3 , n=1 3233.53 3128 3.37 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.3Effect of the 
t
R

 ratio on the critical buckling load for a composite cylindrical shell 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4Effect of the 
t
R

 ratio on base natural frequency of the composite cylindrical shell 
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Fig.5 Effect of the 
L
R

 ratio on the critical buckling load for a composite cylindrical shell 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.6 Effect of the 
L
R

 ratio on base natural frequency of the composite cylindrical shell 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.7 Effect of the fiber orientation on critical buckling load for a composite cylindrical shell 
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Fig.8 Effect of the fiber orientation on base natural frequency of the composite cylindrical shell 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Effect of axial compressive load on base natural frequency of the composite cylindrical shell 
 

3. CONCLUSION 
 
In  this  paper,  the  effect  of  compressive  axial  loading  on  natural  frequency  of  the  shell  and  the  

influences  of geometrical parameter and the fiber orientation on the buckling load and natural frequency are 
studied. Bucking and free vibration of  cylindrical  laminate  composite  shell  are examined  regarding  to  three 
method;  classical  theory of laminate,  first  order  shear  deformation  and  using  finite  element.  Regarding to the 
obtained data prediction of response of the system is possible. ௟

ோ
and௧

ோ
 are two essential parameter in buckling analysis 

of composite shell. According to these parameters as well as fiber orientation and magnitude of axial loading, a good 
vision of system response could be predicated. 
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5. APPENDIX 
 

a. ijL in classical shell theory will be; 
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b. ijL in first order shear deformation theory; 
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