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ABSTRACT 
 

In this paper, the particle swarm optimization (PSO) is proposed to train fuzzy wavelet neural network (FWNN) for 
process system identification. The structure of FWNN is based on the fuzzy rules including wavelet functions in the 
consequent parts of rules. In order to improve the Identification accuracy and general capability of the FWNN 
system, an efficient particle swarm optimization (PSO) is used to adjust the parameters of dilation, translation, 
weights, and membership functions parameters. Two dynamic system identification case studies are presented to 
demonstrate the design flexibility and usefulness of this proposed approach. Simulation result show that the 
performance of PSO is superior to that the existing methods such as GA or BFGS. 
KEYWORDS: Identification, Fuzzy Wavelet Neural Network, Particle Swarm Optimization, nonlinear process 

 
1. INTRODUCTION 

 
System identification implicates finding a relation between the input and output of the system [1], [2]. In 

different engineering, models are required for the design of new processes and for the analysis of existing 
processes[3]. As a result of rapid industrial developments, soft computing methodologies, such as fuzzy logic, neural 
network, and evolutionary technique, such as GA and PSO are getting more and more important and received a lot 
of attention in recent years.  

In recent years, wavelets have become very popular and have been applied in many scientific and engineering 
research areas such as system identification, signal processing and function approximation [10]. They have very 
important properties such as time-frequency localization property. With this property, wavelets can capture global (low 
frequency) and local (high frequency) behavior of any function easily [11]. Wavelet neural networks (WNN) which 
combine neural networks with wavelet functions are also used in function approximation and system identification 
problems [12, 13]. In addition to having the good properties of NNs, WNNs can converge quickly and give high 
precision with reduced network size because of the time–frequency localization properties of wavelets [1, 8, 9]. 

The role of artificial neural networks in the present world applications is gradually increasing and faster 
algorithms are being developed for training NNs, WNNs and neuro-fuzzy system. In general, back propagation is a 
widely used method for training neural networks [14, 15].Gradient descent, conjugate gradient descent, resilient, 
BFGS quasi-Newton, one-step secant, Levenberg-Marquardt and Bayesian regularization are all different forms of 
the back propagation training algorithm [16, 17]. For all these algorithms storage and computational requirements 
are different, some of these are good for pattern recognition and others for function approximation It is difficult to 
find a particular training algorithm that is the best for all applications under all conditions all the time [18]. 

To improve the identification performance of nonlinear systems based on ANN, evolutionary algorithms (EA) 
(such as GA, PSO) have been used in literature. Unlike other optimization techniques, the EAs are a population-
based search algorithms, which work with a population of chromosomes or particles that represent different 
potential solutions. Therefore, EAs have inherent parallelism that improves their exploration and the optima can be 
located more precisely. Some researchers have applied PSO technique [23, 24] to identify the nonlinear systems 
with higher convergence rate. PSO is a population based algorithm which ensures the convergence of model 
parameters to the global optimum. PSO offers faster convergence during training and computationally involves low 
complexity as compared to GA. 

This paper investigates the performance of PSO algorithms in the training of FWNN structure, and for 
identification of nonlinear system. 

The organization of the present work is embodied in the following section. the model structure of the FWNN 
are explained in Section II. The training agorithm and parameter update rules for the FWNN are introduced in 
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Section III. To illustrate and compare the performance of the PSO, two identification simulation examples are 
provided in section IV. Finally, a brief conclusion is drawn in Section V. 

 
I. Fuzzy wavelet neural network model structure  

The FWNN models combine Sugeno fuzzy system with wavelet functions. In a Sugeno fuzzy model, input 
space is divided into fuzzy regions and each region shows a fuzzy membership functions for an input variable 
[26]. The consequents of fuzzy rules are represented by either a constant or a linear function of inputs. In FWNN 
structure, constant or linear functions in consequent part of the rules are substituted with wavelet functions in order 
to increase computational power of neuro-fuzzy systems due to multi resolution property of wavelet. This property 
is very useful for function identification problems. The wavelets can capture global (low frequency) and local (high 
frequency) behavior of any function easily. This characteristic causes the proposed FWNN to be of the 
advantages of fast convergence, easy training and high accuracy. The rules are in following form: 

1 11 2 21 11IF x is A AND x is A THEN        (1) 
      Where X1 and X2 are input variables, A11 and A21 are Gaussian type membership functions and Ψ11 is a  wavelets 
Mexican Hat in consequent part of the rule that shown by following equation: 
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The structure of two input one output FWNN model with two membership functions for each input is shown in 
Figure 1. 

 
Figure II.1. The fuzzy wavelet neural network model 

Structure [10] 
 

 Layer 1: This layer is the input layer that each nod in this layer transmits external input signals (x1 and 
x2) directly to the next layer [26]. 
 

 Layer 2: This layer is fuzzification layer. Neurons in this layer represent fuzzy sets used in the 
antecedents of fuzzy rules. The outputs of this layer are the values of the membership functions. The jth 
Gaussian type membership function for the ith input is given by: 
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 Layer 3: This layer is fuzzy rule layer. Each neuron in this layer represents activation strength of a fuzzy 
rule. The output of this layer is equal to multiplication of coming signals. 

   1 1 2 2. 1,2 1,2ij j jA x A x i and j                        (4) 

 Layer 4: This layer is normalization layer. Each neuron in this layer calculates the normalized 
activation strength of a given rule by [10]: 
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                             (5) 

 Layer 5: This layer is defuzzification layer. Each neuron in this layer receives initial inputs (x1 and 
x2) and the normalized activation strengths calculated previous layer as input and calculates the weighted 
consequent value of a given combination as follows: 
 

l l lf                                                                             (6) 
      Where Ψ is: 
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 Layer 6: This layer contains only a single node and it computes the overall output as the summation of all 
incoming signals, which is given by: 
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(8) 
II. Training algorithm 

The FWNN training is to adjust a given function or input-output pairs by fine-tuning network parameters. 
Unknown parameters are center parameters (μ) and scaling parameters (σ) of Gaussian membership functions in first 
part of the rules, and translation (b), dilation (c) parameters of wavelet functions  and weight (w) and bias (p) 
parameters in the resultant part of the rules[26]. 

The FWNN training is done by minimizing a performance indicator. For this aim, mean square error (MSE) is 
selected as performance indicator which is given by: 

 2
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d
k

E y y
N 

          (9) 

Where N is the total number of input-output pairs of system that must be identifying. 
Particle swarm optimization (PSO) introduced by Eberhart and Kennedy is a population based optimization 

algorithm just like Genetic algorithm (GA). PSO already has been applied successfully to the function optimization, 
image analysis, data clustering, neural network training etc.  

Particle swarm optimization is a form of evolutionary computation algorithm based on the social metaphor of 
bird flocking or fish schooling. Like the genetic algorithm (GA), PSO is a population (swarm) based optimization 
tool. It has constructive cooperation between particles, and particles in the Swarm can share information. PSO has 
memory of the past, so knowledge of good solutions is retained by all particles. The application of PSO in neural 
network training involves creating a swarm of networks initialized with random weights. Each network is called a 
particle and is a candidate solution. The particles have the ability to retain their own best-ever state and 
communicate with each other. The swarm evolves in the search space by letting all the particles fly towards the best 
solutions they know of.  In the local version of the PSO algorithm, each particle only communicates its neighbors; 
while in the global version, each particle can communicate with any other particles so everyone knows where the 
best-solution-so-far is. The whole training process with the global version PSO can be summarized as follows. 

 Initialize the weight parameters of N networks (particles) with random numbers, where N is the number of 
particles in the swarm. Also initialize N velocity vectors with random numbers. 

 Start the iteration by feeding each network with the training data, and calculating its mean squared error 
(MSE), which is used as the fitness criterion of the particles. 

 Compare the MSE of each particle with its best history value, also called the personal best (pbest) MSE. If 
the current MSE is lower than the pbest MSE, update pbest MSE and store current weights as the pbest 
weights. 

 Find the minimal newly calculated MSE in the swarm. 
 Compare the minimal MSE with the global best (gbest) MSE. If the minimal MSE is lower than gbest 

MSE, update gbest MSE and store the corresponding weights as the gbest weights. 
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 Update the velocity and position vector of each particle according to equation (10) and (11): 

       1 1 2 21i pbest i gbest iV t wV t c W W c W W               (10) 

     1 1i i iX t X t V t          (11) 
 
Where W is the inertia term, C1 and C2 are acceleration terms, ρ1 and ρ2 are uniformly distributed random 

numbers in [-1, 1], and Wpbest, Wgbest, and Wi are the weight vectors of pbest, gbest, and the current particle, 
respectively. The iteration loop continues until the MSE of the gbest is lower than the desired threshold or a 
maximum iteration number is reached. When the iteration is finished, the gbest weights are used as the training 
results. 

It is reported in [20] that using the coefficient W, C1, C2 as following: 

1 2, 0              (12) 

1 2 4               (13)  

2

2
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          (14) 

W              (15) 

1 1C              (16) 

2 2C              (17) 
the performance of PSO has been very good, and also if  

1 2 2.05             (18) 
it is optimal value for W, C1 and C2 for better performance and accuracy and fast convergence. 
 
III. Simulation examples 

 The FWNN structure and proposed training algorithm is applied to two system identification problems in order 
to show the performance of the training algorithm. 

 
A. System identification case study 1 
System identification involves finding the relation between the input and output of the system [1, 27]. In this 

example, the plant to be identified is given by following equation: 
2( ) 0.75 ( 1) 0.025 ( 2) ( 2) 0.01 ( 3) 0.02 ( 4)y k y k y k u k u k u k                (19) 

The output of the system depends on two previous output values and three previous input values. However, 
only u (k-1) and y (k) are used as inputs to the FWNN models to predict y (k+1). Two membership functions are 
selected for each input of the FWNN model. In order to train the FWNN, 900 inputs are used similar to the inputs 
used in [28] and [29]and[10]. The half of the inputs is independent   and identically distributed (i.i.d.) uniform 
sequence over [-2, 2] and the remaining is a sinusoid given by 1.05sin (πk/45). The FWNN is trained for 200 epochs 
that shows in Figure A.1. After training, the following input signal which is the same test signal as used in other 
methods is used for testing the performance of the proposed algorithm. 

 

 

 

   
 

sin /25 250
1.0 250 500
1.0 500 750

0.3sin /25 0.1sin /32
0.6sin /10 750 1000

k k
k

u k k
k k

k k



 


 
     
 

  

             (20) 

 
Root mean square error (RMSE) is taken as measure for system identification example that the value of RMSE 

is show in figure A.1. Figure A.2, shows the actual and predicted output of the plant for test data. From Table A.1,it 
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can be seen that the proposed algorithm illustrates much better performance than the models in [30, 31, 26] with less 
RMSE. The PSO algorithm gives better training results than the reported approaches. 

 
Figure  A.1. RMSE values obtained during training and testing for system identification case study 1 

 
Figure  A.2. Test results FWNN model with PSO training algorithm for system identification case study 1 

 
Table A-1. Comparison of RFWNN model with other models for system identification case study 1 

 
 
 
 
 
 
 
 
 

 
B. System identification case study 2 

 
This example considers the modeling of the nonlinear plant given by following equation: 

             1 , 1 , 2 , , 1y k f y k y k y k u k u k                   (21) 

Where: 

   1 2 3 4 5 3 4
1 2 3 4 5 2 2

3 2
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              (22) 

Models Network  
Parameter 

RMSE  
Training 

RMSE  
Testing 

ERNN [23] 54 0.036 0.078 
RSONFIN [24] 49 0.03 0.06 
TRFN-S [25] 33 0.0067 0.0313 
FWNN [1] 27 0.01973 0.02260 
FWNN [1] 43 0.01871 0.02016 
RFWNN [17] 28 0.00968 0.02220 
FWNN-PSO 32 0.00784 0.01573 
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The same plant is also used in [5], [41], [57], [58], [59], [60] and [4].The current output of the plant depends on 
three previous output values and two previous input values. However, we use only y (k) and u (k) to predict y (k + 1) to 
compare our results with those of [5]. In order to train the FWNN models, 900 training inputs are generated as in the 
previous example. The number of MFs is also the same as in the previous example. To test the models for this plant, 
the input signal in (32) is used. The training and testing error values vs. the number of epochs are shown in Fig. 13.  

The actual and predicted values for testing with PSO algorithm are shown in Fig B.2. As it is seen in Table 
B.1, are successful in identification than the compared models in the literature except the model proposed in 
[36].However, the model in [36] has 96 parameters whereas the proposed algorithm for FWNN in this paper has 32 
parameters to be learned. 

 
Figure  B.1. RMSE values obtained during training and testing for system identification case study 2. 

 

 
Figure  B.2. Test results FWNN model with PSO training algorithm for system identification case study 2 

 
Table B.1. COMPARISON OF FWNN MODELS WITH OTHER MODELS FOR SYSTEM 

IDENTIFICATION case study 2 
 

 
 
 
 
 
 
 
 
 
 

Models Network  
Parameter 

RMSE  
Training 

RMSE  
Testing 

RFNN [26] 112 0.0114 0.0575 
TRFN-S [27] 33 0.0084   0.0346 
FWNN [1] 43 0.028232 0.030125 
RFNN [28] 96 ----- 0.0064 
HRNFN [29] 21 ----- 0.0493 
FWNN-R [17] 28 0.015274   0.032116 
FWNN-PSO 32 0.01288 0.01945 
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V. Conclusion 
 
In this paper, the PSO algorithm is used to train a FWNN for the identification of nonlinear dynamic system. 

Simulation results demonstrated that, the accuracy of the PSO based training algorithm is better than the other 
reported training algorithmin the same iteration. In addition, our proposed method is faster than the existing gradient 
based approaches. 

For future work the FWNN can be trained with PSO combine with an appropriate gradient based method such 
as LM. 
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