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ABSTRACT 
 

Bayesian model and Markov chain Monte Carlo method were used to verify a sample of signature in Iran. In the Bayesian 
model, parameters were considered as quantities whose variations can be described by the prior distributions. A sample is 
taken from a population indexed by the parameters and prior distributions were updated and then posterior distribution 
was calculated. Markov chain Monte Carlo method used to generate samples from the posterior distribution. The goals 
were (a) to define parameters of Bayesian model, obtain log-likelihood and propose the prior distribution and the posterior 
distribution (b) to introduce appropriate Markov chain Monte Carlo to explore the posterior (c) to propose a forgery index 
to determine correctness of this signature. In this method, off-line signature was representing via its curvature, and 
smoothness of the signature curve seems to be a necessity. In order to explore the variation in the signature samples, we 
used time warping functions as a random effect in the model. The performance of the proposed model was presented 
through a simulation example of an Iranian signature. For this signature sample, required times for preprocessing stages 
and signature verification stage were about 15 and 2 minutes and Type I and Type II error rate were 0.06 and 0.16 
respectively. So this method seems to be appropriate to verify Iranian signatures. 
KEY WORDS: biometric identification, time warping, curve registration, Strauss process, bootstrap. 

  
1. INTRODUCTION 

 
Off-line signatures verification is the most useful method for authentication of bank checks, questioned document 

examination, etc. Based on forger skills, a forgery is named random forgery, casual forgery, amateur forgery, or 
professional forgery. A random forgery is a random signature or a signature of other persons. A casual forgery is a kind of 
forgeries that forger does not access to samples of individual's actual signature. Amateur forgeries and professional 
forgeries are kinds of skilled forgeries in which forger access to one or more sample of individual's actual signature. A 
professional forgery is produced when the forger is a specialist in signature analysis. Finding appropriate methods for off-
line signature verification is beloved by researchers. In this regard, several statistical methods are presented. These include 
the techniques based on wavelets [1], tracking of feature and stroke position [2], dynamic time warpings [3], shape 
matrices [4], functional data analysis [5], granulometric size distribution [6], hidden Markov models [7], Bayesian models 
and Markov chain Monte Carlo methods [8], etc. 

Off-line signatures are often used in financial institutions and courts in Iran, and nowadays forgeries spread 
extensively. Also sufficient studies have not done on this subject in Iran, and now correctness of off-line signatures is 
determined through eye detection. So we are looking for a simple and reliable statistical method to detect Iranian forgeries 
especially professional Iranian forgeries. Signatures are the consequence of muscular contractions which occur because of 
the brain's commands that are sent to the muscles by motor neurons. The components of this process are different from 
one person to another and for one person in different situations. So when several people draw a signature, or an individual 
draws it in various situations, there are variations in the shape of those signature's samples. Thus, we are looking for a 
method that explores the variations in an individual's signatures. In the method [8] proposed, time warping functions were 
used to explore the variations in an individual's signatures. In this method signatures are represented via its curvature and 
it's based on Bayesian model and MCMC. Therefore we choose this method for signature verification, use it to verify an 
Iranian signature sample, and investigate whether this method is appropriate for Iranian signatures verification or not?    

The paper is organized in 5 sections. The Bayesian model and the MCMC method for sampling from the posterior 
are introduced in the section 2. Signature verification is described in section 3. Analysis of an Iranian signature sample is 
given in section 4. In fifth section experimental result are presented in term of FRR, FAR, and the run-time of this method. 

      
2. BAYESIAN MODEL 

2.1 Log-likelihood 
Suppose that the curve 훼 : [푎,푏] → ℝ  is arc-length parameterized and smooth, where 훼 = (푥(푡),푦(푡)) , 

푡 ∈ [0,퐿(푏)]. 퐿(푡) is the arc length and 퐿(푡) = ∫ 훼′  , where |. | is Euclidean norm. Also curvature of this curve is 
defined as follows: 

휅(푡) = 푥 ′푦 ′′ − 푥′′푦 ′																																																																																					(1)  
One of the most important properties of curvature is that it is invariant under translations and rotations. Furthermore it 

is proportional to scale inversely, the curve 푐훼 (푡) has the curvature 휅(푡) 푐⁄ , for 푐 > 0. Because we have some 
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signatures in this method, we re-scale each signature sample to have a same arc-length 휏 > 0. In this case, each curvature 
function belongs to the space of continuous functions on [0, 휏], 퐶[0, 휏].  

At first, suppose that we have one signature sample. After preprocessing the image of the signature, we numerically 
compute its arc length and its velocity vector 푉(푡) = 훼′ (푡) = (푥′(푡), 푦 ′(푡)).[9] 

The observed velocity is modeled as follow: 

푉(푡) =
cos 휃(푡)
sin휃(푡) 	,														휃(푡) = 휑 + 휅(푠)푑푠 + 휎푊(푡)																												(2) 

where 휅 ∈ 퐶[0, 휏] is an underlying curvature function, 푊(푡) is a standard Brownian motion and 휑 is the angle of 푉(0) 
with x-axis.  In this method, white noise with variance 휎 > 0 is superimposed to the underlying curvature. Given the 
availability of the numerical values of the velocity vector 푉(푡), 푡 ∈ [0, 휏], over a regular grid 푠 =  , 푗 = 0, … ,푁, log-
likelihood is obtained as: 
                                           ℓ(휅|푉) = ∫ 휅(푠){푉 (푠)푑푉 (푠) −푉 (푠)푑푉 (푠)} − ∫ 휅(푠) 	푑푠 + 	 	휎 휏 
where we select the appropriate value for 휎 through experimental studies. 

Now, we develop the model to the case that we have 푛 signature samples with observed velocity vectors 푉( ), 
 푖 = 1,2, … ,푛 .  
Due to the time difference in the peaks of different curvatures, we use time warping function ℎ : [0, 휏] → [0, 휏]. 
The full log-likelihood is defined as: 
                                                         ℓ(휅,풉|푑푎푡푎) = ∑ ℓ 휅 푉( )  

where 휅 (푡) = 휅 ℎ (푡)  , 풉 = (ℎ , 푖 = 1, … ,푛) , and 휅 is the baseline curvature function [8]. 
 
2.2 Prior distributions 

The parameters of this model are 휅, 풉 , and we have to define proper prior distributions for them. 
 
2.2.1 Baseline curvature process 

We choose one of the signature samples as the template sample, and its curvature as a template curvature function then 
denote it as 휅 . We define a buffer region as: 

                                                    ℬ = {(푥,푦):	휅 (푡) < 푦 < 휅 (푡), 푡 ∈ [0, 휏]} 
where 휅 (푡) = 휅 (푡) − 휀 and 휅 (푡) = 휅 (푡) + 휀	 are the bracketing functions and 휀 > 0 is specified by the user. 

We generate a limited number of random points in ℬ via Strauss process 푋. 푋 has unnormalized density              
푓(풙) = 훽 (풙)훾 (풙) with respect to the distribution of a unit rate Poisson process in ℬ , where 훽 > 0 , 0 ≤ 훾 ≤ 1 are tuning 
parameters, 푑(풙) is the number of unordered pairs of points in 풙 that their maximum metric distance is 휌 , and 푛(풙) is the 
number of points in 풙 . It is worth noting that in this method, the metric is the distance between time coordinates [10]. 

We add two points (푡 ,푦 ) = 0,휅 (0)   and 푡 ( ) ,푦 ( ) = (휏,휅 (휏)) to the points (푡 ,푦 ) , 푗 = 1, … ,푛(푋), 
which were generated via Strauss process 푋 and 0 < 푡 < 푡 < ⋯ < 푡 ( ) < 휏 . Then we define the baseline curvature 
process as: 

                                휅(푡) = 휅 (푡) + 푦 − 휅 푡 + {휅 (푡) + 푦 − 휅 푡 }  

where 푡 ≤ 푡 ≤ 푡  , 푗 = 0,1, … , 푛(푋). 
 
2.2.2 Time warping processes 

Each time warping process is modeled as follow: 
                                                                         ℎ (푡) = min ℎ (푡), 휏 ,			푡 ∈ [0, 휏] 

where ℎ (0) = 0 and ℎ (푡) is a continuous, increasing, piecewise-linear function that be linear between the grid points 
푢 =

퓅
 , where 퓅 is determined by the user and 푗 = 0, … ,퓅. The parameters 휃 = ℎ (푢 )− ℎ (푢 ) , 푗 = 0, … ,퓅 , 

determine ℎ  and then we indicate 풉 by combining them into a vector 휽 ∈ 훩 = [0, 휏] 퓅. Also it's worth that                   
0 ≤ 휃 ≤ 휏  [11]. Using the method of curve registration, we determine the prior density on ℎ  as: 

                                                                      휋(ℎ ) ∝ exp	{−휂퐽(ℎ |휅)}   
where 

                                                          퐽(ℎ |휅) = ∫ 푎푛푔푙푒	 푉( )(푡),푉( ) (푡) 푑푡 

is the cost function where 푉( ) (푡) is the velocity vector of curvature function 휅(ℎ (푡)) and 푉( ) (0) = 푉( )(0). Also 
휂 > 0 is the precision parameter defined by the user [8]. 
 
2.3 Posterior distribution 

Based on Bayes formula, the posterior density is proportional to: 
                                               푔(풙,휽) = exp{ℓ(휅,풉|푑푎푡푎)}푓(풙)∏ 휋(ℎ |휅, 푑푎푡푎)  

where 풙 are the knots of curvature 휅 , and 휽 are the parameters that represent the vector 풉 . Also dominating measure is 
the product of the unit-rate Poisson distribution on ℬ and Lebesgue measure on Θ. 

The MCMC scheme used in this model is "Metropolis-within-Gibbs". In order to explore this posterior, each of the 
components (풙,휽) is updated separately by Metropolis-Hastings algorithm. The acceptance probability for each proposal 
is min	(훼, 1) , where 훼 is the Hastings ratio [12]. 
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Each component 휃 of  휽  is updated using a random walk Metropolis move. The proposal 휃 ′ has normal distribution 
with mean 휃 and it is restricted to the compact interval [0, 휏]. Here, the move is formed as (풙,휽) → (풙,휽′)  and its 
Hastings ratio is 훼 (풙,휽,휽′) = (풙,휽′)

(풙,휽)
 . 

The x-component is updated by Metropolis-Hastings algorithm introduced by [13]. Either a point such as 휉 is born 
uniformly random in ℬ and adds to 풙 that in this situation the move is formed as (풙, 휽) → (풙 ∪ {휉},휽) and its Hastings 
ratio given by:  

                                                                 훼 (풙,휽, 휉) = |ℬ|
(풙)

(풙∪{ },휽)
(풙,휽)

 , 
or a point in 풙 is selected randomly and killed (unless 풙 is empty) that in this case the move is formed as                
(풙,휽) → (풙\{휉},휽) and its Hastings ratio given by: 

                                                                   
                                                                           훼 (풙,휽, 휉) = (풙)

|ℬ|
(풙\{ },휽)

(풙,휽)
 

where |ℬ| is the area of the buffer region. 
 
3. Signature verification 

The main goal of this research is signature verification. The signature verification problem determines whether a 
particular signature is written by the same person or not. 

At first, we re-scale the new signature to have the same arc-length. We denote its velocity vector as 푉 . We 
determine the forgery index as: 

                                                  퐹 = 푚푖푛 ,…, ∫ 푎푛푔푙푒	 푉 (푡),푉( )(푡) 푑푡   
Using this forgery index can be verified the correctness of new signatures, where 푉  is the velocity vector of new 

signature which has been rotated (clockwise) to have the initial direction 푉( )(0) , 푖 = 1, … ,푛. We normalize 퐹 to range 
between 0 and 1. In fact, we have hypothesis testing in which null hypothesis is that the new signature is genuine and 퐹 is 
the test statistic. 

We generate푉∗  by using a bootstrap method and replacing 휅 by 휅̂(ℎ (. )) in Formula 2, where 퐼 is randomly selected 
from = 1, … ,푛 , and 휅̂	,ℎ   are the posterior means of the baseline curvature, and the time warping ℎ  , respectively. Then 
we define 퐹∗ by replacing 푉  by 푉∗ in  퐹 . Next, by assessing p-value 	푃(퐹∗ > 퐹) , we verify the correctness of new 
signature [8]. 
 
4. An iranian signature verification 

In this section, we verify the correctness of an Iranian signature sample by using the method proposed in section 2 
and Matlab software. We have 4 signature samples. At first, we scan images of signatures. 

  
Figure 1. Images of 4 signature samples (first row); the first segment of the signatures (second row); the second segment 

of the signatures (third row) 
As you see in Figure (1), each signature has one singular point. Because there is no tangent in a singular point, in 

each signature we separate 2 segments of the signature from the singular point. Also in each signature, the second segment 
is a straight line so its curvature is equals to 0. Thus we just to verify the first segment. 

At first, the images are loaded into the Matlab software with the command "imread". By clicking on signature points 
located at regular distances from each other along signature curve, we record the coordinates of these points. Then cubic 
spline interpolation over a regular grid of 1001 points and separately to x- and y-components is used to get smooth and 
accurate approximation for the signatures. Next, we select 100 points from these 1001 points by regular rule, and by 
detecting the componentwise derivatives in these 100 points (with the command "gradient") we compute the velocity 
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vector and the arc length of each signature. The arc lengths of signatures are 2.6970, 2.5136, 2.7398, and 2.3629, 
respectively. Because the arc lengths of the signatures are different, we choose signature (2) as the template sample and 
re-scale other signatures to have the same arc length  휏 = 2.5136 . Figure (2) shows the velocity vector of signature 
samples after re-scaling. 

 

 
Figure 2. The first and second components of the velocity vector for 4 signature samples 

 
We choose the curvature function of the signature (2) as the template curvature function 휅  . 휀 = 1.5 ,  휌 = 0.005휏 , 

		훽 = 6 , and 훾 = 0.04 are the proper values for the parameters of the baseline curvature process. 

 
Figure 3. Bracketing functions (dotted line), generated points using Strauss process, and approximated curvature (solid 

line)(left); obtained trace from approximated curvature (right) 
 
As you see in Figure (3), the observed trace from approximated curvature is very similar to the signature samples. 

The MCMC scheme needs to carefully accuracy so  휀 = 0.2 , 	휌 = 0.0001휏 , 훽 = 6 , 훾 = 0.01 , 퓅 = 20 , 푏푢푟푛 = 500 , 
and 푎푓푡푒푟푏푢푟푛 = 1000 are the best value for the parameters of the MCMC scheme. 

 
Figure 4. Posterior mean baseline curvature (left); obtained trace from posterior mean baseline curvature (right) 
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Figure (4) shows the posterior mean baseline curvature regardless of the effects of time warping functions. As you see, 
obtained trace from posterior mean baseline curvature is very similar to the signature samples. 

Also the acceptance rate of the MCMC scheme to accept 휃′  , born a point in 푥 , and kill a point in 푥 are %2.6, %11.5, 
and %11, respectively. 

 
Figure 5. Traces of signature samples (first row); trace derived from the posterior mean baseline curvature adjusted by 

each posterior mean time warping (second row); posterior mean time warping functions (third row) 
 
As we can see in Figure (5), trace derived from the posterior mean baseline curvature give acceptable images, and it 

means that this MCMC scheme forecast signature images. Now we verify the correctness of a new signature sample.  This 
new signature sample can be seen in Figure (6). 

 
Figure 6. New signature sample image (left); the first segment of this signature (right) 

As mentioned, we just need to verify the first segment of the signature. At first we re-scale this signature to have the 
same arc length 휏 = 2.5136. Its velocity vector and curvature function are shown in Figure (7) and Figure (8), 
respectively. 

 
Figure 7. The first and second components of the velocity vector for the new signature 

 

 
Figure 8. The curvature function of the new signature 
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The forgery index 퐹 is equal to 0.0762 for this signature. Also after simulating the values of 퐹∗ using bootstrap, the 
amount of p-value 푃(퐹∗ > 퐹) is equal to 0.0004. Therefore, the null hypothesis is rejected and the new signature is a 
forgery. 

 
Figure 9. Histogram of bootstrap simulations of 퐹∗ and forgery index 퐹 

 
5. DISCUSSION AND CONCLUSION 

 
We computed Type I and Type II error rate to evaluate the validity of this method for this individual's signature. The 

false reject rate (FRR) also called Type I error is the ratio of the number of genuine test signatures rejected to the total 
number of genuine test signatures submitted, and false accepted rate (FAR) also called Type II error is the ratio of all 
numbers of forgeries accepted to the total number of forgeries submitted [14]. 

To compute Type I and Type II error rate, at first we got 30 genuine signatures from the individual and 30 forgeries 
which included 4 types of forgeries, and then computed FRR and FAR. At the significance rate 0.025, 2genuine signatures 
in 30 genuine signatures were rejected, and 5 forgeries in 30 forgeries were accepted. So the FRR and FAR were 0.06 and 
0.16,  respectively. 

Also required runtime for programs of preprocessing stages was less than 15 minutes and required runtime for the 
signature verification program was less than 2 minutes. 

According to the obtained FRR and FAR, this method was proper to verify this individual's signature. Also because 
the programs of preprocessing for each person's signature run only once, these runtimes were good. To evaluate the 
validity of this method for all Iranian signatures, we must compute Type I and Type II error rate for numerous signatures 
included many types of Iranian signatures. Also some Iranian signatures have one or more singular point. Our goal is to 
verify this kind of signatures using this method and evaluate the velocity of this method for these signatures.   

It is worth noting that these run-times were similar to the run-times of Shakespeare's signature verification so this 
method run-time is relatively stable. Also in earlier study, Type I and Type II error rates were not calculated and we 
calculate these errors for the first time.    
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