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ABSTRACT 
 

In this paper an evolutionary computational technique, which is stochastic in nature, is applied for the first time to the 
numerical solution of the Troesch’s problem. An approximate mathematical model employing the linear combinations of 
log sigmoid basis functions is deduced. A fitness function (FF), containing unknown adjustable parameters and 
representing the trial solution along with the initial conditions, is developed. The Genetic algorithm (GA) as global 
optimizer is hybridized with local optimizers, such as Pattern Search (PS) and Interior Point algorithm (IPA), for 
achieving the unknown adjustable parameters.  Comparisons of the numerical results obtained for three special cases of 
the Troesch’s problem are made with some important deterministic classical approximation methods, as well as, the 
exact solutions. The numerical results are found to be in sharp agreement with the exact solutions. 
KEYWORDS: Troesch’s Problem; Boundary Value Problem; Genetic Algorithm (GA), Interior point Algorithm (IPA), 

Pattern Search (PS), Evolutionary Computing (EC) 
 

1. INTRODUCTION 
 

Nonlinear ordinary differential equations (ODEs) frequently arise in a wide variety of problems in applied science and 
engineering. These problems are by and large formulated as initial and/or boundary value problems. Traditionally these nonlinear 
boundary value problems (BVPs) are solved by the approximate analytical and numerical methods such as homotopy perturbation 
method (HPM) [1], homotopy analysis method (HAM) [2], variational iteration method (VIM) [3], adomian decomposition method 
(ADM) [4],  shooting method [5] etc. 

This paper is devoted primarily to the investigation of the Troesch’s problem [1-8 ] 
푢′′(푥) = 휆	sinh	(휆	푢(푥))			0 ≤ 푥 ≤ 1		 (1) 

with the boundary conditions  푢(0) = 0,푎푛푑	푢(1) = 1 
Troesch’s problem appears in the investigation of the confinement of a plasma column by radiation pressure and applied physics 

[1-9]. This BVP was formulated and solved by Weibel [10]. Troesch’s obtained the numerical solution of this problem by the shooting 
method [11]. The Troesch’s problem has been extensively studied and various methods have been proposed for its numerical solution. 
Hassan et al. [2] applied homotopy analysis method (HAM) to the Troesch’s problem for its numerical solution. Mirmoradi et al. [1] 
found the solution of Troesch’s problem using homotopy perturbation method (HPM). Deeba et al. [4] employed decomposition based 
method (ADM) for the approximate solution of this problem.  Recently Geng and Cui [8] proposed a method based on the 
combination of ADM and reproducing kernel method (RKM) for the numerical solution of the Troesch’s problem. Several other 
authors have obtained numerical solution of the Troesch’s problem by utilizing various approximate methods such as modified 
homotopy perturbation method (MHPM) [7], He’s polynomials [6], B-spline collocation [9], and simple shooting method [5].  

Although a rich variety of approximate numerical techniques have been proposed for handling nonlinear ODEs, an incredible 
amount of research work is still carried out in this direction. Besides the traditional numerical techniques, stochastic solvers based on 
evolutionary computing and neural networks (NN) have been successfully applied to nonlinear ODEs. The efficiency and reliability of 
these stochastic solvers has been demonstrated by several authors [12-15]. Khan et al. [12] used a neural network (NN) model 
optimized by hybrid Particle Swarm Optimization (PSO) for the solution of nonlinear ODEs including the Wessinger’s equation. 
Behrang et al. [13] solved a nonlinear differential equation arising from similarity solution of inverted cone embedded in porous 
medium employing a PSO based neural network (NN). Malik et al. [14] obtained the numerical solution of Duffing van der pol 
equation using heuristic computing technique. Zahoor et al. [15] applied hybrid evolutionary computing approach for the solution of 
fractional order Riccati differential equation. 

The main goal of this study is to obtain the approximate numerical solution of the Troesch’s problem (1) using hybrid heuristic 
computing approach. Genetic algorithm (GA), pattern search (PS), interior point algorithm (IPA), and two hybrid schemes called as 
GA-PS (hybridization of GA and PS), and GA-IPA (hybridization of GA and IPA) have been utilized in this study. The efficiency and 
reliability of the proposed method are demonstrated by solving the Troesch’s problem for three special cases of the constant 휆 
(0.5, 1,푎푛푑 10). Comparisons of the numerical results are made with the exact solutions and the classical approximate techniques.  
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The remaining paper is organized as follows: In section 2, proposed methodology is briefly discussed. In section 3, we give brief 
overview of heuristic search techniques such as Genetic algorithm (GA), Pattern Search (PS), and Interior Point algorithm (IPA). 
Numerical results and their discussion are presented in section 4. Finally concluding remarks and future work are given in section 5. 

 
2. DESCRIPTION OF THE PROPOSED METHOD 

 
To obtain the approximate numerical solution of the Troesch’s problem (1) using the proposed method, we may assume that the 

solution 	푢(푥) and its first and second derivatives, 	푢̇(푥), 푎푛푑	푢̈(푥) are a linear combinations of some basis functions which can be 
expressed as follows. 

푢(푥) = 	 훼 휑(훾 푥 + 훽 ) 
 

(2) 

푢̇(푥) = 	 훼 훾 휑̇(훾 푥 + 훽 ) 
 

(3) 

	푢̈(푥) = 	 훼 훾 휑̈(훾 푥 + 훽 ) 
 

(4) 

where 훼 	, 훾 	, 푎푛푑	훽  are real valued unknown adjustable parameters, m is the number of basis functions, and 	휑(푥) is assumed 
to be the log sigmoid function which is given by 

휑(푥) = 	
1

1 + 푒  
   (5) 

The approximate numerical solution 푢(푥) of the Troesch’s problem is obtained from (3) once the optimal values of the unknown 
adjustable parameters are attained. The optimal values of these unknown adjustable parameters are determined by formulating a 
fitness function (FF) which consists of the sum of two parts. First part represents the mean square error associated with the given ODE 
(휀 ) and second part represents the mean square error associated with the given boundary conditions(휀 ), which are given by (6) and 
(7) respectively.  

휀 =
1

푚 + 1
[푢̈(푥 )− 휆	sin	(휆푢(푥 ))]  

 
(6) 

휀 =
1
2 { 푢(0) + (푢(1) − 1) } 

(7) 

 
where 푢(푥)	, 푎푛푑	푢̈(푥) are given by (2) , and (4) respectively.   
Therefore the fitness function (FF) is given by 

휀 = 휀 + 휀 	 (8) 
where j is the cycle index.  
The FF function given by (8) contains the unknown adjustable parameters (훼 ,	훾 , 훽 ) given in (2) to (4). The minimization of FF 

is performed by heuristic optimization methods. The optimal values of the unknown adjustable parameters are acquired corresponding 
to the minimum FF. Consequently the approximate numerical solution 푢(푥) of the problem is obtained using (3). 

 
3. HEURISTIC OPTIMIZATION TECHNIQUES 

 
In last few decades Evolutionary computational techniques such as Genetic algorithm (GA), Particle Swarm Optimization (PSO), 

Differential Evolution (DE) etc. have been pursued vigorously. These techniques represent powerful search and optimization 
paradigm which are based on the principle of natural evolution. GA originally discovered by J. H. Holland in 1970 is among these 
techniques which have been most widely used due to its simplicity and robustness. GA is a global stochastic search algorithm inspired 
by the mechanism of genetic inheritance and natural selection. The GA operates on a population of individual solutions. The algorithm 
evolves population toward the best solution over the successive generations by using three primary operations selection, crossover, 
and mutation [16].  

The Interior Point Algorithm (IPA) also called as barrier method is a local search method. The method attempts to solve Karush-
Kuhn-Tucker (KKT) equations at each iteration. The algorithm arrives at the best solution of the problem by computing iterates that 
lie in the interior of the feasible region while reducing the barrier parameter [17]. 

The Pattern Search (PS) belongs to the direct search optimization methods. The algorithm does not involve the gradient of the 
objective function. The prime objective of PS is to compute a sequence of points that reach an optimal point. At each step the 
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algorithm finds a set of points called a mesh around the optimal point of previous step. The mesh can be obtained by adding the 
current point to a scalar multiple of vectors called a pattern. The new point becomes the current point in the next step of the algorithm, 
if the PS establishes that the point in the mesh improves the objective function at the current point. The PS method possesses 
flexibility for local search enhancement [18, 19].   

In many problems the performance of GA is drastically improved when it is hybridized with local search methods such as 
Pattern Search (PS) and Interior Point algorithm (IPA) [20]. In this work GA has been hybridized with PS and IPA. The two schemes 
resulting from the hybridization are called GA-PS and GA-IPA. In these hybrid schemes GA has been utilized as global optimizer 
while PS and IPA have been used for local search fine-tuning. The parameter settings of these algorithms used in this work are given 
in Table 1. The procedural steps of the proposed heuristic hybrid schemes are given as follows. 

 
Algorithm 1: GA hybridized with PS and IPA 
Step 1: (Initialization of Population) 
Generate a population of N chromosomes (individual) at random using random number generator. Each chromosome consists of M number of 

genes. The number of genes is equal to the number of unknown adjustable parameters. 
Step 2: (Evaluation of Fitness) 
Determine the fitness of each individual in the current population using the fitness function (FF) of the given problem. Sort these individuals 

according to their fitness values. 
Step 3: (Stopping Criteria) 
The termination criteria set by the use are checked. The algorithm terminates if the maximum number of cycles (generations) has surpassed or 

a predefined fitness value is attained. If the stopping criterion is satisfied then go to step 6 for local search fine-tuning, else 
continue and repeat steps 2 to 5.  

Step 4: (Selection of Parents and Production of Offspring) 
Populate a new generation using the crossover operation. Parents are selected on the basis of their fitness which produces offspring (children) 

to act as parents for the next generation. 
Step 5: Mutation  
If there is no improvement in the fitness in the new generation then mutation operation is performed.  
Step 6: (Local Search Fine-tuning) 
The best chromosome acquired by the GA is given as a start point to the PS and IPA for fine tuning and improvement.  

 
Table 1.  Parameter Settings of algorithms 

GA PS IPA 
Parameters Settings Parameters Settings Parameters Settings 

Population size 240 Start point Optimal values from GA Start point Optimal values from 
GA 

Chromosome size 30 Poll method GPS positive basis 2N Maximum iterations 1000 
Selection function Stochastic uniform Polling order consecutive Maximum function 

evaluations 
150000 

Mutation function Adaptive feasible Maximum iterations 3000 Function tolerance 1e-18 
Crossover function Heuristic Maximum function 

evaluation 
150000 Derivative type Central differences 

Hybridization PS/IPA Function tolerance 1e-18 Hessian BFGS 
No. of generations 1000     
Function tolerance 1e-18     

Bounds -20, +20     
 

4. NUMERICAL RESULTS AND DISCUSSION 
 
In this section the proposed methodology is applied to the Troesch’s problem (1).  To prove the efficacy and reliability of the 

proposed method, comparisons of the numerical results are made with the exact solutions and somel classical approximate numerical 
methods including HPM [1], HAM [2], VIM [3], ADM [4], combined ADM-RKM [8], and cubic B-spline collocation method [9]. 

Example: We consider the Troesch’s problem (1) and obtain its numerical solution for three special cases of the constant 
휆	.		(	휆 = 0.5, 1, 푎푛푑	10). The closed form solution of (1) is given by [1-4] 

푢(푥) =
2
휆 푠푖푛ℎ

푢̇(0)
2 	푠푐 휆푥|1−

1
4

(푢̇(0))  (9) 

The approximate numerical solution of (1) using the proposed method is obtained by formulating its fitness function (FF) for 
each case of 휆.	 The FF for the Troesch’s problem by taking 10 number of basis function following from (6), (7), and (8) for 휆 = 0.5, 휆 
= 1, and 휆 = 10 are given respectively as follows.  

휀 =
1

11 (푢̈(푥 ) − 0.5푠푖푛ℎ(0.5푢(푥 )) +
1
2 { 푢(0) + (푢(1) − 1) }  

 
(10) 

휀 = ∑ (푢̈(푥 )− 1푠푖푛ℎ(1푢(푥 )) + { 푢(0) + (푢(1) − 1) }   
(11) 
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휀 =
1

11 (푢̈(푥 )− 10푠푖푛ℎ(10푢(푥 )) +
1
2 { 푢(0) + (푢(1) − 1) }  

 
(12) 

where 푢(푥) and 푢̈(푥) are given by (2) and (4) respectively. 
The FFs given by (10), (11),  and (12) are minimized by applying heuristic algorithms (GA, PS, IPA, GA-PS, and GA-IPA) for the 
learning of the unknown adjustable parameters (chromosome). For simulations Matlab 7.6.0. has been utilized. 

The parameter settings for the execution of the optimization algorithms (GA, PS, IPA, GA-PS, and GA-IPA) are given in 
table 1. The input of the training set is taken from	푥	휖{0, 0.1,0.2,0.3, … . ,1}, thus the number of unknown adjustable parameter is equal 
to 30. The values of these unknown adjustable parameters are bounded between -20 and + 20. This was observed by numerous 
simulations that by restricting these unknown adjustable parameters to the specified interval we get good results.   

The algorithms are executed according to the prescribed settings to achieve the minimum fitness value. The optimal values of 
the unknown adjustable parameters achieved by the hybrid heuristic schemes GA-PS, and GA-IPA are provided in Table 2.  

 
Table 2.  Unknown adjustable parameters achieved by hybrid schemes 

 
 

  GA-PS   GA-IPA  

 i αi  γi  βi  αi γi βi 
 1 1.7158681603 1.5582360608 2.0631516835 2.7198348764 1.3023129579 2.7029889471 
 2 -4.6783123067 -0.6687671519 1.4863655665 -6.8852582037 -0.6604649375 1.9211891289 
 3 4.6091919363 0.2025176487 6.6903083812 6.8809590700 -0.7872728472 11.0064068543 
 4 -0.5712269106 -1.3301003001 0.2897717189 -0.7906217762 -1.0790102116 -0.3645472097 
λ=0.5 5 0.2863556257 0.0082082091 -1.4850131696 0.4717450376 0.1717571573 -2.2140470400 
 6 1.2684808004 -0.1755886913 -1.5029140094 1.8253820009 -0.0012649339 -2.1873627814 
 7 -1.8016237414 -1.5304456849 4.1613531171 -2.7283916096 -1.8210668340 6.7238448765 
 8 0.6953501560 0.1337606705 -4.5161362820 1.7634657011 -0.8101186300 -7.4410117915 
 9 -0.7450129556 -0.9923187515 3.3092241128 -1.0727261001 -1.5058716249 4.8666389823 
 10 0.2801029005 -0.0254306260 1.2470413527 0.5266243902 0.2230996855 1.8974740978 
 1 -1.9309001091 -0.7994681355 8.8558759767 -0.1372666353 -0.6229004681 6.4797099210 
 2 -15.3919214990 -4.2390295361 -12.5779321536 2.6492265274 -2.7797553698 -10.1326830246 
 3 19.9965010243 -8.8608017612 -12.9704722149 4.2094573306 -3.6318530927 -8.0170417892 
 4 -17.9738660200 -19.9924471647 -15.7950512209 2.3399625238 1.3419376584 -3.9916138361 
λ=1 5 12.9643626937 19.9924255508 15.6780419344 4.6751062804 2.8041306261 6.6193982214 
 6 1.3738632820 3.5674960295 -7.2071047428 7.6424167162 2.8620847910 -7.5088232997 
 7 1.4539622667 -1.4889229888 -3.9447580404 1.6333885989 0.0462620683 -2.6546172253 
 8 -19.1932911641 -19.9962351134 -16.0577851074 0.2192117143 1.6716899409 -4.6563273492 
 9 -11.0563796100 -1.0704409829 3.2560971518 -4.6508777867 -1.0621137337 2.4865115887 
 10 -13.7739752422 -1.1366687668 -3.4685363787 -8.3942122341 -1.0788478894 -3.0064202662 
 1 5.817776659 12.71542432 -17.18887722 1.341540516 0.203313267 -1.584276599 
 2 19.11176207 5.036865426 -13.21874064 -1.205739356 0.358499171 -1.381071609 
 3 2.461030913 -8.061608453 12.83352698 1.250597207 -16.99488461 17.06886302 
 4 2.763894541 -0.957008411 7.773068366 1.389950712 3.662438546 3.379454408 
λ=10 5 9.874208755 -11.34018211 17.30807435 1.358238427 2.538755228 3.158011208 
 6 -19.98589831 10.75103145 -17.25642848 0.671209377 3.7426714 -2.366951517 
 7 -12.51605473 -10.97068987 15.88135324 -5.845832642 -12.57777619 14.18877037 
 8 5.06650745 5.50988936 -10.82412141 4.551042901 0.236032429 -3.717364387 
 9 8.690680897 -2.733654226 -8.518343425 2.637267387 -0.765251666 -2.88903648 
 10 -2.583343765 -4.624982016 10.63471015 1.842832969 -1.82007665 2.150456676 
 

The approximate numerical solution 푢(푥)  of the Troesch’s problem (1) is obtained by substituting the optimal values of 
unknown adjustable parameters in (3). The approximate numerical results obtained by the proposed schemes are presented in Table 3 
for 	휆 = 0.5	, 1 and Table 4 for	휆 = 10. In Table 5 we also present numerical results for 휆 = 10	obtained by some classical methods 
given in [8]. 

The absolute errors have been calculated relative to the exact solution and these are presented in Table 6, Table 7, and Table 8 
for 휆 = 0.5,휆 = 1, and 휆 = 10 respectively. For the efficiency, accuracy, and reliability of the proposed method comparisons are 
made with the exact solutions and some classical approximate numerical methods such as HPM [1], HAM [2], VIM [3], ADM [4], 
combined ADM-RKM [8], and cubic B-spline collocation method [9]. The comparison of the absolute errors from Table 6 and Table 
7 and Table 8 clearly reveals that the proposed method yields the results of the Troesch’s problem (1) for three special cases 휆 = 0.5,
휆 = 1,푎푛푑		휆 = 10	with greater accuracy. From the comparison of Table 6 for 휆 = 0.5	it is evident that the proposed method yields 
the approximate results similar to the classical methods HPM [1], HAM [2], ADM [4] and B-spline [9], while the proposed method 
gives significantly better results than VIM [3]. Moreover for	휆 = 1, the proposed method gives comparable results to the methods 
given in [4, 9], slightly better than HPM [1] and significantly better than VIM [3]. From the comparison of Table 8 for 휆 = 10 for 
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which the problem is difficult to be solved [8] the proposed method has achieved the numerical results with fairly good accuracy and 
quite comparable to ADM-RKM [8]. Further it is observed from the comparison of approximate solution of Troesch’s problem for   
휆 = 10 that the absolute errors relative to the exact solutions obtained from the proposed method are considerably smaller than the 
classical methods ADM, VIM, and MHPM.   

 
Table 3. Numerical results of Troesch’s problem using proposed method for λ=0.5 and λ=1 

 x Exact[1-4] GA PS IPA GA-PS GA-IPA 
 0.1 0.0951769020 0.0959526958 0.0958153064 0.0959444555 0.0959444449 0.0959443773 
 0.2 0.1906338691 0.1921346585 0.1920184778 0.1921287750 0.1921283944 0.1921287413 
 0.3 0.2866534030 0.2887980948 0.2887161527 0.2887942822 0.2887935126 0.2887943631 
 0.4 0.3835229288 0.3861875502 0.3861177986 0.3861846919 0.3861843534 0.3861848222 

λ=0.5 0.5 0.4815373854 0.4845498566 0.4844633973 0.4845471190 0.4845478455 0.4845471807 
 0.6 0.5810019749 0.5841357919 0.5840266020 0.5841333437 0.5841349006 0.5841332885 
 0.7 0.6822351326 0.6852024912 0.6850922717 0.6852012756 0.6852027564 0.6852011751 
 0.8 0.7855717867 0.7880157994 0.7879305298 0.7880165464 0.7880172754 0.7880165161 
 0.9 0.8913669875 0.8928518696 0.8927922260 0.8928541458 0.8928545292 0.8928541952 
 0.1 0.0817969966 0.084686933 0.0846764683 0.0846616547 0.0846569098 0.0846610966 
 0.2 0.1645308709 0.170193466 0.1701657627 0.1701715056 0.1701683195 0.1701708205 
 0.3 0.2491673608 0.257410747 0.2574019571 0.2573934088 0.2573911869 0.2573917712 

λ = 1 0.4 0.3367322092 0.347235463 0.3472547732 0.3472220283 0.3472208650 0.3472197256 
 0.5 0.4283471610 0.440610797 0.4406227777 0.4405993798 0.4406002701 0.4405972632 
 0.6 0.5252740296 0.538545435 0.5384912500 0.5385347088 0.5385382430 0.5385333420 
 0.7 0.6289711434 0.642138934 0.6419805108 0.6421293058 0.6421345857 0.6421285075 
 0.8 0.7411683782 0.752615188 0.7523736164 0.7526083064 0.7526134176 0.7526074131 
 0.9 0.8639700206 0.871365585 0.8711200368 0.8713620340 0.8713662992 0.8713607069 

 
Table 4.  Numerical results of Troesch’s problem by the proposed method for λ= 10 

x Exact [8] GA PS IPA GA-PS GA-IPA 
0.1 0.0000763 -0.0001750 0.0689290 0.0006507 0.0000959 -0.0022146 
0.2 0.0001299 -0.0000617 -0.0250253 0.0003901 -0.0001366 -0.0008775 
0.3 0.0003589 0.0000972 -0.0665243 0.0001604 -0.0001633 -0.0005250 
0.4 0.0009779 0.0003808 -0.0671847 0.0006313 0.0001016 0.0002556 
0.5 0.0026590 0.0009327 -0.0374145 0.0013073 0.0008483 0.0018240 
0.6 0.0072289 0.0021076 0.0136070 0.0039797 0.0025192 0.0043090 
0.7 0.0196640 0.0048757 0.0779259 0.0096452 0.0062620 0.0104308 
0.8 0.0537303 0.0120360 0.1487887 0.0306525 0.0154046 0.0300570 
0.9 0.1521140 0.0318843 0.2206004 0.0640741 0.0403545 0.0801700 

 
Table 5.  Numerical results of Troesch’s problem by classical methods given in [8] for λ= 10 

x ADM-RKM 
[8] 

VIM [8] ADM [8] MHPM [8] 

0.1 0.0000576 0.1186109866 667081.1874 17.61750 
0.2 0.0001902 0.4461962517 1333955.1189 33.69333 
0.3 0.0005676 3.8003366781 1999860.1189 46.78583 
0.4 0.0016654 79.89147273 2661970.7366 55.65333 
0.5 0.0048331 1880.3539472 3310585.4201 59.35417 
0.6 0.0137488 41642.365193 3914127.8659 57.34667 
0.7 0.0374013 878764.64189 4374578.5342 49.58917 
0.8 0.0936540 18064027.967 4406724.4178 36.64000 
0.9 0.2189270 366613074.02 3290268.6374 19.75750 

 
Table 6. Comparison of absolute errors between proposed method and classical methods given in [1-4, 9] for λ= 0.5. 

 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
GA 7.758E-04 1.501E-03 2.145E-03 2.665E-03 3.012E-03 3.134E-03 2.967E-03 2.444E-03 1.485E-03 
PS 6.384E-04 1.385E-03 2.063E-03 2.595E-03 2.926E-03 3.025E-03 2.857E-03 2.359E-03 1.425E-03 

IPA 7.676E-04 1.495E-03 2.141E-03 2.662E-03 3.010E-03 3.131E-03 2.966E-03 2.445E-03 1.487E-03 
GA-PS 7.675E-04 1.495E-03 2.140E-03 2.661E-03 3.010E-03 3.133E-03 2.968E-03 2.445E-03 1.488E-03 

GA-IPA 7.675E-04 1.495E-03 2.141E-03 2.662E-03 3.010E-03 3.131E-03 2.966E-03 2.445E-03 1.487E-03 
HPM [1] 7.711E-04 1.502E-03 2.151E-03 2.674E-03 3.023E-03 3.144E-03 2.977E-03 2.453E-03 1.492E-03 
HAM [2] 7.677E-04 1.495E-03 2.142E-03 2.663E-03 3.011E-03 3.133E-03 2.968E-03 2.446E-03 1.488E-03 
VIM [3] 4.865E-03 9.700E-03 1.447E-02 1.915E-02 2.370E-02 2.808E-02 3.223E-02 3.611E-02 3.964E-02 

ADM [4] 7.615E-04 1.484E-03 2.127E-03 2.646E-03 2.993E-03 3.115E-03 2.952E-03 2.434E-03 1.481E-03 
Spline[9] 7.671E-04 1.494E-03 2.140E-03 2.660E-03 3.009E-03 3.130E-03 2.965E-03 2.443E-03 1.486E-03 

 
 

14 



Malik et al., 2013 

 

 

Table 7. Comparison of absolute errors between proposed method and classical methods given in [1-4, 9] for λ= 1. 
 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

GA 2.890E-03 5.663E-03 8.243E-03 1.050E-02 1.226E-02 1.327E-02 1.317E-02 1.145E-02 7.396E-03 
PS 2.879E-03 5.635E-03 8.235E-03 1.052E-02 1.228E-02 1.322E-02 1.301E-02 1.121E-02 7.150E-03 

IPA 2.865E-03 5.641E-03 8.226E-03 1.049E-02 1.225E-02 1.326E-02 1.316E-02 1.144E-02 7.392E-03 
GA-PS 2.860E-03 5.637E-03 8.224E-03 1.049E-02 1.225E-02 1.326E-02 1.316E-02 1.145E-02 7.396E-03 

GA-IPA 2.864E-03 5.640E-03 8.224E-03 1.049E-02 1.225E-02 1.326E-02 1.316E-02 1.144E-02 7.391E-03 
HPM [1] 1.415E-02 2.760E-02 3.964E-02 4.946E-02 5.621E-02 5.887E-02 5.624E-02 4.686E-02 2.889E-02 
HAM [2] 2.876E-03 5.665E-03 8.263E-03 1.054E-02 1.231E-02 1.333E-02 1.237E-01 1.152E-02 7.455E-03 
VIM [3] 1.837E-02 3.681E-02 5.537E-02 7.411E-02 9.303E-02 1.121E-01 1.312E-01 1.501E-01 1.685E-01 

ADM [4] 2.452E-03 4.900E-03 7.247E-03 9.354E-03 1.105E-02 1.209E-02 1.211E-02 1.062E-02 6.939E-03 
Spline[9] 2.858E-03 5.629E-03 8.210E-03 1.047E-02 1.223E-02 1.323E-02 1.313E-02 1.142E-02 7.379E-03 

 
Table 8. Comparison of absolute errors between proposed method and classical methods given in [8] for λ= 10 

   Proposed Method      Other Methods   

x GA PS IPA GA-PS GA-IPA ADM-RKM 
[8] 

ADM [8] MHPM [8] VIM [8] 

0.1 2.513E-04 6.885E-02 5.744E-04 1.961E-05 2.291E-03 1.871E-05 6.671E+05 6.671E+05 1.185E-01 
0.2 1.916E-04 2.516E-02 2.602E-04 2.665E-04 1.007E-03 6.030E-05 1.334E+06 1.334E+06 4.461E-01 
0.3 2.617E-04 6.688E-02 1.985E-04 5.222E-04 8.839E-04 2.087E-04 2.000E+06 2.000E+06 3.800E+00 
0.4 5.971E-04 6.816E-02 3.466E-04 8.763E-04 7.223E-04 6.875E-04 2.662E+06 2.662E+06 7.989E+01 
0.5 1.726E-03 4.007E-02 1.352E-03 1.811E-03 8.350E-04 2.174E-03 3.311E+06 3.311E+06 1.880E+03 
0.6 5.121E-03 6.378E-03 3.249E-03 4.710E-03 2.920E-03 6.520E-03 3.914E+06 3.914E+06 4.164E+04 
0.7 1.479E-02 5.826E-02 1.002E-02 1.340E-02 9.233E-03 1.774E-02 4.375E+06 4.375E+06 8.788E+05 
0.8 4.169E-02 9.506E-02 2.308E-02 3.833E-02 2.367E-02 3.992E-02 4.407E+06 4.407E+06 1.806E+07 
0.9 1.202E-01 6.849E-02 8.804E-02 1.118E-01 7.194E-02 6.681E-02 3.290E+06 3.290E+06 3.666E+08 
 

5. CONCLUSIONS AND FUTURE WORK 
 
A heuristic computing based stochastic method has been successfully applied for the approximate numerical solution of the 

Troesch’s boundary value problem. On the basis of the numerical results and comparisons made with the classical approximate 
numerical methods and the exact solutions, it can be concluded that the proposed method is efficient and useful for solving the 
Troesch’s problem. The accuracy and the reliability of the proposed method are demonstrated by solving the Troesch’s problem with 
three special cases of constant  . The proposed method gives remarkably accurate results of the Troesch’s problem which are quite 
similar to some of the classical approximate methods in comparison with the exact solutions. Furthermore the proposed method can 
provide the approximate numerical solution of the problem conveniently and on the continuous grid of time once the optimal values of 
the unknown adjustable parameters have been attained.  

In future we aim to apply heuristic computational techniques to various other nonlinear ODEs, nonlinear coupled ordinary 
differential equations, and integro-differential equations appearing in the applications of applied science and engineering. Further 
other nature inspired techniques like Bee colony and Ant colony may be looked into as candidates for solving such nonlinear and even 
coupled differential equations. 
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