

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

© 2013, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Muhammad Hasnain, Department of Electronics, Quaid-i-Azam University (QAU), Islamabad, Pakistan
muhammadhasnain@hotmail.com

Efficient Hardware Implementation of Digital Filters using Distributed
Arithmetic (DA)

Muhammad Hasnain1, Saifullah Hammad2, M. Aqeel Iqbal3

1Department of Electronics, Quaid-i-Azam University (QAU), Islamabad, Pakistan

2Department of Electrical & Electronics Engineering, Muhammad Ali Jinnah University (MAJU), Islamabad, Pakistan
3Dept. of CE, College of Electrical & Mechanical Engineering, National University of Science and Technology

(NUST), Islamabad, Pakistan

ABSTRACT

The FPGA (Field Programmable Gate Array) constitute of many programmable modules like Configuration Logic
Blocks (CLBs), Block Random Access Memories (BRAM), DSP 48 blocks and Input/output (I/O) modules. The
CLBs are the main programmable logic units which consist of different number of logic slices and each slice
contains different number of LUTs and flips flops depending upon the FPGA device family. The CLBs and DSP 48
blocks are the most expensive resources on the FPGA and are used wisely in the design of FPGA based system. In
most of FPGA based DSP applications, CLB’s and DSP 48 blocks are utilized in implementing algorithmic logic
and digital filters whereas the BRAM remains unutilized. The non utilization of FPGA resources like BRAM
motivates to implement various DSP module like filters (FIR or IIR) using BRAM. The Distributed Arithmetic (DA)
is a technique which can be used to implement digital FIR and IIR filters. The DA logic replaces the MAC operation
of convolution summation of any digital filter (IIR or FIR) into a bit serial look up table read and addition operation.
Hence by implementation of digital filters using DA, expansive FPGA resources like DSP 48 block can be saved
and used to implement the algorithmic logic for DSP algorithms. The research paper presents an efficient method for
hardware implementation of digital filters (IIR and FIR) of any order by exploiting Distributed Arithmetic (DA).
This paper presents critical analysis and optimization provided by the purposed design with respect to its
conventional DA based design.
KEYWORDS: Distributed Arithmetic (DA), Finite Impulse Response (FIR) Filter, Infinite Impulse Response (IIR)

filters, Multiply Accumulate (MAC), Bits Combination Factor (BCF).

1. INTRODUCTION

Distributed arithmetic (DA) is a way of implementing a dot product where one of the arrays has constant
elements. The DA can be effectively used to implement FIR, IIR and FFT type algorithms [1, 2]. For example, in the
case of an FIR filter, the coefficients constitute an array of constants in some signed Q format where the tapped
delay line forms the array of variables which changes every sample clock. The DA logic replaces the MAC
operation of convolution summation into a bit serial look up table read and addition operation [1, 2, 3]. Keeping in
perspective the architecture of FPGAs, time/area effective designs can be implemented using DA techniques [4].
The DA logic works by first expanding the array of variable numbers in the dot product as a binary number and then
rearranging MAC terms with respect to weights of the bits. A mathematical explanation of this rearrangement and
grouping is given here. FPGAs with look up tables suit well DA based filter design [5]. A DA based design
eliminates the use of a hardware multiplier and uses only a look up table to provide high throughput execution at bit
rate irrespective of the filter length and width of the coefficients [6].Let the different elements of arrays of constants
and variables be Ak and xk, respectively. The length of both the arrays is K. Then their dot product can be written as:

푦 = ∑ 퐴 푥 Equation (1)

Without lost of generality, let us assume xk is an N bit Q1. (N-1) format number:

푥 = −푥 2 +	 ∑ 푧푥 2
푥 = −푥 2 + 	 푥 2 +	.		.		. +	푥 ()2()

562

Hasnain et al., 2013

The dot product of equation (1) can be written as:

푦 = 	−푥 2 + 푥 2 		 퐴 	

푦 = (−푥 2 + 푥 2 + 	… . . +	푥 ()2())	퐴 	

Rearranging the terms yields:

푦 = − 푥 퐴 2 + 	 2 푥 퐴

For K = 3 and N = 4, the rearrangement forms the following entries in the ROM:

−(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 	
+(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2
+(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2
+(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2

 Equation (2)
The DA technique pre computes all possible values of

푥 퐴

For the example under consideration, the summations for all eight possible values of xkb for a particular b and
k = 0, 1 and 2 are computed and stored in ROM. The ROM is P bits wide and 2K deep and implements a look up
table. The value of P is:

푃 = 푓푙표표푟 log |퐴 |	 + 	1

This size is prohibitively large and several techniques are used to reduce the ROM requirement [7, 8]. The

conventional design for hardware implementation of DA based FIR filter with K=L and N bit data sample is shown
in figure below [9],

Figure 1: Conventional DA based architecture for implementing an FIR filter of length L

and N bit data samples

563

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

There are few drawbacks with conventional design of DA, which are
1. The clkC (circuit clock) should be N times faster than the clkS (system clock) where N is with of sampled

data.
2. The BRAM requirement for implementation.
3. Design operating speed compared with pipelined MAC based implementation.

In this research paper we will purpose a fixed point design which caters the drawbacks in conventional DA

based design. We will first purpose a design for L order and N samples FIR and IIR filters, method of computing the
ROM/RAM contents and the architecture of the purposed design. Also we will used the purposed design to
implemented second order IIR filter (biquad filter) and compares the performance of purposed design with
conventional DA based implementation, pipelined MAC based implementation and normal implementation of
biquad IIR filter.

2. PURPOSED DESIGN

In this research paper we will purpose the design which can be used to implement any K order FIR and IIR

filters. The design exploits the core concept of distributed arithmetic by pre-computing the result of X-bits specified
by BCF (Bits Combination Factor) of N-bit sample of K variables in tapped delay line at a time and then stores the
result into BRAM contrary to conventional DA design in which result of 1-bit of N-bit sample of K variables in
tapped delay line is computed at a time and stored in the BRAM. In this way we can perform computation of X bits
specified by BCF of N-bits sample at circuit clock which will increase the throughput of the design by a factor of X
and hence performance of the design. Also another single port RAM/ROM is used to store the 2’s complement of
twice the value of contribution of MSB; it is discussed in detail in the next subsection. The only constraint in the
purposed design is X (specified by BCF) should be selected such that it is multiple of N (number of bit in variable).
For example for Q2.22 format fixed point number, N = 24 and value of 1, 2, 3, 4, 6, 8, 12 and 24 can be selected as
X i.e. Bit Combination Factor.

2.1 ROM/RAM content Generation

In the purposed design in order to pre-compute the content of the ROM/RAM, result of X-bits from each N-bits
sample of K variables in tapped delay line is pre-computed by using value corresponding to the first bit which is right
shifted by one and then added into the value corresponding to second bit (obtained by adding first bit’s result with
shifting right and second bits result without shifting), then right shifting the accumulated result by 1 and then adding
the value corresponding to third bit in the accumulated value (obtained by adding first bit’s and second bit’s result
(accumulated result) with shifting right and second bits result without shifting) and so on until value corresponding to
Xth bits is added into the accumulated sum. After adding the contribution of Xth bits, the accumulated sum should not
be shifted right. The computed value is stored into the ROM/RAM at address corresponding to the value represented by
concatenation of X-bits of each N-bits sample of variables in tapped delay line. The above method is applicable to FIR
filters only. For IIR filters to pre-compute content of ROM/RAM, feed forward path and feedback path should be
catered separately and same method as discussed above is applied to them.

Also in Distribute Arithmetic (DA) we need to subtract the contribution of MSB (Most Significant Bit) from
the accumulated result of remaining bits. To accommodate it, in the purposed design we use another single port
ROM/RAM which contains the 2’s complement of twice the value of contribution of MSB. The contribution of
MSB is simply added into the accumulated result of remaining bits. The twice value of 2’s complement eliminates
the effect of inherent addition of MSB in the accumulated result of all bits (including MSB) along with the required
subtraction of contribution of MSB.

For the purposed design, the width of single port ROM/RAMs containing pre-computed values are R-bit wide
and 2K deep and implemented as look up table. The value of R is

푅 = 푓푙표표푟 log |퐴 |	 + 	퐵퐶퐹

In above equation, BCF is the Bits Combination Factor.

For mathematical prove of the purposed design, consider the example for K = 3, N = 4 and bit combination factor
(BCF) = 2, the rearrangement forms the following entries in the ROM mentioned in introduction section. From
equation (2),

564

Hasnain et al., 2013

푇 = 	 (푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 	 Equation (3)
푈 = 	 (푥 퐴 + 푥 퐴 + 	푥 퐴)		2 Equation (4)
푉 = 	 (푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 Equation (5)
푊 = (푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 Equation (6)
According to distributed arithmetic technique,
Z = -T + U + V + W Equation (7)
Adding equation (5) and (6)
V + W = (푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 +		(푥 퐴 + 푥 퐴 + 	푥 퐴)		2
V + W = ((푥 퐴 + 푥 퐴 + 	 푥 퐴)	 +		(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2)	2
Or V + W = A * 	2 Equation (8)
Where A = ((푥 퐴 + 푥 퐴 + 	 푥 퐴)	 +		(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2) Equation (9)
Similarly adding equation (3) and (4)

T + U = (푥 퐴 + 푥 퐴 + 	 푥 퐴)		2 	+(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2

or

T + U = (푥 퐴 + 푥 퐴 + 	 푥 퐴)		+(푥 퐴 + 푥 퐴 + 	 푥 퐴)		2

Let T + U = B Equation (10)

Now to obtain the accumulated result, add equation (8), (10) and compensate the subtraction of MSB contribution,

C = B + A * 	2 - 2T
According to the purposed design equation (9) and equation (10) should be the content of the single Port
RAM/ROM placed at the address correspond by concatenation of 2-bits (specified by BCF) of 4-bits sample of 3
variables of tapped delay line. Also twice the 2’s complement of the T would be the content of single port
ROM/RAM which will be used to compensate the contribution of MSB.
Substituting value of A and B from equation (9) and (10)
C = T + U + ((푥 퐴 + 푥 퐴 + 	 푥 퐴)	+		(푥 퐴 + 푥 퐴 + 	푥 퐴)		2) * 	2 - 2T

C = T + U + V + W - 2T
C = -T + U + V + W

Above equation is same as equation (7), which represents the result obtained from conventional distributed
arithmetic approach. Similarly the purposed design can be mathematical proved for filter of any order K, N bits
sample width and bit combination factor (BCF) = bcf.

2.2 Architecture

In the purposed design architecture, two single port RAM/ROMs are used; one for storing the pre-computed
content of distributed arithmetic logic and the other one for storing the 2’s complement of twice the value of
contribution of the MSB. In this way we can perform computation of X bits (specified by BCF) of N-bits sample of
K variables in tapped delay line at circuit clock which will increase the throughput of the design by a factor of BCF.
Also, instead of using ripple carry adder to compute the summation of intermediate results we will use Wallace
compression tree which will further increase the design performance. We will discuss the hardware architecture of
FIR filter in detail whereas for IIR filter the same concept is applied.

The implemented hardware architectures for purposed design for FIR and IIR filters are given below,

565

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

Figure 2: Purposed Architecture for FIR filter of length K, N bit data samples

and ‘bcf’ as Bits Combination Factor

566

Hasnain et al., 2013

Figure 3: Purposed Architecture for IIR filter of length K for feed forward path, length L for feed backward
path, N bit data samples and ‘bcf’ as Bits Combination Factor

567

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

Figure 4: Purposed Architecture for IIR filter using single ROM/RAM (for storing coefficients – both
feedback & feed forward paths) of length K for feed forward path, length L for feed backward path, N bit

data samples and ‘bcf’ as Bits Combination Factor

3. APPLICATION

Biquad IIR filter is very commonly used in DSP applications like digital audio processing, digital video

processing, signal conditioning and channel selection filtering. Biquad is a second order (two poles and two zeros)
IIR filter. It is high enough order to be useful on its own and because of coefficient sensitivities in higher order
filters biquad is often used as basic building block for more complex filters. For instance, a biquad low pass filter
has a cutoff slope of 12 dB per octave which is useful for tone controling. If you need a 24 dB/octave slope, you can
cascade two biquads and it will have less coefficient-sensitivity problems than a single fourth-order design. In this
research paper, we will use the purposed design to implement second order IIR filter (biquad filter) for Q1.15 format
with different number of BCF and will compare the performance of purposed design with conventional DA based
implementation, pipelined MAC based implementation and normal implementation of biquad IIR filter. A software
application is developed to compute the content of the ROM/RAM which uses the coefficient of the filters and
generates the content of the ROM/RAM. The biquad IIR filter can be represented mathematically as,

y(n) = a0.x(n) + a1.x(n-1) + a2.x(n-2)

+ b1.y(n-1) + b2.y(n-2)

Following are the architecture of normal implementation of biquad IIR filter (figure 5), pipelined MAC based
implementation (figure 6), conventional DA design (figure 7) and the purposed design (figure 8). The specifications

568

Hasnain et al., 2013

of the FPGA, tools and programming language used to implement all the described architectures is given in the table
below

FPGA SPECIFICATION
Family Virtex 4
Device XC4VLX15
Package SF363
Speed -12
TOOL & PROGRAMMING LANGUAGE
HDL Language Verilog HDL
Xilinx
Implementation Tools

Xilinx ISE v12.1 M.53d

Simulation Mentor Graphics Model SIM v6.5

3.1 Normal Hardware Implementation
The hardware architecture for implementation biquad IIR filter in direct form I is given below.

Figure 5: Direct form I implementation of biquad IIR filter

3.2 Pipelined MAC (Multiply Accumulate) based Design
The hardware architecture of biquad IIR filter with pipelined MAC (Multiply Accumulate) module is given below
[10].

Figure 6: Biquad IIR filter implementation using pipelined MAC module

3.3 Conventional DA Design
The hardware architecture of biquad IIR filter with conventional DA design is given below.

569

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

Figure 7: Biquad IIR filter implementation using conventional DA

570

Hasnain et al., 2013

3.4 Purposed Design
The hardware architecture of biquad IIR filter with purposed design is given below.

Figure 8: Biquad IIR filter implementation using purposed design

4. RESULTS

Following are the results obtained from the hardware implementation of biquad filter using the purposed design;

4.1 Data Processing Throughput
The table below compares the data processing throughput of the conventional and the purposed design. It is evident
from the table that purposed design processes more bits per circuit clock (clkC) then the conventional design.

571

J. Basic. Appl. Sci. Res., 3(7)562-573, 2013

Moreover the circuit clock (clkC) requirement is also significantly reduced by using the purposed design as
compared with the conventional design.

Table 1: Data processing throughput comparison between the purposed design and conventional
designDATA PROCESSING THROUGHPUT COMPARISON

QN.M
FORMAT

SYSTEM
CLOCK
(CLKS)

BCF CONVENTIONAL DESIGN (Q1.15) PURPOSED DESIGN (Q1.15)
CIRCUIT CLOCK
(CLKC)

BITS
PROCESSED/
CLKC

NO. OF CIRCUIT
CLOCK (CLKC)

BITS PROCESSED/
CLKC

Qn.m X MHz bcf 16 * X MHz 1 Qn.m / bcf MHz bcf
EXAMPLE

Q1.15 10 MHz 4 160 MHz 1 40 MHz 4
Q1.15 10 MHz 16 10 MHz 1 10 MHz 16
Q2.22 10 MHz 8 240 MHz 1 30 MHz 8
Q2.22 10 MHz 24 240 MHz 1 10 MHz 24

4.2 Speed
The table below compares the maximum frequency (Synthesize Frequency) at which the hardware designs

can be operated for various implementations of biquad filter.

Table 2: Synthesize frequency analysis of various implementations of biquad filter
SYNTHESIZE FREQUENCY (MHz)
NORMAL
IMPLEMENTATION

PIPELINED MAC
IMPLEMENTATION

CONVENTIONAL DA
IMPLEMENTATION

PURPOSED DA
IMPLEMENTATION

115.827 MHz 324.654 MHz 549.753 MHz 549.753 MHz

4.3 Area

The table below compares the FPGA area and resources utilized by the hardware designs of various
implementations of biquad filter.

Table 3: Device utilization analysis of various implementations of biquad filter

DEVICE UTILIZATION (XC4VLX15-12SF363)
DESIGN DSP 48 SLICES SLICE FF 4 – INPUT LUTS

USED TOTAL % USED TOTAL % USED TOTAL % USED TOTAL %
Normal 0 32 0 408 6144 6.64 96 12288 0.78 674 12288 5.49

Pipelined
MAC

5 32 66 6144 1.07 116 12288 0.94 1 12288 0.0

Convention
al DA

(Q1.15)

0 32 0 39 6144 0.63 41 12288 0.33 62 12288 0.50

Purposed
DA (Q1.15)
with BCF =

2

0 32 0 35 6144 0.56 41 12288 0.33 55 12288 0.44

4.4 BRAM requirements
The graph below shows the utilization of BRAM resources of FPGA for implementation of biquad IIR filter using
conventional and purposed design;

572

Hasnain et al., 2013

Figure 9: Block RAM requirement for implementation Biquad IIR filter

5. CONCLUSION

From the results, it is evident that the purposed design is the optimized (from above all designs) with
minimum used of FPGA recourses. Also no expensive recourses like DSP 48 block is being used which can now be
used for algorithmic logic of DSP or other algorithms. Most importantly, the purposed design is the fastest of all
discussed designs in terms processing of bits per circuit clock cycle. The only drawback is the utilization of BRAM,
which will increases with the increase in filter order.

6. REFERENCES

[1]. D. J. Allred, H.Yoo,V. Krishnan,W. Huang and D.V. Anderson,“LMS adaptive filters using distributed

arithmetic for high throughput,” IEEE Transactions on Circuits and Systems, 2005, vol. 52, pp. 1327 1337.
[2]. H. Yoo and D. V. Anderson, “Hardware efficient distributed arithmetic architecture for high order digital

filters,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2005,
vol.5, pp. 125 12

[3]. S. Hwang, G. Han, S. Kang and J. Kim, “New distributed arithmetic algorithm for low power FIR filter
implementation,” IEEE Signal Processing Letters, 2004, vol. 11, pp. 463 466.

[4]. P. K. Meher, S. Chandrasekaran and A. Amira, “FPGA realization of FIR filters by efficient and flexible
systolization using distributed arithmetic,” IEEE Transactions on Signal Processing, 2008, vol. 56, pp. 3009 3017.

[5]. W. Sen, T. Bin and Z. Jim, “Distributed arithmetic for FIR filter design on FPGA,” in Proceedings of IEEE
international conference on Communications, Circuits and Systems, Japan, 2007, vol. 1, pp. 620 623.

[6]. S. A. White, “Applications of distributed arithmetic to digital signal processing: a tutorial review,” IEEE
ASSP Magazine, 1989, vol. 6, pp. 4 19.

[7]. P. Longa and A. Miri, “Area efficient FIR filter design on FPGAs using distributed arithmetic,” Proceedings
of IEEE International Symposium on Signal Processing and Information Technology, 2006, pp. 248 252.

[8]. H. Natarajan, A. G. Dempster and U. Meyer Base, “Fast discrete Fourier transform computations using the reduced
adder graph technique,” EURASIP Journal on Advances in Signal Processing, 2007, December, pp. 1 10.

[9]. DIGITAL DESIGN OF SIGNAL PROCESSING SYSTEMS A PRACTICAL APPROACH by Shoab Ahmed
Khan National University of Sciences and Technology (NUST), Pakistan

[10]. “FPGA-based Implementation of Signal Processing Systems by Roger Woods, John McAllister, Gaye
Lightbody, Ying Yi”, figure 9.4, page 179

573

