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ABSTRACT 
 
The FPGA (Field Programmable Gate Array) constitute of many programmable modules like Configuration Logic 
Blocks (CLBs), Block Random Access Memories (BRAM), DSP 48 blocks and Input/output (I/O) modules. The 
CLBs are the main programmable logic units which consist of different number of logic slices and each slice 
contains different number of LUTs and flips flops depending upon the FPGA device family. The CLBs and DSP 48 
blocks are the most expensive resources on the FPGA and are used wisely in the design of FPGA based system. In 
most of FPGA based DSP applications, CLB’s and DSP 48 blocks are utilized in implementing algorithmic logic 
and digital filters whereas the BRAM remains unutilized. The non utilization of FPGA resources like BRAM 
motivates to implement various DSP module like filters (FIR or IIR) using BRAM. The Distributed Arithmetic (DA) 
is a technique which can be used to implement digital FIR and IIR filters. The DA logic replaces the MAC operation 
of convolution summation of any digital filter (IIR or FIR) into a bit serial look up table read and addition operation. 
Hence by implementation of digital filters using DA, expansive FPGA resources like DSP 48 block can be saved 
and used to implement the algorithmic logic for DSP algorithms. The research paper presents an efficient method for 
hardware implementation of digital filters (IIR and FIR) of any order by exploiting Distributed Arithmetic (DA). 
This paper presents critical analysis and optimization provided by the purposed design with respect to its 
conventional DA based design. 
KEYWORDS: Distributed Arithmetic (DA), Finite Impulse Response (FIR) Filter, Infinite Impulse Response (IIR) 

filters, Multiply Accumulate (MAC), Bits Combination Factor (BCF). 
 

1. INTRODUCTION 
 

Distributed arithmetic (DA) is a way of implementing a dot product where one of the arrays has constant 
elements. The DA can be effectively used to implement FIR, IIR and FFT type algorithms [1, 2]. For example, in the 
case of an FIR filter, the coefficients constitute an array of constants in some signed Q format where the tapped 
delay line forms the array of variables which changes every sample clock. The DA logic replaces the MAC 
operation of convolution summation into a bit serial look up table read and addition operation [1, 2, 3]. Keeping in 
perspective the architecture of FPGAs, time/area effective designs can be implemented using DA techniques [4]. 
The DA logic works by first expanding the array of variable numbers in the dot product as a binary number and then 
rearranging MAC terms with respect to weights of the bits. A mathematical explanation of this rearrangement and 
grouping is given here. FPGAs with look up tables suit well DA based filter design [5]. A DA based design 
eliminates the use of a hardware multiplier and uses only a look up table to provide high throughput execution at bit 
rate irrespective of the filter length and width of the coefficients [6].Let the different elements of arrays of constants 
and variables be Ak and xk, respectively. The length of both the arrays is K. Then their dot product can be written as:  
 

푦 = ∑ 퐴 푥         Equation (1) 
 
 
Without lost of generality, let us assume xk is an N bit Q1. (N-1) format number: 
 

푥   =  −푥 2 +	  ∑ 푧푥 2    
푥   =  −푥 2 + 	 푥 2 +	.		.		. +	푥 ( )2( ) 
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The dot product of equation (1) can be written as: 
 

푦 = 	−푥 2 + 푥 2 		 퐴 	 

 

푦 = ( −푥 2 + 푥 2 + 	… . . +	푥 ( )2( )	)	퐴 	 

 
Rearranging the terms yields: 

푦 = − 푥 퐴 2 + 	 2 푥 퐴  

 
For K = 3 and N = 4, the rearrangement forms the following entries in the ROM: 
 

−(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2 	 
+(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2  
+(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2  
+(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2  

 Equation (2) 
The DA technique pre computes all possible values of 

푥 퐴  

For the example under consideration, the summations for all eight possible values of xkb for a particular b and 
k = 0, 1 and 2 are computed and stored in ROM. The ROM is P bits wide and 2K deep and implements a look up 
table. The value of P is: 

푃 = 푓푙표표푟 log |퐴 |	 + 	1 

 
This size is prohibitively large and several techniques are used to reduce the ROM requirement [7, 8]. The 

conventional design for hardware implementation of DA based FIR filter with K=L and N bit data sample is shown 
in figure below [9], 

 
Figure 1: Conventional DA based architecture for implementing an FIR filter of length L  

and N bit data samples

563 



J. Basic. Appl. Sci. Res., 3(7)562-573, 2013 

 

There are few drawbacks with conventional design of DA, which are 
1. The clkC (circuit clock) should be N times faster than the clkS (system clock) where N is with of sampled 

data. 
2. The BRAM requirement for implementation. 
3. Design operating speed compared with pipelined MAC based implementation. 

 
In this research paper we will purpose a fixed point design which caters the drawbacks in conventional DA 

based design. We will first purpose a design for L order and N samples FIR and IIR filters, method of computing the 
ROM/RAM contents and the architecture of the purposed design. Also we will used the purposed design to 
implemented second order IIR filter (biquad filter) and compares the performance of purposed design with 
conventional DA based implementation, pipelined MAC based implementation and normal implementation of 
biquad IIR filter. 
 

2. PURPOSED DESIGN 
 
In this research paper we will purpose the design which can be used to implement any K order FIR and IIR 

filters. The design exploits the core concept of distributed arithmetic by pre-computing the result of X-bits specified 
by BCF (Bits Combination Factor) of N-bit sample of K variables in tapped delay line at a time and then stores the 
result into BRAM contrary to conventional DA design in which result of 1-bit of N-bit sample of K variables in 
tapped delay line is computed at a time and stored in the BRAM. In this way we can perform computation of X bits 
specified by BCF of N-bits sample at circuit clock which will increase the throughput of the design by a factor of X 
and hence performance of the design. Also another single port RAM/ROM is used to store the 2’s complement of 
twice the value of contribution of MSB; it is discussed in detail in the next subsection. The only constraint in the 
purposed design is X (specified by BCF) should be selected such that it is multiple of N (number of bit in variable). 
For example for Q2.22 format fixed point number, N = 24 and value of 1, 2, 3, 4, 6, 8, 12 and 24 can be selected as 
X i.e. Bit Combination Factor. 

 
2.1 ROM/RAM content Generation 

In the purposed design in order to pre-compute the content of the ROM/RAM, result of X-bits from each N-bits 
sample of K variables in tapped delay line is pre-computed by using value corresponding to the first bit which is right 
shifted by one and then added into the value corresponding to second bit (obtained by adding first bit’s result with 
shifting right and second bits result without shifting), then right shifting the accumulated result by 1 and then adding 
the value corresponding to third bit in the accumulated value (obtained by adding first bit’s and second bit’s result 
(accumulated result) with shifting right and second bits result without shifting) and so on until value corresponding to 
Xth bits is added into the accumulated sum. After adding the contribution of Xth bits, the accumulated sum should not 
be shifted right. The computed value is stored into the ROM/RAM at address corresponding to the value represented by 
concatenation of X-bits of each N-bits sample of variables in tapped delay line. The above method is applicable to FIR 
filters only. For IIR filters to pre-compute content of ROM/RAM, feed forward path and feedback path should be 
catered separately and same method as discussed above is applied to them. 

Also in Distribute Arithmetic (DA) we need to subtract the contribution of MSB (Most Significant Bit) from 
the accumulated result of remaining bits. To accommodate it, in the purposed design we use another single port 
ROM/RAM which contains the 2’s complement of twice the value of contribution of MSB. The contribution of 
MSB is simply added into the accumulated result of remaining bits. The twice value of 2’s complement eliminates 
the effect of inherent addition of MSB in the accumulated result of all bits (including MSB) along with the required 
subtraction of contribution of MSB. 

For the purposed design, the width of single port ROM/RAMs containing pre-computed values are R-bit wide 
and 2K deep and implemented as look up table. The value of R is  
 

푅 = 푓푙표표푟 log |퐴 |	 + 	퐵퐶퐹 

In above equation, BCF is the Bits Combination Factor. 
 
For mathematical prove of the purposed design, consider the example for K = 3, N = 4 and bit combination factor 
(BCF) = 2, the rearrangement forms the following entries in the ROM mentioned in introduction section. From 
equation (2),  
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푇 = 	 (푥 퐴 + 푥 퐴 + 	 푥 퐴 )		2 	  Equation (3) 
푈 = 	 (푥 퐴 + 푥 퐴 + 	푥 퐴 	)		2   Equation (4) 
푉 = 	 (푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2   Equation (5) 
푊 = (푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2   Equation (6) 
According to distributed arithmetic technique, 
Z    = -T + U + V + W    Equation (7) 
Adding equation (5) and (6) 
V + W  = (푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2     +		(푥 퐴 + 푥 퐴 + 	푥 퐴 	)		2   
V + W  = ((푥 퐴 + 푥 퐴 + 	 푥 퐴 	)	    +		(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2 )	2  
Or V + W = A * 	2      Equation (8) 
Where     A = ((푥 퐴 + 푥 퐴 + 	 푥 퐴 	)	    +		(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2 )       Equation (9) 
Similarly adding equation (3) and (4) 
 
T + U  = (푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2 	+(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2  
 
or 
 
T + U  = (푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		+(푥 퐴 + 푥 퐴 + 	 푥 퐴 	)		2  
 
Let T + U = B     Equation (10) 
 
Now to obtain the accumulated result, add equation (8), (10) and compensate the subtraction of MSB contribution, 

C  = B + A * 	2 - 2T 
According to the purposed design equation (9) and equation (10) should be the content of the single Port 
RAM/ROM placed at the address correspond by concatenation of 2-bits (specified by BCF) of 4-bits sample of 3 
variables of tapped delay line. Also twice the 2’s complement of the T would be the content of single port 
ROM/RAM which will be used to compensate the contribution of MSB. 
Substituting value of A and B from equation (9) and (10) 
C = T + U + ((푥 퐴 + 푥 퐴 + 	 푥 퐴 	)	+		(푥 퐴 + 푥 퐴 + 	푥 퐴 	)		2 ) * 	2 - 2T 

C = T + U + V + W - 2T 
C  = -T + U + V + W 

Above equation is same as equation (7), which represents the result obtained from conventional distributed 
arithmetic approach. Similarly the purposed design can be mathematical proved for filter of any order K, N bits 
sample width and bit combination factor (BCF) = bcf. 
 
2.2 Architecture 

In the purposed design architecture, two single port RAM/ROMs are used; one for storing the pre-computed 
content of distributed arithmetic logic and the other one for storing the 2’s complement of twice the value of 
contribution of the MSB. In this way we can perform computation of X bits (specified by BCF) of N-bits sample of 
K variables in tapped delay line at circuit clock which will increase the throughput of the design by a factor of BCF. 
Also, instead of using ripple carry adder to compute the summation of intermediate results we will use Wallace 
compression tree which will further increase the design performance. We will discuss the hardware architecture of 
FIR filter in detail whereas for IIR filter the same concept is applied. 
 

The implemented hardware architectures for purposed design for FIR and IIR filters are given below,  
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Figure 2: Purposed Architecture for FIR filter of length K, N bit data samples  

and ‘bcf’ as Bits Combination Factor 
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Figure 3: Purposed Architecture for IIR filter of length K for feed forward path, length L for feed backward 
path,  N bit data samples and ‘bcf’ as Bits Combination Factor
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Figure 4: Purposed Architecture for IIR filter using single ROM/RAM (for storing coefficients – both 
feedback & feed forward paths) of length K for feed forward path, length L for feed backward path,  N bit 

data samples and ‘bcf’ as Bits Combination Factor 
 

3. APPLICATION 
 
Biquad IIR filter is very commonly used in DSP applications like digital audio processing, digital video 

processing, signal conditioning and channel selection filtering. Biquad is a second order (two poles and two zeros) 
IIR filter. It is high enough order to be useful on its own and because of coefficient sensitivities in higher order 
filters biquad is often used as basic building block for more complex filters. For instance, a biquad low pass filter 
has a cutoff slope of 12 dB per octave which is useful for tone controling. If you need a 24 dB/octave slope, you can 
cascade two biquads and it will have less coefficient-sensitivity problems than a single fourth-order design. In this 
research paper, we will use the purposed design to implement second order IIR filter (biquad filter) for Q1.15 format 
with different number of BCF and will compare the performance of purposed design with conventional DA based 
implementation, pipelined MAC based implementation and normal implementation of biquad IIR filter. A software 
application is developed to compute the content of the ROM/RAM which uses the coefficient of the filters and 
generates the content of the ROM/RAM. The biquad IIR filter can be represented mathematically as, 

 
y(n) = a0.x(n) + a1.x(n-1) + a2.x(n-2)  

+ b1.y(n-1) + b2.y(n-2) 
 

Following are the architecture of normal implementation of biquad IIR filter (figure 5), pipelined MAC based 
implementation (figure 6), conventional DA design (figure 7) and the purposed design (figure 8). The specifications 
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of the FPGA, tools and programming language used to implement all the described architectures is given in the table 
below 
 

FPGA SPECIFICATION 
Family Virtex 4 
Device XC4VLX15 
Package SF363 
Speed -12 
TOOL & PROGRAMMING LANGUAGE 
HDL Language Verilog HDL 
Xilinx  
Implementation Tools 

Xilinx ISE v12.1 M.53d 

Simulation Mentor Graphics Model SIM v6.5 
 
3.1 Normal Hardware Implementation 
The hardware architecture for implementation biquad IIR filter in direct form I is given below. 

 
Figure 5: Direct form I implementation of biquad IIR filter 

 
3.2 Pipelined MAC (Multiply Accumulate) based Design 
The hardware architecture of biquad IIR filter with pipelined MAC (Multiply Accumulate) module is given below 
[10]. 

 
Figure 6: Biquad IIR filter implementation using pipelined MAC module 

 
3.3 Conventional DA Design 
The hardware architecture of biquad IIR filter with conventional DA design is given below. 
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Figure 7: Biquad IIR filter implementation using conventional DA 
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3.4 Purposed Design 
The hardware architecture of biquad IIR filter with purposed design is given below. 

 
Figure 8: Biquad IIR filter implementation using purposed design 

 
4. RESULTS 

 
Following are the results obtained from the hardware implementation of biquad filter using the purposed design; 
 
4.1 Data Processing Throughput 
The table below compares the data processing throughput of the conventional and the purposed design. It is evident 
from the table that purposed design processes more bits per circuit clock (clkC) then the conventional design. 
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Moreover the circuit clock (clkC) requirement is also significantly reduced by using the purposed design as 
compared with the conventional design.  
 

Table 1: Data processing throughput comparison between the purposed design and conventional 
designDATA PROCESSING THROUGHPUT COMPARISON 

QN.M 
FORMAT 

SYSTEM 
CLOCK 
(CLKS) 

BCF CONVENTIONAL DESIGN (Q1.15) PURPOSED DESIGN (Q1.15) 
CIRCUIT CLOCK 
(CLKC) 

BITS 
PROCESSED/ 
CLKC 

NO. OF CIRCUIT 
CLOCK (CLKC) 

BITS PROCESSED/ 
CLKC 

Qn.m X MHz bcf 16 * X MHz 1 Qn.m / bcf MHz bcf 
EXAMPLE 

Q1.15 10 MHz 4 160 MHz 1 40 MHz 4 
Q1.15 10 MHz 16 10 MHz 1 10 MHz 16 
Q2.22 10 MHz 8 240 MHz 1 30 MHz 8 
Q2.22 10 MHz 24 240 MHz 1 10 MHz 24 

4.2 Speed 
The table below compares the maximum frequency (Synthesize Frequency) at which the hardware designs 

can be operated for various implementations of biquad filter. 
 

Table 2: Synthesize frequency analysis of various implementations of biquad filter 
SYNTHESIZE FREQUENCY (MHz) 
NORMAL 
IMPLEMENTATION 

PIPELINED MAC 
IMPLEMENTATION 

CONVENTIONAL DA 
IMPLEMENTATION 

PURPOSED DA 
IMPLEMENTATION 

115.827 MHz 324.654 MHz 549.753 MHz 549.753 MHz 
 
4.3 Area 

The table below compares the FPGA area and resources utilized by the hardware designs of various 
implementations of biquad filter. 

 
Table 3: Device utilization analysis of various implementations of biquad filter 

DEVICE UTILIZATION (XC4VLX15-12SF363) 
DESIGN DSP 48 SLICES SLICE FF 4 – INPUT LUTS 

USED TOTAL % USED TOTAL % USED TOTAL % USED TOTAL % 
Normal 0 32 0 408 6144 6.64 96 12288 0.78 674 12288 5.49 

Pipelined 
MAC 

5 32  66 6144 1.07 116 12288 0.94 1 12288 0.0 

Convention
al DA 

(Q1.15) 

0 32 0 39 6144 0.63 41 12288 0.33 62 12288 0.50 

Purposed 
DA (Q1.15) 
with BCF = 

2 

0 32 0 35 6144 0.56 41 12288 0.33 55 12288 0.44 

4.4 BRAM requirements 
The graph below shows the utilization of BRAM resources of FPGA for implementation of biquad IIR filter using 
conventional and purposed design;
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Figure 9: Block RAM requirement for implementation Biquad IIR filter 
 

5. CONCLUSION 
 

From the results, it is evident that the purposed design is the optimized (from above all designs) with 
minimum used of FPGA recourses. Also no expensive recourses like DSP 48 block is being used which can now be 
used for algorithmic logic of DSP or other algorithms. Most importantly, the purposed design is the fastest of all 
discussed designs in terms processing of bits per circuit clock cycle. The only drawback is the utilization of BRAM, 
which will increases with the increase in filter order. 
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