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ABSTRACT 
 

In previous trials, similar techniques have been used to study the solar limb effect phenomenon, by using Schwarzschild 
solution and Lense-Thirring Field.  A more general formula for the limb effect of rapidly rotating stars was done by the 
author. In this work a modified Curzon exact solution for Einstein’s field equations has been used to study the red-shift 
of a binary system. In this treatment, it is assumed that the primary star is massive with respect to the secondary one and 
its center of mass is coincident to the center of rotating polar coordinate system. The secondary star is assumed to rotate 
around the primary star and Earth’s observer rotates with the Earth. A general theoretical formula for the redshift of 
binary system is obtained. This formula may be useful in studying different cases of binary systems and may through the 
light on third body of some binary systems.  
KEYWORDS: Binary Pulsars, Redshift, Relativistic Binary Stars, Curzon Solution, Axial Symmetry. 
 

INTRODUCTION 
 
The discovery of the first double-neutron-star binary PSR 1916+13 by Hulse-Taylor, and many other 

binary systems as PSR B1913+16 and PSR B1534+12, introduced the possibility of strong observational tests of 
gravity in the strong fields. As it is well known that the received signals from celestial objects are our sources of 
knowledge about them. The received signals from these objects come to us via different carriers as photons, 
neutrinos, gamma ray and x-ray. For this reason we consider here one of the important phenomenon, i.e. the red-
shift phenomenon for photons and a similar shift for other carriers. The problem of the limb effect phenomenon 
for the solar disk has been studied theoretically by using the generalized redshift formula given by Mikhail et al. 
(2002). Many authors have attempted to find satisfactory interpretation for this effect theoretically in the frame 
work of GR (cf. Mikhail et al. (2002), Wanas et al. (2008)).  The generalized formula of the redshift not only 
used to study the limb effect in the solar disk but also to study the redshift of rabidly rotating stars (Morcos 
(2013)) and the redshift of  static binary system (Wanas et. al (2012)). Waleed and Wanas (2010) considered a 
modified Curzon solution for Einstein field equations to describe the field of binaries. A more general formula 
for red-shift for binary system was written in the case of a stationary observer on the Earth surface.  

 
The aim of this paper is deriving a more general formula for the redshift of (relativistic) binary systems. We 

are going to use an exact axial symmetric solution of Einstein's field equations and the Kermak McCrea and 
Whittaker (KMW) theorems on null geodesics to derive a more general formula for redshift of relativistic binary 
system. This has been delivered by using the adjusted Curzon given by Wanas et al. (2012), but in our treatment 
we considered the center of rotating polar coordinate system and the center of massive primary star are 
coincident. Also, the rotational motion of the secondary component of the binary system around its center of 
mass is considered in our calculations, as well as the rotation of the observer with the Earth around its axis is 
considered. Generally our treatment is more general than other treatments.  

In the first section, a review about developed Kermack, Mecrea and Whittakar Formula is given. In the 
second section the modified Curzon solution is displayed. The calculated values for vectors and null-vectors 
along the world lines of stars and Earth are shown in the third section. The general formula for the redshift of 
binary system and conclusion are given in the last two sections. 
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DEVELOPED KERMACK, MECREA AND WHITTAKER FORMULA 
 

Mikhail et al.  (2002) developed the formula given by Kermack, Mecrea, and Wittaker (KMW) (1933) to be 
suitable for measuring the total redshift of a celestial object. This was instead of using the formula for studying 
cosmological redshift only. In what follows a short review about the developed formulae will be given.  Let us 
consider two points S1 and S2 on the world line (Ws) of a celestial object in the space time. The two points S1 and S2 
are considered as the emitters of signals on celestial object at wavelengths 1  and 2  respectively. An observer O is 
moving in the field of the celestial object and its world line is (Wo), receiving the signals emitted by S1 and S2.  As it is 
well known the received signals depend on the line of sights. If it is assumed  now that,  there are two null-trajectories  
Tr  and To  passing radially and oblique between the observer point  O  on its world line and S1  and S2 on celestial 
object respectively.   Let the received wavelengths from S1 and S2 at O are 1

0
   and 2

0
   respectively. By using KMW 

theorems, 1
0

   and 2
0

   can be expressed as   
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where   is the unit vector along the world line of the emitter  Ws and   is the directional unit-vector along 

the world line of the observer Wo at a certain instant. And   is the transport null-vector along the oblique null 

trajectory To and   is the transport null-vector along the radial null trajectory Tr . The suffixes O, S1 and S2 denote 
that the expressions between the brackets are evaluated at O, S1 and S2 respectively. 

 
By considering that the two points S1 and S2 are identical, so  
 

                                                     1  2       = =                                                                                        (3)   
 The redshift of the signals is given by:  

                                             
  1 2
0 0= .Z
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                                                                                          (4) 

 By using (1) and (2), the redshift can be expressed as  
 
 

                                                                        
(5)     

   
 

 
A MODIFIED CURZON SOLUTION 

 
Curzon’s exact solution of Einstein’s equations is an exact axial symmetric stationary solution. Wanas et al. 

(2012) modified Curzon solution to describe the gravitational field of the two-body system and calculate the redshift 
of spectral lines from binary system.  They have adjusted Curzon metric in such way to describe the gravitational field 
of a binary system. They wrote Curzon’s modified metric in the polar coordinate system ( r , ,  , t )  in the form  

1 2=
S S
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2 2 2 2 2= 2 2 2 ,rr tt t tds g dr g d g d g dt g d d g d dt g d dt              
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 where the metric functions are given by   
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 and the potential functions are   
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are the distances between a potential point and the point masses 1m  and 2m respectively, and a is the distance between 
m1 and m2 . 

  
                 GENERAL ASSUMPTIONS FOR CALCULATING BINARY STARS REDSHIFT 
 

We are going to use the modified vacuum solution of Curzon to describe the field of compact binaries especially 
in the case of double binaries, where there is no matter or non-gravitational fields are present in both regions between 
the two pulsars, or outside them. In order to calculate the redshift of the pulses coming out from a binary system, and 
using equation (5), we assume that:  

  
1- The gravitational field of the primary star is axially symmetric and will be given by (modified Curzon), while the 

field of the secondary is a spherically symmetric (Schwarzschild field).  
2- The mass of the secondary star is very small with respect to the primary one. The secondary rotates around the 

primary in a circular orbit of radius (a) at an angular velocity V1. 
3- The observer at the Earth’s surface is rotating with the Earth around its axis at a rotational velocity V2. The 

Earth’s observer observes the primary star radially while he observes the secondary in an oblique line of sight. 
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4- The binary system is at a distance (b) from the Earth’s observer. 
5- The Earth’s field is assumed to be Schwarzschild spherical symmetric field. 

 
From the previous assumptions it is clear that we are going to calculate the values of the two null-transport vectors 

  and   along the null-geodesic trajectories Tr   (radial and passing through primary star) and To (oblique and 

passing through secondary star).  The two unit vectors   and   will be calculated along the world lines of the 
primary, secondary stars and at the Earth’s world line respectively. 

 
In the next section, we are going to calculate the values of vector and null-vectors required to change in redshift. 

 
GENERAL FORM FOR THE SOLUTION OF EQUATION OF MOTION 

 
As it is assumed in the previous section that the field of both the secondary star and the Earth are spherically 

symmetric ,  then the transport vectors along the world line  of the secondary star 
2S

 and  the null vectors, 
o

  & 
o

  

at the Earth and the unit vector 
o

  along Earth’s world line can be evaluated in Schwarzschild field.  

   
As it is well known the ordinary Schwarzschild’s space-time is given by, 
  
 2 1 2 2 2 2 2= ( sin )ds dr r d d dt                                                                                              (7) 
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 and 2M  is the mass of the secondary in CGS units. The equation of motion of a free 

test particle can be put (cf. Adler et al., 1975, p. 54) into the form 
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 where P is the affine parameter characterizing the trajectory of the particle which is existing in the Schwarzschild 
field, then the solution of equation (8) by using (7) is, in general form , a set of differential equations  given by Error! 
Bookmark not defined.:    
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  where , l  are two constants of integration, and E  is a parameter takes the following values: 
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As it is assumed, that the rotational velocity of the secondary star around the primary is V1, then we can write 
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2where     ( ) = 1
m

a
a

   , m2 is the mass of the secondary stars. 

The components of the unit-vector   along the secondary star's world line are  
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Since the observer is rotating around the Earth’s axis of symmetry at a velocity V2 , following the same set of 

equations from (9) to (12),  taking into our consideration that = 1
  , then the unit vector along its world line is  
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b b
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Now we are going to evaluate the null vectors   &   and the transport vector   of the primary star, 

assuming that the gravitational field of this star is axially symmetric and is given by the modified Curzon  metric (6),  
we have  
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           Now we can calculate the values of the transport null-vector    &    along the null-trajectories Tr and T0 

at the primary star S1 and Earth.  Using 
o

 & 
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  to express their values at Earth, and 
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THEORETICAL RELATION OF REDSHIFT 

 
      Here, we found the value of redshift of a binary system one of them is massive and the coordinate system is 

fixed at its center and rotate with coordinate system at an angular velocity ω, while the secondary star is of small mass 
with respect to primary and rotates around the primary at a rotational velocity V1. If we use the equations from (14) to 
(21) in equation (5), we have  
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 This relation seems to be complicated, but all its terms can be determined easily from observations.  
 

CONCLUSION 
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coordinate system. The secondary star of the system is rotating around the primary and also the observer is 
assumed to rotate with Earth around its axis. This situation is to near to the true situation of a binary system in 
our Galaxy. 

If it is assumed that the coordinate system is at rest this relation will tend to a very easy form, depends only 
on the masses of the two stars, beside the rotational speeds of secondary star and the observer.  Although the 
modified Curzon solution, is a suitable for studying a binary pulsars (Wanas et al. (2012)), but from the relation 
(22) and the assumed conditions, one can use it in case of binary systems. This relation can be adapted also to 
study a system of binary stars system approximately equal in mass and both of them rotate around the center of 
mass of that system.  

Moreover the obtained relation may help to study the gravitational radiation by compact binaries. 
Furthermore, this may be used to study the restricted three body problem. Considering the motion of a third 
point-like particle in the field of a binary system, without applying the perturbation technique, that may help in 
solving many problems in celestial mechanics.  
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