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ABSTRACT

To understand the epidemiology of an infectious disease, we consider an SIR model (Susceptible-Infected-
Recovered) with non-linear incidence function. We choose the incidence term as proportions of people that infected.

a-

The new incidence term , is used that shows the number of infected people in fraction. We will solve the

model mathematically and numerically, the theoretical results will be justified by numerical results. First, we
formulate the model with their parameters. Then, we will find the basic reproduction number R . After that, we
prove the co-existence of disease free and endemic equilibrium with R . The model is locally asymptotically stable
about disease free equilibrium E° when R, <1. We find that the model is also globally stable about disease free

equilibrium point R <1. Then, we obtain, that the endemic equilibrium point is stable locally if R, > 1. Finally,

we find the numerical solution of the analytical results for the purpose of justifications.
KEY WORDS: Epidemic model, Reproduction number, Global Stability, Disease free equilibrium, Numerical
simulations

1. INTRODUCTION

To under the epidemiology of the disease dynamics mathematical models act an important role[1, 2]. For
different diseases, different SIR/SEIR models have been used to study their dynamical behavior[3-7].These models
provide a quantitative description of the complicated, non-linear process of disease transmission and help us to
obtain inside into the dynamics of the disease so we are able to make such decision for public health policy.
Mathematical models of the type [3-5] have been used to represent the compartmental dynamics of human and
vector class. The human population is divided into sub-classes S, I and R while the vector is in S and I1.[8]
considered a deterministic model for the transmission of leptospirosis disease with the information of present’s
number of leptospirosis disease in Thailand.[9]studied an epidemic model and sub-divide the population into two
categories i.e., human and vector. The author considered the real data presented in [8] to study the dynamics of the
disease and optimal control [10].[11] developed a mathematical model to study the behavior of an epidemic disease.
A variety of non-linear incidence rate have been used in many epidemic models [12-14]. In [15], Altaf et al.
presented an epidemic model of leptospirosis, where the human population is categorized as a SIR and vector
population in SI. The solution obtained by using the homotpoy perturbation method. A Vector-host epidemic model
has been used by [16], the results were obtained by the standard, homotopy perturbation method. In [17], an
epidemic model of leptospirosis disease is considered with time delay and the main results are presented. In [20], the
author studied the basic model for Chikungunya disease in which he classified the male and female in an SIR
category. The basic results and the numerical results presented for the analytical results. In [21] the model for the
transmission of Influenza Pandemic due to a New-strain of the HIN1 Influenza A Virus with the risk of infection in
human has been studied and mathematical results are presented with numerical simulations. In this work, we
consider a simple SIR model with the non-linear saturated incidence rate that predicts the number of individuals who
got infection. First, we study the basic properties of the model, i.e. the local asymptotical stability of (DFE) disease
free equilibrium and endemic equilibrium (EE). Then, we find that the disease free equilibrium is stable globally
when the threshold quantity decreases than unity. When the threshold quantity exceeds than unity a stable endemic
equilibrium exists and globally stable will prove. Finally, we obtain the numerical solution of the theoretical results.
In references [19-21] the author used the standard analytical methods to obtain the solution for such non-linear
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models. So, we motivate the readers, which an alternative way that they can study the biological models by using the
methods presented in [19-21]. For more relevant work see the references [24-28].

We organized the paper is as: In Section2, first, the model will be formulated and then the disease-free, endemic
equilibrium, threshold quantity will be discussed. The main results will be derived in Section 3. In Section 4, we find
the numerical results of the model with justifications of the analytical results with complete discussion.

2. MATERIAL AND METHODS

To formulate our problem, we divide the population into three sub-classes, into three subclasses, i.e.
susceptible, infected and recovered or removed. The system of differential equation that govern the model is given
by,

BO _y_t(s.1)-ys.
dar®
dt
dR(t)
dt

=S, D=+,

=0l ~-7RO. M

1—
Here, the function f(S, |)=%S(t)|(t), in which p represents the fraction of individuals that to be

infected. Further, we write (1),

s _, _(1-p) .
o =b= SIS,

A _A=p) e
o SOIO-G+aw),
%:&(t)—yR(t), ®)

Subject to the non-negative initial conditions.

Here vy is the mortality rate, b shows the recruitment of the individuals and p is the fraction of individuals that
are going to be infectious while & represents the rate of recovery. N(t) is the total size of the population. The term

(1-p)

shows the fraction of individuals that are to be infected. The total population size is denoted by N(t), and

their total dynamics is given by,
AN =b—-yN().

dt 3)
The feasible region for the system (2) is given by
Q={(S,I,R)eR’ |OSS+I+RS;}.
Our focus will be on those solutions lies in €2 .

2.1Basic properties of the model
For system (2), with setting left side equal to zero, i.e.
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b—(l_—bmS(t)l(t)—yS =0,

“‘T”)S(nl(t)—(wa)l(t):o,
S1(t)—yR(t) = 0,

b
With the point E, =(S°,0,0) we get the disease-free equilibrium is S® = —. The reproduction number or
4

threshold quantity is defined as; the average number of infection that are entered into a purely susceptible population
and produce secondary infection and the rest of the population assumed susceptible. For the model (2), the
reproduction number is given by,

_(-p)
° y(y+9)

For R, <1, the disease-free equilibrium is stable locally asymptotically and the endemic state is locally

asymptotically stable when R >1.

2.2 Endemic Equilibrium Points

To obtain, the endemic equilibrium points of the system (2), with the equilibrium point E' = (S™, 1", R"), just set
the left side of the system (2), equating to zero, we obtain

g+
(1-p)°
|* - PA=p)—(y+5)yb
(r+0)1-p)
R :£,
Y
After some rearrangements, we obtain,
. b
S =—,
YR,
1" :ﬂ(RO -1,
(1-p)
R = 5—b(RO -1,
(1-p)

3. RESULTS

3.1Stability Analysis of the model
In current section, we show the stability of both the disease-free and endemic equilibrium. First, we show that

the system (2) is locally asymptotically stable. For this, we use the disease-free equilibrium point E_about system
(2), the following Jacobean matrix J , is presented.
Theorem 3.1: For R < 1, the disease-free equilibrium of the system (2), about the equilibrium point E_, is

locally asymptotically stable and unstable whenever RO >1.
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Proof: To Show that the system (2) is locally asymptotically stable, we use the disease-free equilibrium point
E, of the system (2), we get the following Jacobean matrix J_,

_(l__p)so 0 0

b
J, = 0 @s"—y—a 0
0 o -y

The eigenvalues corresponding to the Jacobean matrix Jo are given in the following by reducing the matrix to
echelon form by elementary row operation. 4; = —y <0 and the rest of the two eigenvalues are obtained by the
Routh-Hurwitz Criteria. We have to show, A;>0 and 4,>0 for the pair of eigenvalues.

A+ 22>y +8)) + (- (lb Py S +(y+06))=0, (4
Where
A =0 +o).anap, = (120 P 5% 4 (y 457

Here A1 is clearly positive and for A2 , with some arrangements, we get,

A =—(R,+ (R, = 1)(y +5) > 0.
So all the eigenvalues associated to system (2) are having negative parts (real). Thus we conclude that the system (2)
is stable locally, when, R < 1.

3.2Local Stability of Endemic Equilibrium

In this subsection, we find the local asymptotic stability of the system (2) about an endemic equilibrium point E'.

Theorem 3.2.1:If Ro >1, then the system (2) about an endemic equilibrium point E' is locally asymptotically
stable, and unstable when R < 1.

Proof: For the system (2), the Jacobean matrix I',is given in the following,

_a=p) - _(=p) -
b b 0
b b
0 o -y

The eigenvalues associated to the Jacobean matrix J " are follows:
d-p) -
= I — 7/’
A b
==7(R, =D,
A ==7"(R,~1).
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Thus, the eigenvalues depends upon R > 1, so system (2) is locally stable at endemic equilibrium point E'.

3.3Global Stability

This section deals to study the global properties of the proposed system (2). Here, first we have to find the
global stability of the disease free and then we used the geometric approach method to obtain the global stability of
endemic equilibrium.

Theorem 3.3.1: ForR, < 1, the disease free equilibrium point (DFE) E_ of the proposed system (2), is globally

asymptotically stable and instability of disease free equilibrium exists when R, > 1.
Proof: To prove this result, we define the following functions,

VO =2 (N —%)2 5)

Taking the time derivative of the equation (5), we get

()= (N-2)IN
VO=(N-D3r ©

: dN .
Using the value of E =b- 7N, we obtain

Vi) =—(N-22, ()
V4

Equation (7)is clearly a decreasing function, i.e.V'(t) <0, for S = S°,1 = R =0 .Thus, the (DFE) point E_is
globally stable.

To prove the global stability of the endemic equilibrium point E' of the system (2), we first present the following
lemma and then we will proceeds to prove the result.

d
Lemma: The system in the form of d—)t/ = k(y), and the functionk : X ™ R" there exists a unique equilibrium

point y* also the existing of a compact absorbing set, so, the point y* is said to be stable globally asymptotically
with the addition of function P(x) and{ ( Lozinskii measure) such that

- 1t
limit,.., , sup sup, EJ‘O ((K(y(S,y)))ds < 0.[18]. In the Theorem 3.3.2 we define the symbols P, Kand { will be
defined.

Theorem:3.3.2.For R > 1 ,the endemic equilibrium point E, of the system (2) is globally asymptotically stable.

Proof: The second additive compound matrix J [21 corresponds to J(S, I, R)is,

_—(l_bp)l—y/+(l_bp)5—(}/+§) 0 0
JR = S _M|_2y _Ms
b b
a=p) _d=p)g_ _
0 5 I 0 S—-(y+0)-y
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We consider the function, P = P(S, |, R) = diag {%,%,?}

And
P~' =diag {I—,L,l}
S’S’S
And
. |s s.s s.s s.
P =diag{———1I,———1,=———=|
f g{l |2||2||2}
Then, we get
- —diag S LS TS 1]
S 1’S 1’S |
And,
(l‘bp)l L1=P) g s 0 0
P JEP =P, B _0=p) _bp) ) ——(l_bp) S P,
Therefore, we write,
K:PfP1+PfJ[2]P1:(K“ K”j.
K21 K22
Where,
S 1T (-p) (1-p)
K ==————2 | —y—(y+5)+—8,
179 b y—(y+9) b
K,=0, K, =0,
§_l_(l—p)|+(l—p)s_y (1-p) g
K — S | b b b
22 . .
(1-p) S 1 (d-p)
~ st Ss_(y+05
b sT1tp oo

Considering the norm in R” as:

[(a,b,c)[=max {[al, bl+/c[},
Here, (a,b, ) represents the vector of R’and ¢ is the Lozinskii measure associated to the norm defined above [18].
((K) <Sup{hy,h,},
= SUp{((K”)+ | Klz |»E(K22)+ | K21 |}
|Kp, [0, [K,, |=6.
The Lozinskii measure /(K ) and /(K,,) are:
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_S T (a-p, (-p)
K(Kll)_s | b —(y+0)+ b S,
£<K22)=max{(§—:——“;”) L R )
e (d=-p)(d-p)
mln( . S . I)

And,
k= (12 0=
b b
Therefore, we writeh, as:
9, =LK )+|K, [,
_S I (-p), (1-p)
=3 5 y—(y+0)+ b S,
S U-p, _S_
TS b Ts 7

By using the system (2), with
1_0=p)g_ (y +5),
I b
h, is given by:
h, = (K ,)+|K,, |,
S :
=———+0Jd-min{n,k
S ] {n,k}

Using,

| (1-p)
—=—"2S—(y+9),
| . (y+9)
we get,
S _(d-p)
h = S—- min{n, k
h S b V= {n,k},

S
<= _
S /4

Further, we obtain,

((K)<th),h,}

<Su p{s a bp)l y,%—(l_—bp)S—min(n,k)—y},

S__a
S e

Then,

a=1]Lueyis< (2 -y

£° 5(0)

131



Altaf Khan et al., 2014

This implies (| = —% < 0. This is based on [18]. Thus, the (EE) point is stable globally asymptotically atE; of the

system (2).
4. DISCUSSION

Here, we find the numerical solution of the system (2), with the non-negative initial conditions for (S=20, I=10,
R=5). The parameters values used in these simulations are presenting in Table 1. The numerical results for the
system (2) are presented in Figures 1 to 5. In this paper, an SIR model with the new non-linear saturated incidence
has been presented. The endemic equilibrium point is E* = (S§*,I*,R*) = (0.1320, 0.9700, 0.0970). We found
that the model stability depends upon the basic reproduction number R,. The disease free or infection free
equilibrium found to be stable when the reproduction number less than unity. Also, the disease free equilibrium for
the system (2), found to be globally stable when the reproduction number less than 1. The reproduction number also
called the threshold quantity gives an average number of secondary infections, when a single infection is introduced
in a purely susceptible population. The stability of the system greatly influenced when the value of the reproduction
number less than unity, equal to one or greater than 1. In such a case when the basic reproduction number less than
unity for disease free equilibrium the disease dies out from the population and it may be control by some specific
prevention or vaccination. When the reproduction number exceeds unity the local stability of endemic equilibrium
exists. That’s means that the disease may spread in the community and further infections produces. For, our model,
we found that, when the reproduction number exceeds unity, the disease exists in the community and become

epidemic. Similarly, the global stability of endemic equilibrium exists when R, >1. The threshold quantity of the
model examines the stability of the disease free and endemic equilibrium is proved. Further, we proved that the

disease-free and endemic equilibrium is stable globally asymptotically. Finally, the numerical results of the model
justified our theoretical results.

Population behavior of Individuals

20

15

10

Dynamical behavior of the Model

0 5 10 15 20
Time(day)

Figure 1: The Population behavior of individuals when p = 0.9.
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Population behavior of Individuals

5 10 15
Time(day)

Dynamical behavior of the Model

Figure 2: The Population behavior of individuals when p = 0.7.

Population behavior of Individuals

5 10 15
Time(day)

Figure 3: The Population behavior of individuals when p = 0.5.
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Population behavior of Individuals

Dynamical behavior of the Model

0 5 10 15 20
Time(day)

Figure 4: The Population behavior of individuals when p = 0.2.

Population behavior of Individuals
20

15

10

Dynamical behavior of the Model

0
0 5 10 15 20

Time(day)
Figure 5: The Population behavior of individuals whenp = 0.4,b = 1.2,6 = 0.1,y = 0.4.

Table 1: Parameters Values

Y Natural death rate 0.03 Assumed

b Represent the birth rate 1-5 Assumed

P Fraction of infected individuals 1 1 Assumed
20 60

o Rate of recovery 0.003 Assumed
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