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models. So, we motivate the readers, which an alternative way that they can study the biological models by using the 
methods presented in [19-21]. For more relevant work see the references [24-28]. 
We organized the paper is as: In Section2, first, the model will be formulated and then the disease-free, endemic 
equilibrium, threshold quantity will be discussed. The main results will be derived in Section 3. In Section 4, we find 
the numerical results of the model with justifications of the analytical results with complete discussion. 
 

2. MATERIAL AND METHODS 
 

To formulate our problem, we divide the population into three sub-classes, into three subclasses, i.e. 
susceptible, infected and recovered or removed. The system of differential equation that govern the model is given 
by,  
 

 

( )
( , ) ,

( )
( , ) ( ) ( ),

( )
( ) ( ). (1)

dS t
b f S I S

dt
dI t

f S I I t
dt

dR t
I t R t

dt



 

 

  

  

 
 

 

Here, the function
(1 )

( , ) ( ) ( )f S I S t I t
b


 , in which  represents the fraction of individuals that to be 

infected. Further, we write (1), 
 

( ) (1 )
( ) ( ) ,

( ) (1 )
( ) ( ) ( ) ( ),

( )
( ) ( ), (2)

dS t
b S t I t S

dt b
dI t

S t I t I t
dt b

dR t
I t R t

dt

 

  

 


  


  

 
 

 
Subject to the non-negative initial conditions.  
 

Here γ is the mortality rate, b shows the recruitment of the individuals and ρ is the fraction of individuals that 
are going to be infectious while δ represents the rate of recovery. N(t) is the total size of the population. The term 

(1 )

b


shows the fraction of individuals that are to be infected. The total population size is denoted by N(t), and 

their total dynamics is given by, 
 

( )
( ).

dN t
b N t

dt
 

 (3)
 

 
The feasible region for the system (2) is given by 

3( , , ) | 0 .{ }b
S I R S I R

        

Our focus will be on those solutions lies in . 
 
2.1Basic properties of the model 
For system (2), with setting left side equal to zero, i.e. 
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(1 )
( ) ( ) 0,

(1 )
( ) ( ) ( ) ( ) 0,

( ) ( ) 0,

b S t I t S
b

S t I t I t
b

I t R t

 

  

 


  


  

 

 

 

With the point ( ,0,0)o
oE S we get the disease-free equilibrium is o b

S


 . The reproduction number or 

threshold quantity is defined as; the average number of infection that are entered into a purely susceptible population 
and produce secondary infection and the rest of the population assumed susceptible. For the model (2), the 
reproduction number is given by, 

(1 )

( )oR


  





 

For oR ≤ 1, the disease-free equilibrium is stable locally asymptotically and the endemic state is locally 

asymptotically stable when oR >1. 

2.2 Endemic Equilibrium Points 

To obtain, the endemic equilibrium points of the system (2), with the equilibrium point 1 * * *( , , )E S I R , just set 

the left side of the system (2), equating to zero, we obtain 
 

*

*

*
*

( )
,

(1 )

(1 ) ( )
,

( )(1 )

,

b
S

b b
I

I
R

 

   

  







  


 



 

 

After some rearrangements, we obtain, 

*

*

*

,

(
( 1),

(1 )

( 1),
(1 )

o

o

o

b
S

R

b
I R

b
R R










 


 
  

 
3. RESULTS 

 
3.1Stability Analysis of the model 
In current section, we show the stability of both the disease-free and endemic equilibrium. First, we show that 

the system (2) is locally asymptotically stable. For this, we use the disease-free equilibrium point oE about system 

(2), the following Jacobean matrix oJ , is presented. 

Theorem 3.1: For oR ≤ 1, the disease-free equilibrium of the system (2), about the equilibrium point oE , is 

locally asymptotically stable and unstable whenever oR >1. 
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Proof: To Show that the system (2) is locally asymptotically stable, we use the disease-free equilibrium point 

oE  of the system (2), we get the following Jacobean matrix oJ , 
 

(1 )
0 0

(1 )
0 0 .

0

o

o
o

S
b

J S
b



  

 

   
 

    
   
 

 

 

The eigenvalues corresponding to the Jacobean matrix Jo are given in the following by reducing the matrix to 
echelon form by elementary row operation. ߣଵ = −γ <0 and the rest of the two eigenvalues are obtained by the 
Routh-Hurwitz Criteria. We have to show, ܣଵ>0 and ܣଶ>0 for the pair of eigenvalues. 
 

2
2 2 2

2

(1 )
(2( )) ( ( ) ) 0, (4)oS

b

     
        

Where 

1 (2( ))A    , and
2

2 2
2 2

(1 )
( ( ) )oA S

b

  
     . 

Here 1A is clearly positive and for 2A , with some arrangements, we get, 

2 0 0( 1)( 1)( ) 0.A R R       
 

So all the eigenvalues associated to system (2) are having negative parts (real). Thus we conclude that the system (2) 

is stable locally, when, oR ≤ 1. 

 
3.2Local Stability of Endemic Equilibrium 

In this subsection, we find the local asymptotic stability of the system (2) about an endemic equilibrium point 1E . 
 

Theorem 3.2.1:If Ro >1, then the system (2) about an endemic equilibrium point 1E  is locally asymptotically 

stable, and unstable when oR ≤ 1. 

 
Proof: For the system (2), the Jacobean matrix J*,is given in the following, 
 

* *

* * *

(1 ) (1 )
0

(1 ) (1 )
( ) 0 .

0

I S
b b

J I S
b b

 

   

 

     
 

     
   
   

 

The eigenvalues associated to the Jacobean matrix 
*J  are follows: 

*
1

2

2
3

(1 )
,

( 1),

( 1).

o

o

I
b
R

R

 

 

 


  

  

  
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Thus, the eigenvalues depends upon 1oR  , so system (2) is locally stable at endemic equilibrium point 1E . 
 

3.3Global Stability 
This section deals to study the global properties of the proposed system (2). Here, first we have to find the 

global stability of the disease free and then we used the geometric approach method to obtain the global stability of 
endemic equilibrium. 
 

Theorem 3.3.1: Forܴ௢ ൑ 1, the disease free equilibrium point (DFE) oE of the proposed system (2), is globally 

asymptotically stable and instability of disease free equilibrium exists when ܴ௢ ൐ 1. 
Proof: To prove this result, we define the following functions, 

21
( ) ( )

2
(5)

b
V t N


   

Taking the time derivative of the equation (5), we get 

( ) ( ) , (6)
b dN

V t N
dt

    

Using the value of ,
dN

b N
dt

  we obtain 

2( ) ( ) (7)
b

V t N 


     

Equation (7)is clearly a decreasing function, i.e. ( ) 0, , 0oV t for S S I R     .Thus, the (DFE) point oE is 

globally stable.
  

To prove the global stability of the endemic equilibrium point 1E  of the system (2), we first present the following 
lemma and then we will proceeds to prove the result. 
 

Lemma: The system in the form of (y),
dy

k
dt

 and the function k : X nR™ , there exists a unique equilibrium 

point *y also the existing of a compact absorbing set, so, the point *y  is said to be stable globally asymptotically 

with the addition of function P(x) andℓ ( Lozinskii measure) such that 
 

0

1
(K(y( , y))) 0.

t

t ylimit sup sup s ds
t  ™ [18]. In the Theorem 3.3.2 we define the symbols P, Kand ℓ will be 

defined. 
 

Theorem:3.3.2.For 1oR  ,the endemic equilibrium point 1E of the system (2) is globally asymptotically stable. 

 

Proof: The second additive compound matrix 
[2]J corresponds to J(S, I, R)is, 

 

[2]

(1 ) (1 )
( ) 0 0

(1 ) (1 )
2 .

(1 ) (1 )
0 ( )

I S
b b

J I S
b b

I S
b b

   

  

    

       
 

      
       
 
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We consider the function, ( , , ) , ,
S S S

P P S I R diag
I I I

    
 

 

And 

1 , ,
I I I

P diag
S S S

    
 

 

And 

2 2 2
, ,f

S S S S S S
P diag I I I

I I I I I I

 
    

 

  
    

 
Then, we get 

1 , , .f

S I S I S I
P P diag

S I S I S I
  
    

 

    
 

And, 

[2] 1 1

(1 ) (1 )
( ) 0 0

(1 ) (1 )
2 .

(1 ) (1 )
0 ( )

f f

I S
b b

P J P P I S P
b b

I S
b b

   

  

    

 

       
 

     
 
       
 

 

 
Therefore, we write, 

11 121 [2] 1

21 22

.f f

K K

K K
K P P P J P   
    

 
 

Where, 

11

12 21

22

(1 ) (1 )
( ) ,

0,     K ,

(1 ) (1 ) (1 )

(1 ) (1 )
( )

S I
I S

S I b b

S

K

I
I S S

S I b b b

S I
I S

b S I

K

b

K

   



  

   

 
      

 

   
    

 
  

    
 

 

 

 

 

 

Considering the norm in 3R as: 
|(a,b,c)|=max{|a|,|b|+|c|},  

Here, (a,b,c) represents the vector of 3R and ℓ is the Lozinskii measure associated to the norm defined above [18]. 

 

 
1 2

11 12 22 21

(K) {h , h },

(K ) | K |, (K ) | K |

Sup

Sup



  



 
 

12 21| K | 0,  | K | .   

The Lozinskii measure 11(K ) and 22(K ) are: 

130 



J. Basic. Appl. Sci. Res., 4(6)125-135, 2014 

 

 

11

22

(1 ) (1 )
(K ) ( ) ,

(1 ) (1 ) (1 )
(K ) ( )

(1 ) (1 )

{( )( )}

( )

S I
I S

S I b b

S I S I
max I S S

S I b b S I b

min S I
b b

   

    

 

 
      

  
        

 


 


  
  

And, 

(1 ) (1 )
( , ) ( )n k S I

b b

  
  

Therefore, we write݄ଵas: 
 

1 11 12(K ) | K |,

(1 ) (1 )
( ) ,

(1 )
,

g

S I
I S

S I b b

S S
I

S b S

   

  

 

 
      


    



 

 

 

 

By using the system (2), with 

(1 )
( ),

I
S

I b

  
  


 

2h is given by: 

2 22 21(K ) | K |,

{ , }
S I

min n k
S I

h



 

   



   

Using, 

(1 )
( ),

I
S

I b

  
  


 

we get, 

2

(1 )
{ , },

S
S min n k

S b

S

S

h
 




   

 




 

 

Further, we obtain, 

1 2(K) {h ,h }

(1 ) (1 )
, ( , ) ,

,

{ }S S
Sup I S min n k

S b S b

S

S

  





 
     

 



 



 

Then, 

0 0

1 1 1 ( )
( )

(0)
( )t t S S t

q B ds ds log
t t S t S

      


 . 
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This implies 0
2

q


   . This is based on [18]. Thus, the (EE) point is stable globally asymptotically atܧଵ of the 

system (2). 
4. DISCUSSION 

 
Here, we find the numerical solution of the system (2), with the non-negative initial conditions for (S=20, I=10, 

R=5). The parameters values used in these simulations are presenting in Table 1.  The numerical results for the 
system (2) are presented in Figures 1 to 5. In this paper, an SIR model with the new non-linear saturated incidence 
has been presented. The endemic equilibrium point is	ܧଵ ൌ ሺܵ∗, ,∗ܫ ܴ∗ሻ ൌ ሺ0.1320,			0.9700,			0.0970ሻ. We found 
that the model stability depends upon the basic reproduction number ܴ௢. The disease free or infection free 
equilibrium found to be stable when the reproduction number less than unity. Also, the disease free equilibrium for 
the system (2), found to be globally stable when the reproduction number less than 1. The reproduction number also 
called the threshold quantity gives an average number of secondary infections, when a single infection is introduced 
in a purely susceptible population. The stability of the system greatly influenced when the value of the reproduction 
number less than unity, equal to one or greater than 1. In such a case when the basic reproduction number less than 
unity for disease free equilibrium the disease dies out from the population and it may be control by some specific 
prevention or vaccination. When the reproduction number exceeds unity the local stability of endemic equilibrium 
exists. That’s means that the disease may spread in the community and further infections produces. For, our model, 
we found that, when the reproduction number exceeds unity, the disease exists in the community and become 

epidemic. Similarly, the global stability of endemic equilibrium exists when oR >1. The threshold quantity of the 

model examines the stability of the disease free and endemic equilibrium is proved. Further, we proved that the 
disease-free and endemic equilibrium is stable globally asymptotically. Finally, the numerical results of the model 
justified our theoretical results. 

 
 

 
Figure 1: The Population behavior of individuals when ߩ ൌ 0.9. 
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Figure 2: The Population behavior of individuals when	ߩ ൌ 0.7. 

 
 

 
Figure 3: The Population behavior of individuals when	ߩ ൌ 0.5. 
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Figure 4: The Population behavior of individuals when	ߩ ൌ 0.2. 

 

 
Figure 5: The Population behavior of individuals when	ߩ ൌ 0.4, ܾ ൌ 1.2, ߜ ൌ 0.1, ߛ ൌ 0.4. 
 

Table 1: Parameters Values 
Notation Parameter description             Range Source  

  Natural death rate                    0.03 Assumed 

b Represent the birth rate              1-5 Assumed 

  Fraction of infected individuals 1 1

20 60
  

Assumed 

  Rate of recovery 0.003 Assumed 
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