Journal of Applied Environmental and Biological Sciences (JAEBS)

Number of issues per year: 12
ISSN: 2090-4274 (Print)
ISSN: 2090-4215 (Online)

Journal of Applied Environmental and Biological Sciences (JAEBS) is a peer-reviewed, open access international scientific journal dedicated for rapid publication of high-quality original research articles as well as review articles in the all areas of Applied Environmental and Biological Sciences.

Scope

Journal of Applied Environmental and Biological Sciences (JAEBS) is devoted to the monthly publication of research papers of outstanding significance in the all fields of environmental sciences, environmental engineering, environmental Pollution, green chemistry, environmentally friendly synthetic pathways, alternatively fuels, environmental analytical chemistry, biomolecular tools and tracers, water and soil, environmental management, economics, humanities, Mathematics, multidisciplinary aspects such as Business Management, Organizational Behavior, all areas of biological sciences, including cell biology, developmental biology, structural biology, microbiology, molecular biology & genetics, biochemistry, biotechnology, biodiversity, ecology, marine biology, plant biology, bioinformatics, toxicology, developmental biology, structural biology, microbiology, molecular biology & genetics, biotechnology, biodiversity and related fields. The journal presents the latest developments in the fields of environmental social marketing, environmental journalism, environmental education, sustainability education, environmental interpretation, and environmental health communication.
Editorial Board

Editor -in–Chief
William Ebomoyi
Ph.D., Professor, Department of Health Studies, College of Health Sciences, Chicago State University, USA.
E-mail: editor@textroad.com

Associate Editors
Prof. Dr. Sanaa T. El-Sayed
Ex Head of Biochemistry Department, Professor of Biochemistry, Genetic Engineering &Biotechnology Division, National I Centre, Egypt.

Prof. Dr. Sarwoko Mangkoedihardjo
Professor, Professional Engineer of Indonesian Society of Sanitary and Environmental Engineers, Indonesia

Prof. Dr. Ashraf Latif Tadross
Head of Astronomy Department, Professor of Star Clusters and Galactic Structure, National Research Institute of Astronomy Geophysics (NRIAG), 11421 Helwan, Cairo, Egypt.

Dr. Chandrasekar Raman
Research Associate, Department of Biochemistry & Molecular Biophysics, Biotechnology Core Facility, 238, Burt Hall, Kansas University, Manhattan 66506, KS, USA.

Dr. YUBAO CUI
Associate Professor, Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Jiangsu Provin P. R. China.

Dr. Muhammad Altaf Khan
Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan.

Dr. Fahrettin Tilki
Assoc. Professor, Artvin Coruh University, Faculty of Forestry, Department of Forest Science, Artvin, Turkey.

Dr. Ibtisam abd el ghany hammad
Associate Professor of Genetics, Faculty of Science, Helwan University, Egypt.

Dr. Charalambos Tsekeris
Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece.

Dr. Elsayed E. Hafez
Associate Professor, Molecular Biology, Plant Molecular Pathology & Arid Lands Institute, Egypt.

Dr. Naushad Mamode Khan
University of Mauritius, Reduit, Mauritius.

Mirza Hasanuzzaman
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.

Dr. Hala Ahmed Hafez Kandil
Professor Researcher, National Research Centre, Plant Nutrition Dept. El-Bhouth St. Dokki, Giza, Egypt.

Dr. Yule Yue Wang
Biotechnology and Medicinal Biochemistry, Division of Life Science, The Hong Kong University of Science & Technology.

Dr. Aziza Sharaby
Professor of Entomology. Plant Protection Department, National Research Center, Cairo, Egypt.

Dr. Sulaiman
Assistant Professor, Department of Biochemistry, Abdul wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
Editors

Maulin P Shah
PhD-Microbiology, Chief Scientist & Head Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar-393002, Gujarat, India

Dr. Josphert N. Kimatu
Department of Biological Sciences. South Eastern University College, Kenya.

Dr. Mukesh Kumar Meena
Assistant Professor (Crop Physiology), Department of Crop Physiology, University of Agricultural Sciences, Raichur-584104, Karnataka, India

Jehngir Khan
Lecturer in Zoology Department, Abdul Wali Khan University Mardan (AWKUM), Buner Campus, Buner, Khyber Pakhtunkhwa, Pakistan.

Syed Muhammad Nurulain
Medical Research Specialist, FMHS, UAE University, Emirates

Dr. Ayman Batisha
Environment and Climate Research Institute, National Water Research Center, Cairo, Egypt.

Dr. Hakeem Ullah
Assistant Professor, Department of Mathematics Abdul Wali Khan University Mardan, Pakistan

DR. DATTA ASARAM DHALE
Assistant Professor, Post Graduate Department of Botany, Ghogrey Science College, Dhule, Maharashtra State, India.

Dr. Muhammad Ismail Mohmand
Tutor/Administrator in the Excellence Training Den College in Newcastle, United Kingdom

Prof. Dr. Valdenir José Belinelo
Department of Health Sciences and Postgraduate Program in Tropical Agriculture, Federal University of Espirito Santo (UFES), São Mateus, ES, Brazil.

Siva Sankar. R
Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, India.
Muhammad Musaud Asdaque, Dr. Syed As Ad Abbاس Rizvi, Prof. Dr. Nabi Bux Jumani, Hannan Al-Saleh

Research Trends of Higher Education in Pakistan: A Case Study of Allama Iqbal Open University

Mounir M. Salem- Bekhit, Fars K. Alanazy

Evaluations of Arak Extract Effects and Comparison with Different Toothpastes on Oral Pathogens

Research Trends of Higher Education in Pakistan: A Case Study of Allama Iqbal Open University

Muhammad Musaud Asdaque¹, Dr. Syed Asad Abbas Rizvi², Prof. Dr. Nabi Bux Jumani³, Hanan Al-Saleh⁴

¹PhD Scholar, Department of Education, Faculty Social Sciences, International Islamic University, Islamabad. ²Assistant Professor, Department of Education, International Islamic University, Islamabad ³Professor, Director, Directorate of Distance Education, International Islamic University, Islamabad ⁴PhD Scholar, Department of Education, University of Glasgow, UK

ABSTRACT

Allama Iqbal Open University (AIOU) is the only higher educational institution which serves the nation’s needs in the open/distance education sector in Pakistan. This paper aimed to identify the trends and issues in doctoral dissertations between 2000 and 2014 using the content analytic approach in the Pakistani Higher Education context. A total of 37 dissertations were reviewed to explore the research areas, research design, research models, keywords, nature of participants, data collection instruments, and data analysis techniques. The results of this study contain a great potential in helping the researchers, supervisors, and practitioners in AIOU and higher education commission (HEC) in Pakistan to focus on the research gap and ignored areas of research in doctoral dissertations, and to prioritize the research agenda to develop and diversify the practical and theoretical research in Pakistani higher education context.

KEYWORDS: Higher education, content analysis, research trends, dissertations, Pakistani higher education.

1. INTRODUCTION

The technological developments brought about tremendous changes in the social and educational system all around the globe. Under the influence of these profound changes, higher education emerged as a multidisciplinary field, which responded to the technological advances and the resulting changes in such a way that it evolved into a distinct education system, oriented itself to satisfy the dynamic needs of the educators and students. With evolving and customized approach adopted by the educational institutions and learners, it is the need of time to develop good understanding of the trends and issues in the higher education for meeting the constantly emerging demands and social changes [2].

The research and scholarly work contribute to the reputation of the education and research institutions, and bear witness on the intellectual activities employed to enhance the sustainable social development. Research work organized by the universities distinguishes them from other educational institutions such as schools and colleges, which attracts the thinkers, scholars and people with research aptitude in order for providing the vibrant and socially constructive environment within the universities [10].

The deep insight into the contribution of the higher education to resolving the social and educational issues is only possible if the positive impact of the research activities conducted by the researchers is assessed through determination of research trends and issues. The research works in higher education would be able to provide a full understanding about the theories and practices embraced by the researchers to explain the social phenomena, changes in the social processes and behaviours [11].

In addition, the methodological approaches adopted by the researchers in higher education also justify the soundness and robustness of the research work in terms of promoting scientific activities and causing the constructive social developments. Therefore, dissertations generated as a consequence of the organized and systematic research activities may serve as a great source for examining the theories and practical considerations developed by researchers to produce the findings or explain the research issues under investigations [12].

Hence, they can provide a great means to examine the research trends in any educational field including the higher education. They are also authentic sources of distribution and dissemination of the scientific information for policy makers working in educational and governmental organizations [4]. On this ground, this study was designed to examine the research trends and issues in higher education in Pakistani Higher Education context by assessing the dissertations produced as requirement of PhD degree [19].

A dissertation is a creative, formal, and lengthy piece of work with scholarly importance and significance and is written in partial fulfilment of the academic/professional degrees. Dissertations constitute useful, up-to-date and original contribution to the relevant field of study. In addition, they present the critical thinking, scientific
procedures developed to address the research issues, and shows logical and coherent arguments in defensible manner. Similar to the review of the research articles, the dissertations are surprised by experts, scrutinized by the research Committees, and examined by the external experts. All these factors contribute to the originality and creativity in the writing and research exhibited in the dissertations [5]. Within this scope, this study intends to examine and discuss the research trends in higher education in Pakistani Higher Education by assessing the PhD level dissertations published from 2000-2014 [17].

2. REVIEW IN HIGHER EDUCATION

Several studies are previously conducted to examine the research trends and issues in higher education. Berge and Mrozwowski (2001) analysed the research themes in the higher education from 1990 to 1999 using the content analysis approach. They conducted a large-scale study on four peer-reviewed journals in higher education publishing in English language with sample size 890 research articles. Lee et al (2004) assessed the research methods, research topics and number of citations of the journal articles on higher education in higher education literature from 1997 to 2002. Koble and Bunker (1997) employed the content analysis in combination with Porter’s forum analysis (1992) to identify the research trends in terms of research methods, participants and statistical methods in the research articles [N = 129 articles] published in the American Journal of Higher Education from 1987 to 1995. For carrying out the content analysis, most of the researchers used the research template called The International Higher Learning’s Classification System to collect data from the research sample between 1990 and 2000 [1], [15], [16], [20].

In contrast to previous attempts, Ritzhaupt et al (2010) examined the research articles published in two popular and peer-reviewed journals: the Journal of Higher Education and the American Journal of Higher Education. They identified trends themes in higher education using the co-word approach applied on the abstracts of the research articles [N = 517 articles] published between 1986 and 2006; they reported the trends in three major domains of e-learning: pre-Web, emerging Web and maturing Web. Another large-scale study aimed to identify the trends and issues in higher education was performed by Tuncay and Uzunboylu (2010), which covered the research articles from 160 sources form different parts of the world. They examined grand total of 9866 research articles published during the years of 1972 to 2008 and identified six main categories: Type of the research, sources of documents, year of publication, language of the research articles, authors, and the most frequently employed keywords. Similarly, Horzum et al (2013) conducted content analysis on 382 research articles published in 4 prominent peer-reviewed journals from 2005 to 2012 and examined the research trends according to the three research methods used to address the research problem: qualitative method, quantitative method, mixed methods [21], [24], [13].

Furthermore, Zawacki-Richter carried out several studies to develop the system for classification of research trends in higher education. In his first study, a Delphi method was sued to classify the research trends based on macro-level (higher education, education systems and theories), meso-level (management, organization, technology and micro-level (teaching, learning and higher education) [Zawacki-Richter, 2009]. Zawacki-Richter et al (2009) examined the research articles published in five prominent journals in higher education from 2001 to 2007, and found the research trends based on the research gaps and the research topics. Zawacki-Richter and Von Prummer (2010) reviewed the research articles in the higher education, identified the gender role in higher education research, collaborative pattern among researchers, research productivity, diversity in the research topics and research methods [26], [28], [29].

Zawacki-Richter and Naidu (2016) examined the research trends in online higher education, showed it as an independent field of enquiry, participation of students in online higher education, and suggested the clear-cut orientations for the future research work in this field. Buzkurt et al (2016) conducted the comprehensive content analysis on the research articles [N = 861 articles] found in the seven journals during the years of 2009 and 2013, and classified the research trends based on the eight variables: data collection tools, data analysis tools, research methods, conceptual/theoretical frameworks, research models, type of variables, research areas, and number of participants [27].

In addition to global coverage of research trends in higher education, some studies attempted to identify the issues and trends locally. For instance, Nasr et al (2013) analysed the trends in higher education in dissertations...
produced in India between 1972 to 1990. Following the analysis of 142 studies, they concluded that only few studies produced the findings with practical applications in the field, however, most of studies were generalized with less focus on the meso- and macro-level functions in higher education. Salar (2009) conducted content analysis on the research articles (N = 298 articles) published in 15 Turkish research journals and 12 conference proceedings. He reported that research articles in Turkish journals over-represented the following categories in the Turkish higher education: active learning issues, characteristics of learners in higher education, adoption of technologies for online learning, patterns of interactivity and roles of key participants. Another study conducted by Bozkurt et al (2015) reported the research trends in Turkish higher education by performing content analysis on dissertations published between 1986 and 2014. They examined the research trends according to most frequently used keywords, data analysis, tests, data collection, research design and leading contributor institutions in Turkey [18], [22], [3].

Koble and Bunker (1997) analysed the research trends in higher education in Brazil. They conducted content analysis on total of 983 research articles published in Brazilian journals from 1992 to 200 to identify the trends of research methods employed to address the research issues [18].

3. RESEARCH METHODS

3.1 Research design
In order to explore the research trends in the higher education in Pakistani academic institutions with focus on AIOU, the content analysis was performed on the doctoral theses during 2001-2014 at AIOU. Content analysis is a useful data analysis instrument for compressing a large textual data into functional codes and categories or themes (Duriau et al., 2007). Drysdale et al (2013) argued that content analysis is applied on the documents, texts, visual messages/communications in a written form to convert them into codes which may be transformed into qualitative or quantitative form of data. This method has been used by authors because it has been deemed as the most suitable method for this study [9], [7].

3.2 Population
The doctoral theses submitted at AIOU between 2001 and 2014 in the higher education category called distance education formed the population of this study. These theses were accessed from the research repository of Higher Education Commission (HEC) and university library of AIOU. During online search, the following keywords were used: distance education, online education, open and distance education.

3.3 Sample and sampling technique
The PhD theses in the domain of distance education, category of higher education was taken as sample of this study. For the selection of sample, the following inclusion and exclusion criteria were used

- The dissertations must be the PhD level research work.
- The selected dissertations must be submitted by students at AIOU between 2001-2014.
- The doctoral theses uploaded on HEC research repository and available at the university library of AIOU would be included.
- The dissertations would be selected if they would address the issues in the domain of open and distance education in Pakistani higher education.

Following the aforementioned inclusion criteria, the 37 doctoral dissertations were retrieved from the HEC research repository and the university library of AIOU, which formed the sample of this study. The random sampling method was employed to select the sample. The data were analysed using the content analysis, which generated the variables/categories. The summarization of data was done using the frequencies and percentages.

3.4 Classification system for research areas, methods and models
The classification system designed and validate by Zawacki-Richter (2009) was used regarding the classification of different categories obtained after application of content analysis on the doctoral theses (Table 1). The classification system developed by Zawacki-Richter (2009) was used because it has been previously employed by several studies investigating the research trends in higher education category called distance education (Tunacy and Uzunboylu, 2010; Salar, 2009; Ritzhaupt et al., 2010). This allowed the comparison of the research findings from the present study with other studies in the literature [26], [24; 22].
4. FINDINGS AND DISCUSSION

4.1 Keywords

The keywords used in the PhD level dissertations submitted to AIOU were counted; total of 150 keywords were found, which were specific to define the higher education field. The keywords were ranked according to the frequencies which are shown in the Table 2. The most used key word was the online education (36%), followed by the distance higher education key word (23.1%). The third most commonly used keyword in the dissertations was the online education (16%). These results indicate that higher education is the keyword which is used as a generic term to define the higher education field in Pakistan higher education context.

Table 2. The key words used in doctoral dissertations between 2001-and 2014

<table>
<thead>
<tr>
<th>Key words</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online education</td>
<td>110</td>
<td>36</td>
</tr>
<tr>
<td>Online learning</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>Open learning</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Open learning</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>Virtual learning</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>Distance higher education</td>
<td>71</td>
<td>23.1</td>
</tr>
<tr>
<td>Blended learning</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>302</td>
<td>100</td>
</tr>
</tbody>
</table>
The outcomes of this research exhibit the similar pattern as found by many other studies in the higher education (Bozkurt et al., 2015; Tuncay and Uzunboylu, 2010). The higher education was used a generic term for defining the higher education as an independent field of study. This study also showed that e-learning is the second most term used to describe the research in higher education, which is supported by Bozkurt et al (2015). Many studies supported our results that e-learning is the second most commonly employed keyword in the dissertations [3], [24].

4.2 Research areas

The research areas which were focussed on by the researchers in dissertations in higher education were identified by employing the classification suggested by Zawacki-Richter (2009), [26]. The PhD level dissertations submitted to AIOU were coded according to three categories of classification: macro-level, meso-level and micro-level. The categories in the macro-level (access, equity, ethics) were found to be ignored areas, as no work has been observed in these areas. In meso-level categories (management, organization and technology), the technology was revealed to be the less focussed areas. However, three key areas in the meso-level categories attracted the most attention from the researchers, which area 1) instructional design, 2) Students’ support services and 3) Faculty support/development (Fig XXX).

All categories in the micro-level functions in the higher education were observed to be underrepresented in the dissertations in Pakistani higher education context. Learner’s characteristics area was prominent at micro-level. At meso-level, most of the doctoral dissertations investigated the instructional design area, followed by students’ support, and faculty support/development. The least researched areas included the educational technology, costs/benefits, and management at meso-level areas of research. Furthermore, the content analysis of doctoral dissertations between 2000-2014 at AIOU indicated that dominant research area at macro level was the research methods in higher education followed by the higher education teachings and institutions. The development of theories or models took the least rank, thereby showing that this area of research was under researched at AIOU in Pakistan (Figure 1). All of the categories in the micro-level, meso-level and macro-level functions of the higher education in dissertations between 2001 and 2015 were strongly interconnected with each other, and changes in one area triggered the developments on other areas of research, thereby casting a domino effect on each other.

Based on the results of the study, most of research categories in macro-level research in higher education dissertations submitted between 2001 and 2014 to AIOU were untapped in Pakistan. This indicates that the AIOU cannot fully develop flexible and open higher education as an interdisciplinary area unless the untapped areas are fully explored by the researchers in Pakistan.

The imbalance in three macro-level, meso-level research categories were observed in this study. This result was vindicated by some other studies which showed that there is an imbalance in these categories (Zawacki-Richter et al., 2009; Bozkurt et al., 2015, Bozkurt et al., 2016). This study demonstrated that some categories in meso-level research including innovation and change, macro-level research categories involving cross-cultural aspects, equity, access, ethics, research methods in higher education and globalization of education are not studied by researchers in the PhD level research endeavours, which is in accordance with the findings reported.
by several other studies (Durak et al., 2017; Tunac and Uzunboylu, 2010, Zawacki-Richter and Naidu, 2016). These data are significant in terms of portraying the highly researched areas and ignores areas of research, thereby highlighting the gap in the research areas. Interestingly, there was no single dissertation found focussing on the economic considerations and costs involved in the development of higher education in Pakistani higher educational institutions [29], [3], [2], [8], [24], [27]. Similarly, the instructional technologies were not explored in dissertations as well. This shows that policy makers and HEC experts would not be able to accommodate the resources and development of instructional technologies for the delivery of higher education to the students in Pakistani higher education. There are some areas, such as faculty development, teachers training, student dropout and issues of social justice, which were found be neglected in PhD level dissertations in higher education in Pakistani higher education. The lack of focus on these areas may hinder the capacity of the AIOU in providing the effective learning through higher education to the consumers in the market. This may also affect the reputation and impact of the research in higher education for AIOU as a sole education institutional in offering the qualifications in higher education.

4.3 Research design

The dissertations submitted between 2001 and 2014 to the AIOU were categorized based on the application three types of research design: quantitative, qualitative and mixed method. It was found that 14% of the dissertations employed qualitative research design, 80% of the dissertation used quantitative. Mixed method research design was used in only 6% of the dissertations in higher education field (Figure 2).

![Figure 2: The proportions of quantitative method, qualitative method and mixed methods employed in doctoral dissertations between 2001-2014.](image-url)

The data demonstrate that quantitative research design was the most employed research design, while the qualitative and mixed methods were the least used research designs. The preference of the researchers in higher education dissertations was found to the quantitative in AIOU, which is in accordance with the research works reviewed by various scholars globally and locally. However, several studies showed that researchers mostly used qualitative research design to address the micro-level and meso-level issues. In global perceptive, the researchers demonstrated preference for the quantitative research design, for example, Horzum (2013) analysed the pattern of research design usage in 189 research articles out of 382 articles (49%) applied the qualitative research design in four popular higher education journals. In contrast to the research studies in global perspective, the researchers in Pakistani higher education context, the preferred research design was quantitative, qualitative and rising trend of mixed method research design since 2009 [13].

4.4 Research models

The remarkable outcomes were revealed for the trends in terms of application of various research models in PhD level dissertations submitted to the AIOU during 2001 and 2014. The survey research model in the quantitative research design was the most predominantly employed method in dissertations, followed by correlational, causal and experimental model. The year-wise distribution indicated that first survey remained evenly distributed
between 2001 and 2006 (N = 1), with some peaks in 2007 (N = 2) and 2009 (N = 5) and again in 2013 (N = 2) (Figure 3).

Figure 3: Distribution of quantitative research models used in doctoral dissertations between 2000-2014 at AIOU.

Within the qualitative studies, the grounded theory was the mostly used research model in dissertations (N = 12) submitted at AIOU between 2000-2014, while the case study (N = 4) and historical research (N = 3) were the least applied research model. The content-analysis, meta-synthesis and ethnography were among the ignored research models in PhD dissertations submitted at AIOU in Pakistani higher education research. The year-wise distribution demonstrated that trend of using grounded theory model was increased between 2009 and 2014, while the applied research showed a single peak in 2011. However, this increase in applied research disappeared between 2012-2014 (Figure 4).

Figure 4: Distribution of qualitative research models used in doctoral dissertations between 2001-2014.

The results obtained in the domain of the research models demonstrated some interesting pattern of similarities and differences with the globally identified research trends. For instance, Bozkurt et al (2015) identified the survey research model as a predominantly used research model in dissertation in Turkish higher education context, which supports the findings of this study in Pakistani higher education context. Bozkurt et al (2016) showed the similar results to support high preference of researchers for the survey-based research model in the
quantitative research studies. Berg and Mrozowski (2001) conducted the content analysis of research articles, and found that descriptive model was the highly preferred model by the researchers in higher education, followed by the case study (6%) and correlational models (6%). These data correspond with our study showing the higher application of descriptive model in the qualitative research design compared to case studies and correlational which were least used research methods. Globally, the content analysed conducted by several scholar showed that 66% of the qualitative research use the case study model followed by design-based approach (9%) which does not correspond with the research in higher education supervised at AIOU. These differences may be related to the variations in the human and financial resources which are required to apply the different research models within specific research design. The preferences and expertise of the supervisor and students may also cause the deflection of the trends in Pakistani higher education context from those in global higher educational context. This indicates that AIOU need to build the capabilities in terms of streamlining the financial and human resources for fostering the diversity in the application of research models in mixed methods and qualitative research designs to promote the healthy impact on the research activities carried as part of PhD level qualifications in higher education at AIOU.

4.5 Tests and analysis
The findings relating to the tests and analysis used by the researchers in dissertations submitted to AIOU between 2001 and 2014 are shown in Table 3.

Table 2. The statistical tests used in doctoral dissertations between 2001-and 2014

<table>
<thead>
<tr>
<th>QUANTITATIVE Statistical Tests</th>
<th>Descriptive (65%)</th>
<th>Inferential (35%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Tendency</td>
<td>Parametric (80%)</td>
<td>Non-parametric (20%)</td>
</tr>
<tr>
<td>(Mean/Median/Mode)</td>
<td>26 T-test</td>
<td>23 Chi-Square 27</td>
</tr>
<tr>
<td>Relative Standing</td>
<td>Variance analysis</td>
<td>Mann Whitney U 5</td>
</tr>
<tr>
<td>(Percentage/z-score)</td>
<td>(ANOVA/ANCOVA/MANOVA) 8</td>
<td></td>
</tr>
<tr>
<td>Variability</td>
<td>Reliability Analysis</td>
<td>22 Wilcoxon Test 4</td>
</tr>
<tr>
<td>(Variance/Standard Deviation/Range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>Pearson Correlation</td>
<td>12 Kruskal Wallis 6</td>
</tr>
<tr>
<td>(Non-specific)</td>
<td>Regression Analysis</td>
<td>7</td>
</tr>
</tbody>
</table>

| QUALITATIVE | 8 (40%) |
| Content Analysis | 12 (60%) |

It was evident from data shown in the table XXX that the most preferred tests for analysing the quantitative data was the mean/percentage in doctoral theses between 2001 and 2014], followed by Test-test, Z-test, Chi-square test, ANOVA, correlation coefficient, standard deviations, Pearson R and Frequency distribution. In dissertations using the qualitative method, the thematic analysis was the most predominately used data analysis method followed by the content analysis. The previous studies have supported the findings of this study, for instance, Lee et al (2004) reported that chi-square and ANOVA were the most used statistical tools in analysing the data in higher education research. Findings of Davis et al (2010) also supported the outcomes of this study by showing that research articles in higher education filed showed preference for chi-square, ANOVA and T-test. Some other studies also reported in line with this study (Durak et al., 2017). Zawacki-Ritchter et al (2009) reported that thematic analysis was the second most commonly used data analysis tool in Turkish higher education while the thematic analysis was the second most employed data analysis tool, which differs from this study. This difference may the outcome of variation in resources available in Pakistani and Turkish contexts. The data also showed more emphasize of researcher from AIOU to use the inferential statistical tools to analyse the data, which is most likely related to the ability of inferential statistics to provided detailed picture data compared to the descriptive statistics which only offers the superficial explanation to the analysed data.

4.6 Data collection tools
Trends of data collection tools were identified, and outcomes are presented in this part. The finding showed that researchers mostly used the questionnaire as data collection tool in PhD level dissertations submitted to AIOU between 2001 and 2014. The second most data collection tool was interviews, followed by scale, observations, achievement test and personality test. (Table 3).
Table 3. The data collection tools used in doctoral dissertations between 2001-and 2014

<table>
<thead>
<tr>
<th>Data collection tools</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Choice Questions</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>Questionnaire (Scale)</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Interviews</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Electronic documents</td>
<td>8</td>
<td>09</td>
</tr>
<tr>
<td>Focus group</td>
<td>7</td>
<td>08</td>
</tr>
<tr>
<td>Documents</td>
<td>5</td>
<td>06</td>
</tr>
<tr>
<td>Achievement Test</td>
<td>3</td>
<td>03</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>100</td>
</tr>
</tbody>
</table>

In line with the findings of this study, Davies et al (2010) reported that survey including multiple choice questions and scaled questionnaire constituted most resonantly employed data collection tool, followed by interviews, document analysis, observations, researcher developed assessment, and standardized tests. Bozkurt et al (2015) showed the similar results showing that questionnaire, interviews and scale are the most frequently employed data collection tools in dissertations in higher education field. Bozkurt et al (2015) also reported the questionnaire and interviews are main source of data collection. Thus, the findings of this study demonstrated that questionnaire (qualitative and quantitative studies) and interviews (qualitative studies) were used as main source of data collection in PhD-level dissertations between 2001 and 2014 at AIOU in Pakistani higher education context, which corresponds to the global perspectives in higher education.

4.7 Participants
This study found that researchers have mostly collected data from the academicians, followed by master students, undergraduate students, adult learners, administrators, and documents (Table 4).

Table 4. The nature of participants in doctoral dissertations between 2001-and 2014

<table>
<thead>
<tr>
<th>Nature of participants</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate students</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Undergraduate students</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Master students</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>HE teachers</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>HE specialists</td>
<td>5</td>
<td>07</td>
</tr>
<tr>
<td>HE courses/programs</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>HE institutions</td>
<td>5</td>
<td>07</td>
</tr>
<tr>
<td>Other (technicians, documents)</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
</tr>
</tbody>
</table>

The Table 4 shows that 25%, 20%, and 13% of the doctoral theses between 2001 and 2014 involved Graduate students, Master students and Undergraduate students as participants in doctoral level research at AIOU, respectively. It is evident from data that students and teachers were the main focus of the researchers in their doctoral level research in Pakistani higher education context, however, relatively less emphasis was placed to identify the perceptions and views of HE specialists (e.g. administrators and policy makers) in doctoral dissertations in Pakistani higher education. Several other studies supported these findings showing the researchers target the students and teachers to investigate the issues related to the development of higher education (Durak et al., 2017; Bozkurt et al., 2016, Bozkurt et al., 2015).

4.8 Strengths and limitations
This study has strengths and limitations. The main strength of this study is that it is the first of its kind in showing the research trends in Pakistani higher education sector from various perspectives. It has identified the research trends in doctoral level dissertations accepted from 2001-2014 at AIOU, which is the main regulator, provider and disseminator of higher education in Pakistani higher education sector. Against the background of its strength in context of showing the research trends and issues, this study can offer the base for future studies and developments in the doctoral level research in higher education in Pakistani higher education sector.
One of the limitations of this study is that it is assumed that doctoral dissertations submitted to AIOU represents the finished product which can be taken as the reservoir of intellectuality and knowledge for the future researchers, policy-makers and academicians. Furthermore, 2 dissertations submitted before 2000 to AIOU in 1999-2000 could not be accessed, therefore, they were excluded from this study.

5. CONCLUSION

This study was carried out to identify the trends in higher education research in Pakistani higher education sector by examining the doctoral dissertations submitted to AIOU between 2000 and 2014. Higher education is the most commonly used keywords in the dissertations reviewed in this study. The imbalances in terms of research areas studies at doctoral level were found in dissertations; some areas were more frequently studies than the others. The quantitative method was found to be the most used method, while qualitative and mixed methods were relatively less used methods. However, between 2009-2014, the tendency to use mixed method showed increasing trend in the doctoral dissertations. Surveys are preferred method compared to other research models. The questionnaire and interviews are preferentially used by researchers to collect data, while the mean/percentage and chi-square are the widely used tests for analysing data. The students and teachers are ranked at first and second position to be selected as sampling group.

The research trends identified in this study requires attention of doctoral researchers in Pakistani higher education sector. Based on the findings, this study has the implications for the future researchers. The neglected areas in the doctoral research should be explored and focussed by prioritizing the research agenda in higher education in AIOU. The sampling group should be diversified to include administrator’s and policy-makers to improve the engagement of government bodies with higher education in Pakistan.

The harmony should be created in terms of using different categories of research models and research designs. The supervisors and researchers in AIOU should consider using all research designs and methods in equal proportions. Currently the use of mixed method is relatively low in doctoral research. The application of mixed method should be promoted to assess the research issues from different angles and perspectives. AIOU should also balance the theoretical and practical research in future doctoral dissertations. Currently there is only single university in Pakistan, which administers higher education to students locally and internationally. The higher education commission (HEC) Pakistan and provincial governmental bodies should consider opening more institutions to promote research in general and doctoral dissertations in particular in higher education.

REFERENCES

[27]. Zawacki-Richter, O., & Naidu, S. (2016). Mapping research trends from 35 years of publications in Distance Education. Distance Education, 37(3), 245-269.

Evaluations of Arak Extract Effects and Comparison with Different Toothpastes on Oral Pathogens

Mounir M. Salem-Behkit¹, Fars K. Alanazy²

¹King Saud University, Department of Pharmaceutics, College of Pharmacy, P. O. Box 2457, Riyadh, Saudi Arabia.
²King Saud University, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, P. O. Box 2457, Riyadh, Saudi Arabia.

ABSTRACT

Purpose: To evaluate the in vitro antimicrobial activity of the arak crude extracts (Salvadora persica) compared to different toothpastes containing active ingredients against some selected different oral hygiene microorganisms.

Methods: Different strains implicated in oral diseases were tested for their susceptibility to the aqueous extract of arak as well as examining toothpastes using the agar diffusion method. Crude extracts of arak and selected toothpastes were challenged using E. faecalis at time intervals of 1, 10, 20, 40 and 60 min.

Results: Results showed that the aqueous extract of arak exhibited antimicrobial activity which was similar to that of the commercially available tested toothpastes.

Conclusion: According to these findings, it was concluded that arak stick can be used for oral hygiene as a good alternative to the toothpaste.

KEY WORDS: Arak, Salvadora persica, cariogenic bacteria, antimicrobial activities.

INTRODUCTION

Periodontal pathogens are one of the common problems and leading causes for development of dental plaque and periodontal diseases. The obtainable methods for the oral health protection are mostly chemical and mechanical. Toothpastes and toothbrushes are commonly used for plaque control and teeth cleaning [1]. There is a variety of plants commonly used as conventional chewing sticks or toothbrushes. The “arak or miswak” is the largely used tree brush wood since early times, which was obtained from a stick of a plant called Salvadora persica. The root pieces are generally aromatic and become spongy after water soaking [2]. Though the World Health Organization (WHO) has encouraged the usage of chewing sticks and promoted advance study of their effectiveness [3], limited studies had assumed the prospective antimicrobial activities of chewing sticks [4].

Many reports recommended that the presence of pathogens in medicinal plants was strongly related to the previous handing, drying methods and type of storage used. Different chemical methods of decontamination have therefore been used. Irradiation offers an effective option to chemical fumigation. Several countries have approved irradiation of medicinal plants for microbial decontamination; amongst these countries USA, Brazil, Argentina, France, and South Africa [5].

Toothpastes or gel are used to clean and develop the aesthetic appearance and health of teeth. Fluoride is considered as one of the best and effective caries inhibiting agents. Approximately, wholly toothpastes contain fluoride in their formulation [6]. Usually the total fluoride amount is ranged between 0.1 – 0.15%. Antiseptic composites can be included in some toothpaste like triclosan which have distinct antibacterial effects. Also, essential oils, like menthol, eucalyptol, basil and thymol, have many valuable properties as natural antimicrobial actions [7]. Few previous studies have investigated the comparative antimicrobial activity of arak and toothpastes. The current study aimed to: 1) investigate the in vitro antimicrobial effectiveness of arak extract and different formulas of toothpastes against oral hygiene microorganisms. 2) evaluate the gamma radiation effects and storage time on the microbial contamination of arak.

MATERIALS AND METHODS

Samples of Chewing sticks, arak powder and toothpastes:

This study was carried out on arak (siwak), the most commonly used chewing stick in Saudi Arabia. Its sticks and powder were purchased from the local market in Riyadh, Saudi Arabia. The samples were packed (25g each) in sealed polyethylene bags to prevent recontamination. As well as, three commercially available toothpastes identified as formulas 1, 2 and 3 were purchased from the local market of Riyadh. Each formula
contains different active ingredients that were described as sodium monofluoro-phosphate 0.76% and triclosan 0.10% (formula 1), fluoride 1450 ppm and calcium glycerophosphate (formula 2) and basil (Ocimum sanctum) and herbal extracts (formula 3) as described on the package.

Media:

The isolated organisms were grown in standard laboratory culture media prepared according to the specifications of the manufacturers. Media utilized included plate count agar, Czapeks-Dox yeast agar, Baird-Parker agar and Brain heart infusion agar (Difco Labs., Detroit, Michigan, USA), MacConkey agar and Tryptic soy broth (Basigstoke, Hants, UK).

Irradiation and storage:

The irradiated (1-10 kGY) and non-irradiated (control) arak sticks and powder were stored at ambient temperature for 6 months in sealed bags.

Microbiological quality of arak:

From both arak sticks and powder, twenty-five grams of each irradiated and non-irradiated samples were suspended in 225 ml of sterile saline and subjected to serial dilutions using normal saline solution (0.9% NaCl). Proper dilutions were used in enumeration of microbial counts. Total aerobic bacterial counts were enumerated on plate count agar [8] using pour plate technique then the plates were incubated at 30°C for 3 days. Total molds and yeasts were counted on Czapeks yeast extract agar medium according to the method described by [25] using pour plate technique then plates were incubated at 25°C for 5 days. The total numbers of thermophilic spore forming bacteria were determined according to the method described by [9] using plate count agar medium. The presence of coliforms was determined by cultivation of the tested samples on MacConkey agar plate according to [10]. *Staphylococcus aureus* were counted on laboratory prepared Baird-Parker medium according to [11] using surface plate technique. Suspected colonies were submitted to coagulase activity and biochemical reactions.

Antimicrobial spectrum of the arak extract and the toothpastes:

For determining the antimicrobial spectrum of the arak extract and the toothpastes, seven bacterial strains representing Gram negative and Gram positive bacteria and one yeast were used. They were grown on nutrient agar, Sabouraud agar and de Man, Rogosa, Sharpe (MRS) for *Lactobacillus acidophilus*. Out of them, six pathogenic strains were isolated from clinical samples; *E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae* (as Gram negative); *Staphylococcus aureus, Enterococcus faecalis* (as Gram positive) and *Candida albicans* (as Yeast). Two other strains were used; *Bacillus cereus, ATCC 11778* and *Lactobacillus acidophilus, DSM 20079*.

Preparation of arak extract:

For 10 days, the arak sticks were kept dried at room temperature before extraction process. The sticks were reduced to small pieces then crushed to fine powder. In sterile dry screw-capped bottles, ten grams of fine powder was kept separately and the bottles were kept in a cool dry place for seven days before extraction. In each bottle, 100ml of sterile water was added to the fine powder and left to soak at 4°C. After 48 hours, the extract was centrifuged for 10 minutes at 2000 rpm. Finally, the supernatant was sifted through a membrane filter (0.45 mm) and freeze-dried as described by [12].

Antimicrobial activity of arak extract using agar diffusion method:

According to [13], the antimicrobial activity of arak extract was determined using the hole-plate diffusion technique. The plates were moistened with a suspension of the selected pathogenic microorganism, which contained approximately 10^7 CFU/ml using sterile cotton swab. Into the wells, 100µl from the arak extract was added and allowed to diffuse for 30 min. at 37°C, the plates were incubated for 24 hours and at 30°C for 48 h for bacteria and yeast growth respectively. The diameter of inhibition zones was measured and the experiment was repeated, in its entirety, twice more to ensure repeatability. On the other hand, 10 ml of each toothpaste formula were moved to a small flask containing 5 ml of sterile water and homogenized by vortex mixer. After minutes, 100µl of each formula were added into the wells made at the center of pre-inoculated blood agar plates and allowed to diffuse. Plates were incubated as previously mentioned then the inhibition zones diameter was measured as described by [14]. The bacterial strain which showed sensitivity to the arak extract and all the tested formulas were chosen for further studies.

Antimicrobial activity of arak using microbial death profile (challenge test):

The profile of the microbial death (log CFU/ml vs. time) was evaluated according to [14]. Microbial suspension of the chosen microorganism (approximately 10^7 CFU/ml) was transferred under aseptic condition to
a tube with 10 ml of the tested arak extract or the other tested formulas. Using the pour plate method, the viable microorganism was counted. The series of decimal dilution were made employing 9 ml of sterile saline. After 10, 20, 40 and 60 min, the identical procedures were used again and the viable counts were determined.

Statistical analysis

All experiments were done in triplicate as a minimum. Data from those experiments were saved in an EXCEL 5.0 program (Microsoft) and the statistical analyses were carried out using version 19.0 SPSS software (SPSS, Chicago, USA). Differences were considered significant at \(p < 0.05 \).

RESULTS

Microbiological quality of arak:

Arak sticks and powder were evaluated for their natural microbiological quality i.e. total aerobic bacterial count, total molds and yeasts and spore forming bacteria. They were also examined for the presence of coliforms and *Staphylococcus aureus* (table 1 and 2). The level of microbial contamination in Arak powder was higher than that in arak sticks. The total bacterial counts, total mold and yeast counts and the counts of spore forming bacteria in non-irradiated control arak sticks were 4.0x10^3, 8.0x10^3 and 1.7x10^3 cfu/g, respectively. The corresponding counts in non-irradiated (control) arak powder were 6.0x10^5, 8.5x10^5 and 5.2x10^5 cfu/g. The examined sticks and powder had coliforms and *Staphylococcus aureus* at values 5.6x10^3, 6.3x10^3 cfu/g, respectively.

<table>
<thead>
<tr>
<th>Table (1): Effect of different doses of gamma irradiation and storage time on the total bacterial and fungal count containing arak (sticks and powder).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial isolates</td>
</tr>
<tr>
<td>Storage period (month)</td>
</tr>
<tr>
<td>Total bacterial count</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Total molds and yeasts</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table (2): Effect of different doses of gamma irradiation and storage time on the isolated microorganism containing arak (sticks and powder).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial isolates</td>
</tr>
<tr>
<td>Storage period (month)</td>
</tr>
<tr>
<td>Thermophilic spore former bacteria</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Coliforms</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Staph. aureus</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Antimicrobial activity of arak using agar diffusion method:

Antimicrobial activities of arak extract as well as three different toothpastes; formulas 1, 2 and 3, was determined by using agar diffusion method against 8 pathogenic microorganisms. Even though most of the tested organisms were not strictly oral pathogens, selection depended on the role that those organisms play in oral hygiene and probability for causing dental diseases, periapical lesions, periodontal abscesses and possible gingivitis [12]. It is clear from the data in table (3) that arak extract and the other tested formulas exhibited different levels of antimicrobial activities against the tested organisms.

Table (3) Diameter of inhibition zone (mm) of arak extract and three different formulas of toothpastes on some oral pathogens.

<table>
<thead>
<tr>
<th>Tested samples</th>
<th>E. faecalis</th>
<th>K. pneumonia</th>
<th>Ps. Aeruginosa</th>
<th>E. coli</th>
<th>Staph. aureus</th>
<th>L. acidophilus</th>
<th>R. cereus</th>
<th>C. albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arak extract</td>
<td>15</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Formula 1</td>
<td>20</td>
<td>--</td>
<td>22</td>
<td>30</td>
<td>35</td>
<td>20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Formula 2</td>
<td>25</td>
<td>--</td>
<td>22</td>
<td>40</td>
<td>--</td>
<td>24</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Formula 3</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>20</td>
<td>--</td>
<td>23</td>
<td>--</td>
</tr>
</tbody>
</table>

(-) no activity

Antimicrobial activity of Arak using microbial death profile (challenge test):

The results indicated that among the 8 tested microorganisms, E. faecalis was generally the most liable microorganism to all the tested formulas, therefore, this strain was chosen for the challenge test. The obtained data in table (4) and the figure (1) showed that all tested formulas were active against E. faecalis when reduced to 3 logarithmic cycles after 1 min of contact, a condition that’s similar to brushing teeth while arak extract showed reduction of 2 logarithmic cycles. The data also showed that the activities of all the tested formulas were increased significantly by increasing time of contact.

Table (4): Effect of time on the Antimicrobial activity of arak extract and three toothpastes formulas on the number of survivors of E. faecalis selected strain (challenge test).

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Log number of survivors (cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arak extract</td>
</tr>
<tr>
<td>0</td>
<td>8.60</td>
</tr>
<tr>
<td>1</td>
<td>6.60</td>
</tr>
<tr>
<td>10</td>
<td>6.30</td>
</tr>
<tr>
<td>20</td>
<td>5.20</td>
</tr>
<tr>
<td>40</td>
<td>3.56</td>
</tr>
<tr>
<td>60</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Figure (1): Lethality profile (log cfu/ml x minute) of E. faecalis for the arak extract and the other tested formulas.

DISCUSSION

The present study aimed to investigate the antimicrobial activity of arak extract in comparison with different formulas of toothpastes against oral hygiene microorganisms in addition to evaluation the effects gamma radiation on the microbial contamination of arak. Tables (1) and (2) indicated that both non-irradiated (control) arak sticks and powder had high microbial load. These results have been confirmed by [15] who found that the total bacterial and mold counts contaminating qarad were 8.2x10^6 and 2.9x10^4 cfu/g, respectively. Generally, the results revealed that arak sticks and powder samples were of unsatisfactory from the view of...
microbiological quality. It is clear from the same table that irradiation caused a marked decrease in all tested microbial counts and this decrease was proportional with irradiation dose. The irradiation dose of 5KgY was effective and sufficient to reduce all tested microflora contaminating both arak sticks and powder to non-detectable levels. [16] Studied the effects of ionizing energy and ozone treatments on the microbial decontamination of aloe powder. They found that gamma irradiation at 7.5-10 kgY reduced all bacterial count including coliforms and fungi to below detection levels. Treatment by ozone at up to 18 ppm for hours was not adequate to eliminate microorganisms from the tested powder. The results showed that, the microbial weight of the control samples was enriched by storage time. It decreases in the number of survivors/g after 2 months of storage. On the other hand, increase in the total microbial load was noticed as storage progressed until 6 months but the rate of increase was much more pronounced in control samples (non-irradiated) in comparison with irradiated ones. All the microbial counts in arak sticks and powder samples exposed to 5KgY remained below detectable levels throughout the storage period (6 months). This indicated that irradiation treatment greatly reduced the initial counts and delayed the growth of microorganisms hence, extended the shelf-life of the tested samples. Long time storage boosted mold reduction in 5 kgY. However, [17] reported that by relying on the prevalent flora for complete fungal sterilization, the lethal dose required was reported to be not less than 5 kgY or not more than 7.5 kgY.

According to [18], the agar diffusion method has the ability to be used as a preliminary test for identifying antimicrobial activity in substances physical-chemical properties, as for instance, its diffusion coefficient as well as the medium where the diffusion occurs, is likely to obtain a qualitative sign of antimicrobial activity. The data from table (3) showed that K. pneumoniae was resistant to arak extract and all tested formulas are in agreement with [19] who reported that K. pneumoniae was resistant to the aqueous extracts of seven different kinds of chewing sticks including arak. The observed resistance may come from cell membrane permeability or due to further genetic factors as reported by [13]. The results tabulated in table (3) revealed that the arak extract was most effective on Ps. aeruginosa causing inhibition zone 30mm. This could attribute to the fact that arak extract inhibits the active transport oxidative phosphorylation and oxygen uptake by Ps. aeruginosa [20]. Among the tested microorganisms, E. faecalis was also susceptible to the arak extract and all the tested formulas. This may be due to the fact that the aqueous extract of arak contained some anionic components like nitrate (NO₃⁻) which apply antimicrobial activities against various bacteria and has been reported to have an effect on the active transport of proline in E. coli [20]. The antimicrobial activity of formula 1 and 2 is a result of sodium monofluoro-phosphate and triclosan which affects many essential enzymes of cell growth as reported by [21] and the cytoplasmic membrane causing lysis of the microorganisms [22]. The antimicrobial activity of formula 3 is attributed to the inhibitory properties of the herbal extracts where the essential oils kill microorganisms by distributing their cell walls, preventing their enzymatic activity, inhibit bacterial aggregation, release endotoxins and slow their multiplication as reported by [23]. On the other hand, arak extract had no antimicrobial effect on any other tested microorganism. These findings were consistent with the results obtained by [19] who found that Staph. aureus was not inhibited by the aqueous extract of the tested chewing sticks including arak. On the contrary, others found that E. faecalis was affected by aqueous extract of Acacia arabica (kikar). The tested toothpastes formula had antimicrobial effect on E. coli, E. faecalis, Staph. aureus, and B. cereus where they inhibited the growth of these strains and L. acidophilus was affected only by formula 1. In this study, the results showed that K. pneumonia and C. albicans were resistant to arak extract and to all of the tested formulas. These findings are similar to that obtained by other authors [19]. Although the tested formulas 1 and 2 showed remarkable bacteriostatic activity on E. faecalis, we must take into consideration that the FDA restricts the content of fluoride in toothpaste to 1150 ppm because of its harmfulness and therefore too much amount of fluoride can reproduce fluorosis, a common finding today. Also, ingested triclosan may affect the probiotic intestinal microflora of the human gastrointestinal tract which serves as defense system against pathogenic bacteria, hence, one become more susceptible to infectious diseases such as rotavirus, often resulting in diarrhea [20].

Based on our results, we concluded that, gamma radiation dose of 5 KgY was sufficient to decontaminate the tested arak sticks and powder from aerobic bacteria, mold, yeast, thermophilic arak sticks and main pathogens. Also, arak can be considered a good alternative to the toothpaste as it is cheap, easily available, doesn’t require expertise or any more resources for manufacturing, has potential antimicrobial activity and safe for users, thus, it is advised as an important and operative tool for oral hygiene.

ACKNOWLEDGEMENT
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group project No RGP-VPP-202.
REFERENCES

Manuscript Submission:

Send your manuscript with attachment by mailing it to info@textroad.com, textroadjournals@gmail.com along with covering letter.

Manuscript Preparation:

* Title
* Author names and addresses
* Abstracts (Not more than 300 words)
* Key words
* Introduction
* Materials and Methods
* Results and Discussions
* References (Use numbering in the text instead of full references).

 Give full references at the end of the file
* Photographs should be of high quality (Minimum 300-600 dpi)
* Graphs should be in clearly visible form so that it may become easy to redraw
* The manuscript must be submitted in MS-WORD file format.

INSTRUCTIONS TO AUTHORS

Submission

Submit manuscripts as e-mail attachment to the Editorial Office at:

- textroadjournals@gmail.com or info@textroad.com along with covering letter. A manuscript number will be mailed to the corresponding author same day or within 48 hours. The authors may also suggest two to four reviewers for the manuscript (JBASR may designate other reviewers). There is no page limit. The submitting author takes responsibility for the paper during submission and peer review.

Terms of Submission

Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal. The submitting author is responsible for ensuring that the article's publication has been approved by all the other coauthors. All enquiries concerning the publication of accepted papers should be addressed to editor@textroad.com.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors within one or two weeks. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JBASR to publish manuscripts within 4 weeks after submission.

Style of Manuscripts

Manuscripts should be written in clear, concise and grammatically correct English (with 10 font size and Times New Roman font style) so that they are intelligible to the professional reader who is not a specialist in any particular field. Manuscripts that do not conform to these requirements and the following manuscript format may be returned to the author prior to review for correction. The entire manuscript, including references, should be typed single spaced on one side of the paper. All pages should be numbered consecutively in the bottom centre starting from the title page. The manuscript should be presented in the following order.

Title and Authorship Information

The title should be a brief phrase (capitalize first letter of each word in the title) describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

Abstract

All manuscripts should not exceed 250-300 words and should describe the scope, hypothesis or rationale for the work and the main findings. Complete sentences, active verbs, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Keywords

Key words (5-7 words) should be provided below the Abstract to assist with indexing of the article. These should not duplicate key words from the title.

Introduction

This section should include sufficient background information, provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. The aims of the manuscript should be clearly stated. The introduction should not contain either findings or conclusions. It should be understandable to colleagues from a broad range of scientific disciplines.
Materials and Methods
This should be complete enough to provide sufficient detail to allow the work to be repeated by others. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.

Results
Results should be presented in a logical sequence in the text, tables and figures; repetitive presentation of the same data in different forms should be avoided. The results should not contain material appropriate to the Discussion. It should be written in the past tense when describing findings in the authors' experiments. Results should be explained, but largely without referring to the literature.

Discussion
The discussion should consider the results in relation to any hypotheses advanced in the Introduction and place the study in the context of other work. Results and Discussion sections can be combined.

Conclusions
If an optional conclusion section is used, its content should not substantially duplicate the abstract.

Acknowledgment
The acknowledgments of people, grants, funds, etc should be brief.

References
Bibliographic references in the text appear like [1, 2, 5, 6], using square brace in superscript. References should be numbered consecutively, with style:

Journal paper:

Books:

Chapters in Book:

Titles of journals should be given in full. ‘In press’ can only be used to cite manuscripts actually accepted for publication in a journal. Citations such as 'manuscript in preparation' or 'manuscript submitted' are not permitted. Data from such manuscripts can only be mentioned in the text as 'unpublished data'.

A Report:

Conference Proceedings:

A Thesis:

Tables and Equations
Tables and equations should not be submitted in a format exceeding the A4 page size (in portrait form). All tables should be embedded within the manuscript, and must be captioned and numbered sequentially. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text.

Figures / Illustrations / Photographs
Graphics should be supplied as high resolution (at least 300-600 dp.i.) electronic files. Digital images supplied only as low-resolution print-outs cannot be used. Graphs, diagrams, chromatograms, photos, etc. should be prepared as clear, original positives, suitable for reproduction. All figures should be embedded within the manuscript, and must be captioned and numbered sequentially.

Proofs
Proofs will be sent via e-mail as an Acrobat PDF file (e-mail attachment) and should be returned within 3 days of receipt. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.

Check List
We recommend that you ask a colleague to read over your paper prior to submission to ensure it is of a high standard and conforms to a high level of scientific writing.

Before submission of your manuscript, please check that:

• All references cited in the text are included in the reference section.
• All figures and tables are cited in the text.
• Figures are at least 300 d.p.i.
• The pages are numbered.