
 

J. Appl. Environ. Biol. Sci., 4(8S)192-198, 2014 

 

© 2014, TextRoad Publication 

ISSN: 2090-4274 
Journal of Applied Environmental  

and Biological Sciences 

www.textroad.com 

 

Corresponding Author: Maqsoom Fatima, Department of Mathematics, University of Gujrat, Pakistan.  
                                         Email address: maqsoom.fatima@uog.edu.pk  

 

Hybrid Computing Approach for Solving Delay Differential Equations 
 

Iftikhar Ahmad
1
, Maqsoom Fatima

2 
and Muhammad Bilal

3 

 
1,2,3

Department of Mathematics, University of Gujrat, 
Received: September 1, 2014 

Accepted: November 13, 2014 

ABSTRACT 

 

 A number of nonlinear phenomenas in many branches of the applied sciences and engineering are described in terms of 

delay differential equations, which arise when the evolution of a system depends both on its present and past time. In this 

paper, our aim is to present various optimization techniques for solving the delay differential equations with variable 

coefficients subject to initial conditions. We have used constrained nonlinear minimization in Active Set technique (AST) 

and Sequential Quadratic Programming (SQP) algorithms to solve delay differential equations. Also we have used 

Genetic Algorithm (GA) and a hybrid technique GA-SQP. Further, we presented the comparison of proposed numerical 

results with exact solution to confirm the reliability of our method for delay differential equations. We considered higher 

order delay differential equations and provided their numerical results on the bases of which we showed their complete 

graphical picture. 

KEYWORDS: Delay differential equation; Active Set; Sequential Quadratic Programming; Genetic Algorithm.  

 

1. INTRODUCTION 

 

Delay Differential Equations (DDEs) are widely used in the mathematical formulation of real life phenomena in 

many fields especially in engineering and sciences such as control problems, population dynamics, secure 

communication, infectious disease, economics and traffic control. In a DDE, the system not only depends on a certain 

time but also depends on the state of the system at an earlier time in contrast with Ordinary Differential Equations (ODEs) 

where the unknown function and its derivatives are evaluated at the same time [1]. 

A typical first order single-delay scalar DDE model may be expressed as: 

)}(),(,{)('
1

τ−= tytytfty ……………………………………… (1) 

The term )( τ−ty  is called the delay term. In more general form the function )(' ty  depends on )(ty  and )(' ty  

itself at the past time )( τ−ty  as defined above, in this case, the above equation can be written as:   

)}('),(),(,{)('
2

ττ −−= tytytytfty …………………………… (2) 

DDEs have attracted the attention of researchers in mathematical, biological and physical sciences. This is 

especially due to the fact that the theory of ODEs does not carry over to DDEs. Among the topics studied for the DDEs, 

oscillation of the solutions has been resolved the most and complied in the monographs [2]. The general theory of DDEs 

is developed by Hale [3], Bell-man and Cooke [4], El'sgol'ts and Norkin [5], Driver [6] and Kolmanovskii and Myshkis 

[7], Hale and Verduyn Lunel [8], Kolmanovskii and Nosov [9], Diekmann et al, [10] and Kuang [11, 12], which also 

include many real-life examples of DDEs and more  general retarded functional differential equation [13]. 

For solving the initial value problems of DDEs with a constant delay 0τ >  a lot of numerical methods have been 

presented in recent times. The numerical theory, such as stability and convergence issues, has also been developed.  

For example, Linear Multistep Methods (LMMs), Runge-Kutta methods (RKMs) have been investigated and one-

leg methods have been studied. These numerical methods for initial value problems of DDEs were obtained by using the 

corresponding methods to the initial problems of ODEs [14]. 

From many years, the numerical solution of models of dynamic systems has attracted the researchers. Many 

physical systems can be approximated by sets of ODEs, and the digital simulation of such models has caught the interest 

of engineers and applied mathematicians from the invention of the digital computer. There is also a huge number of 

systems from engineering and science that require the inclusion of delays in their models. The numerical simulation of 

models described by sets of DDEs has been developed by very few publications and the state of the art of software is not 

highly developed for dealing with such models. 

Good solvers were developed by Shampine and co-workers for simulating DDE models. These include a numerical 

DDE solver, called dde23, encoded in Matlab. They also include a numerical DDE solver, called dde solver, encoded in 

Fortran. Both solvers are classical solvers in the sense that they are based on the classical time-slicing algorithms used 

throughout the numerical ODE, DDE and DAE (Differential Algebraic equation) [15]. 

Most codes available in solving DDE do not catter for stiff DDEs. Most of them used explicit RKMs to solve DDEs. 

The only effort so for on stiff DDE is done by Roth [16]. He solved stiff DDEs using three methods, which are the 

backward differentiation (BDF) method, the Adams method and the Rung-Kutta Fehlberg method. The systems are 

considered as stiff right from the beginning and Lagrange interpolation is used to approximate the delay term [17]. 

In this paper, we are going to present various optimization techniques for solving the delay differential equations 

with variable coefficients subject to initial conditions. We have used constrained nonlinear minimization in Active Set 
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technique (AST) and Sequential Quadratic Programming (SQP) algorithms to solve delay differential equations. Also we 

have used Genetic Algorithm (GA) and a hybrid technique GA-SQP. Mathematical modeling is defined in section 2. In 

section 3, solution technique is provided. Application of method is applied in section 4, where numerical results are 

provided. Section 5 provides discussion and conclusion. 

 

2. Mathematical Modeling: 
A neural network model is provided in detail with satisfying initial conditions for DDE. For the following DDE of order 

n we have, 

 ),...)('),('),(),(,()()(
ττ −−= tytytytytfty n

……………… (3) 

With these initial conditions 
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Mathematical model of above DDE in the form of following continuous mapping for the solution )(ty , and its first 

derivative 
dt

dy
, second 
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The model shown in the above equations are normally using log-sigmoid based on logarithmic function )(tφ   and its 

respective derivatives, where 

t
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Furthermore, the above mathematical models can also be written as: 
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2.1 Fitness Function: 

A fitness function or error function is given by sum of two errors as; 

21
eee +=  ,…………………………………….(6) 

where 
1
e  is error function associated with differential equation and it is given as: 
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Similarly, 
2
e  is the error function associated with initial conditions, which is defined as 
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3. Solution Technique 

 To find the Solution of the problem, we have applied the Active Set Technique, Sequential Quadratic Programming, Genetic      

Algorithm and hybrid approach GA-SQP by using the MATLAB built-in functions with the parameters setting given below 

for AST, SQP and GA, respectively. 

 

3.1. Procedural Steps of Proposed Methods. The necessary procedure for AST, SQP and GA is given in following steps: 

� Steps 1: Initialization: Initial values of parameters are set in this step with random assignment. These settings 

are provided in Table I and Table II for important parameters. 

� Step 2: Fitness Evaluation: Calculate the fitness for each individual using the fitness function defined earlier. 

� Step 3: Termination Criteria: When the criteria is achieved the algorithm is terminated, and the criteria is 

achieved for the following conditions: 

• Maximum number of iterations is completed. 

• Defined fitness function is achieved. 

• Any defined value in optimset for maximum function evaluations, X tolerance or function tolerance is 

achieved as defined in above tables. 

� Step 4: Save Results: If the termination criteria is achieved then save the final optimal weights along with 

fitness values. 

� Step 5: Statistical Analysis: Perform all these steps mentioned above on a large number of runs to get an 

effective and reliable statistical analysis. It is shown in Fig.1. 

 

Table 1. Parameter settings for the functions “AST” and “SQP” in MATLAB for optimtool. 
Parameters Values Parameters Values 

Start Point generation Randomly between (0,1) Function Tolerance 12
10

−

 

Maximum Iteration 500 SQP Constraint 

Tolerance 

Zero 

Start Point Randomly between (1,30) Nonlinear Constraint 
Tolerance 

Zero 

Maximum Function 

Evaluations 

1000000 Unboundedness 

Threshold 

Default 

Hessian FBGS Relative Line Search 

Bound 

No Bound 

X Tolerance 12
10

−

 
Sub problem Algorithm d  Factorization 

Finite Difference Type Forward Difference Scaling None 

Start Point Size 30 Others Default 

 

Table II: Parameter settings for the function “Genetic Algorithm” in MATLAB simulations 
Parameters Values Parameters Values 

Number of 

Variables 

30 Direction  Forward 

Population Type  Double Vector Hybrid Function None 

Population Size [30 30 30 30 30 30 30 30 30 30] Generations 100 

Creation Function  Constraint Dependent Function Tolerance 12
10

−

 

Scaling Function Rank Level of Display Off 

Selection Function Uniform Others Default 

Mutation 

Function  

Constraint Dependent Crossover Function  Heuristic 

 

3.2. Procedural Steps for Hybrid Method GA-SQP: 

In this optimizer the step 1-3 are same as mentioned above. For step 4, if the termination criteria is achieved then 

SQP is used for further refinement of results by taking final weights of GA as initial weights in start point of SQP 

algorithm. SQP is applied then by following the parameter settings defined in table I then save the final weights of the 

algorithm. The above defined procedural steps are defined in the following flow chart. 
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Fig. 1: Flow Chart of procedural steps 
 

4. Application of Proposed Techniques: 

 Consider the following second order DDE, 
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The exact solution of the above equation is 
tety −

=)( ……………………………………………………...(11) 

For the above DDE with given initial conditions, mathematical model in the form of continuous mapping for the solution 
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Error function is given by sum of two square errors as: 
21
eee += . We apply the neural network model with 10 neurons 

to solve this problem. There are total 30 unknown parameters or weights. The error function e  for the input span from 

[0,1] with the step size 0.1 where 
1
e  is error function associated with differential equation and it is given as:  
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Table III. Comparison of Exact Solution, AST, SQP, GA and GA-SQP for given problem 
t Exact Solution AST SQP GA GA-SQP 

0.0 1.000000 1.000000 1.000000 0.999546 0.999998 

0.1 0.904837 0.904835 0.904835 0.904811 0.904832 

0.2 0.818731 0.818727 0.818727 0.818850 0.818722 

0.3 0.740818 0.740812 0.740813 0.741051 0.740807 

0.4 0.670320 0.670312 0.670313 0.670733 0.670305 

0.5 0.606531  0.606521 0.606521 0.607218 0.606512 

0.6 0.548812  0.548799 0.548800 0.549857 0.548789 

0.7 0.496585 0.496571 0.496572 0.498055 0.496560 

0.8 0.449329 0.449312 0.449314 0.451272 0.449300 

0.9 0.406570 0.406551 0.406552 0.409022 0.406537 

1.0 0.367879  0.367858 0.367860 0.370865 0.367843 
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Fig. 2: Comparisons of proposed solutions with exact solution for given problem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Set of trained weights by AST, GA, SQP and GA-SQP for given problem 

 

4.1. Numerical Experimentation and Results 
The comparison of exact solution and solution obtained by proposed methods are given below in Table III. 

Furthermore, the Fig. 2 also illustrates the worth of proposed solution by comparing the exact solution and numerical 

solution obtained by proposed methodology. Set of optimal weights calculated by AST, SQP, GA and GA-SQP are given 

below in equations. These are also graphically shown in Fig. 3 and Fig. 4 in two and three dimensions respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

Fig. 4: Set of trained weights by AST, GA, SQP and GA-SQP for given problem 

196 



Ahmad et al.,2014 

 

-(-0 .77 556 982 25 270 61t+ 1 .26 902 30 385 047 75 ) -(0 .70 331 82 725 521 84 t+ 0 .21 183 26 813 597 10 )e e
ˆ (-0 .5 603 756 96 662 417 ) 1 - + (0 .01 722 54 151 584 51 ) 1 -

-(-0 .77 556 982 25 270 61t+ 1 .26 902 303 85 047 75) -(0 .70 331 827 25 51 e 1 e
y A ST

 
 =
 + + 

21 84t+ 0 .21 183 268 13 597 10)

-(-0 .553 56 126 332 79 82t+ 0 .023 11 751 459 54 46) -(0 .1 422 24 276 322 2e e
              (0 .82 37 370 504 54 974 ) 1 - (1 .236 421 722 93 868 9) 1

-(-0 .553 561 26 332 798 2t+ 0 .023 11 751 459 54 46)1 e

 
  +
 
 

 
  + −
 + 

9 1t+ 1 .8 28 613 348 39 214 3)

-(0 .1 422 242 76 322 291 t+ 1 .8 286 13 348 392 14 3)1 e

-(-2 .6 569 93 331 896 34 0t+ -3 .28 25 394 254 21 912 )
e

            (2 .105 83 995 263 23 89) 1-
-(-2 .6 569 933 31 896 340 t+ -3 .28 253 94 254 219 12 )1 e

 
  +
 + 

 
 
 + 

-(-0 .881 875 21 642 977 1t+ 0 .394 764 62 178 601 2)
e

(0 .23 936 650 55 437 50) 1 -
-(-0 .8 81 875 216 42 977 1t+ 0 .3 94 764 621 78 601 2)1 e

-(-0 .04 794 515 79 531 06t+ 1 .23 833 45 552 416 31 )e
           (-0 .4 561 020 93 368 282 ) 1 -

-(-0 .0471 e

 
 + +
 + 

+

-(0 .7 545 25 208 237 51 3t+ -0 .24 73 541 455 47 301 )e
(-0 .4 68 750 297 68 276 3) 1-

94 515 795 31 06t+ 1 .23 833 455 52 416 31) -(0 .7 545 252 08 237 513 t+ -0 .24 735 41 455 473 01 )1 e

-(0 .2 014 6e
            (-0 .5 42 542 862 10 019 5) 1-

   
   + +
   +   

9 409 148 98 5t+ 0 .0 109 80 638 546 41 9) -(-1 .442 00 484 499 31 11t+ -1 .262 639 71 181 395 5)e
(2 .53 34 913 284 84 165 ) 1 -

-(0 .2 014 694 09 148 985 t+ 0 .0 109 806 38 546 419 ) -(-1 .442 00 484 499 31 11t+ -1 .2 62 639 711 81 395 5)1 e 1 e





   
   +
   + +   





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(14) 

-(0.181886155427568t    +  0.541435695633353   ) -(0.396126942753631t+(-0.442193185355769))e e
ˆ (0.662760246297838) 1- (0.353657817230244) 1-

-(0.181886155427568t  +   0.541435695633353) -1 e 1 e
ySQP

 
 = +
 + + 

(0.396126942753631t+(-0.442193185355769))

-(-2.472628039115358t+  (-2.940959702398721)e
             (2.440751375340688) 1- (0.0870773507766

-(-2.472628039115358t+ (-2.940959702398721)1 e

 
 +
 
 

 
 +
 + 

-(-0.293096644415935t+(-2.212308189304661)e
45) 1-

-(-0.293096644415935t+(-2.212308189304661)1 e

-(-0.293096644415935t+(-0.700801517458886)e
             (0.510313883570241) 1-

-(-0.29309664441591 e

 
 +
 + 

+

-(-0.443322520366752t+0.111149243252744)e
(0.836682517866336) 1-  

35t+(-0.700801517458886)) -(-0.443322520366752t+0.111149243252744)1 e

-(2.3673047330e
            (-0.905631609343865) 1- 

   
   + +
   +   

38706t  +  5.001717921490819  ) -(-1.481677073748799t+(-0.883213916691046)e
(1.863465031255667) 1-

-(2.367304733038706t  +  5.001717921490819) -(-1.481677073748799t+(-0.883213916691046)1 e 1 e

   
  +
  + +  

-(1.097635200399730t+(-0.613553648201361) -(0.150697362451676t+(-1.184510703857781)e e
            (-0.349757700806720) 1- (0.760716282610728)  1-  

-(1.097635200399730t+(-0.613553648201361)1 e

+



 
 +
 + 

-(0.150697362451676t+(-1.184510703857781)1 e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  +  

(15) 

-(0.332126936555156t+   1.007681983199347) -(0.444172085431754t+(-0.279450893378288))e e
ˆ (1.969196293207644)        1- (2.111724406046478) 1-

-(0 .332126936555156t+  1 .007681983199347) -(01 e 1 e
yGA

 
 = +
 + + 

.444172085431754t-0.279450893378288)

-(3.332947377275055t+1.447706027623595)e e
                  (-1.001787992262400) 1-  (-0.470792649996844) 1-

-(3.332947377275055t+1.447706027623595)1 e

 
 +
 
 

 
 +
 + 

-(2.185712759283145t-0.301501202176470)

-(2.185712759283145t-0.301501202176470)1 e

-(0.873077540774102t+2.178047952176411)e
                   (-0.697866455418294) 1-

-(0.873077540774102t+2.1781 e

 
 +
 + 

+

-(0.756907555473917t+  1.529726330379187)e
(-0.743154415343845) 1-

047952176411) -(0.756907555473917t+1.529726330379187)1 e

-(-0.753589156996979te
                   (1.526309603483474) 1-

   
   + +
   +   

+(-0.027084312024924)) -(0.192131165731807t+1.441594044637437)e
+(-1.105327764372499) 1-

-(-0.753589156996979t-0.027084312024924) -(0.192131165731807t+1.441594044637437)1 e 1 e

             

   
   +
   + +   

-(-1.420074094303599t+1.358487483132616) -(0.124593090557029t+0.673115873539305)e e
      (0.664396024451153) 1-  (0.770643222832880) 1-

-(-1.420074094303599t+1.358487483132616) -(0.124593090551 e 1 e

 
 +
 + + 

7029t+0.673115873539305)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  

(16) 

 
-(0.278911922019130t+1.365935718401084) -(-0.990318507315346t+0.225897485181500)e e

ˆ (-1.191431060533378) 1- (0.529614018951745) 1-
-(0.278911922019130t+1.365935718401084) -(-0.990318501 e 1 e

yGA SQP

 
 = +−
 + + 

7315346t+0.225897485181500)

-(1.913383112122880t+2.056665453809710) -(-1.476e e
                     (-0.780839802931623) 1- (2.072564254239857) 1-

-(1.913383112122880t+2.056665453809710)1 e

 
 +
 
 

 
 +
 + 

796702442784t+(-0.983846604535705))

-(-1.476796702442784t-0.983846604535705)1 e

-(1.298764347101732t+(-1.801665027545679))e
                 (-0.068925349662073) 1-

-(1.298764347101732t+(-1.8011 e

 
 +
 + 

+

-(3.029564055050950t+3.030238468989015)e
(-1.231270368367227) 1-

665027545679)) -(3.029564055050950t+3.030238468989015)1 e

-(0.100149361415171t+e
                     (2.213368127024384) 1-

   
   + +
   +   

2.080651212645160) -(-0.619958197695562t+1.310252620309056)e
(-0.138283640684099) 1-

-(0.100149361415171t+2.080651212645160) -(-0.619958197695562t+1.310252620309056)1 e 1 e

                

   
   + +
   + +   

-(1.245016206814900t+2.173530438199177) -(0.589440455081705t+3.055471334527169)e e
       (0.541804557406408) 1- (0.651293461630325) 1-

-(1.245016206814900t+2.173530438199177) -(0.58944045508171 e 1 e

 
 +
 + + 

05t+3.055471334527169)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  

  

(17) 

 

5. Conclusion  

� A new approach is developed to solve Delay Differential Equations using Active Set, Genetic Algorithm, 

Sequential quadratic Programming and their hybrid approach GA-SQP. 

�  Comparison of exact solution with the reported solution obtained by the above mentioned techniques is 

provided for given problem. 

� It is concluded that AST and SQP are more efficient than GA. 

� And GA-SQP provides more quick and better results for optimization and time factor is minimize in this 

technique. 

� Thus a new artificial intelligence based technique is developed for solving higher order delay differential 

equations. 

In future someone can try these techniques for future delay in differential equations with tan-sigmoid and some 

application of Bessel’s function. One can improve the accuracy and convergence of results by changing the optimization 

algorithm. 
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