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ABSTRACT 

 

Interval methods offer quite new research aspects regarding Digital Signal Processing. In scenarios like 

finite numeric representation, limited precision sensors or the quantization process, signal processing has 

been practicing interval mathematics as quite a reliable gizmo for expressing the uncertainties. Some types 

of control systems like estimating or soft computing systems, the uncertainties are caused due to the 

presence of variable instability, variance of signal, or the rate of safety of some actuators. Since most DSPs 

are designed to work in real time environments, effective implementation of interval arithmetic for these 

processors asks for fast processing capabilities. Hence the aim is to develop an environment that facilitates 

interval arithmetic operations to be executed at the very same computational speed as is offered in many 

contemporary signal processors. So we are proposing the design and implementation of Interval Arithmetic 

multiplier that functions with IEEE 754 numbers. This design carries out the execution of an algorithm 

which performs better than conventional algorithm of Interval multiplier. The performance of proposed 

architecture is better than that of a conventional Canonic sign digit (CSD) floating-point multiplier, as it can 

perform interval multiplication and floating-point multiplication as well as Interval Comparisons. 
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1 INTRODUCTION 

 

Applications associated to control, communications, multimedia, etc., have been employing digital 

signal processing because of high functionality and performance it attains for applications involving limited 

instruction set for implementing repetitive linear operations such as addition, multiplication, delay, etc., on a 

stream of sampled data. To fulfill the cost and performance needs of a particular application, digital signal 

processors have been combined with one or more FPGA devices or employed as attached coprocessor. One 

of the attractive aspects of digital signal processors is performing multiply-accumulate operations in a single 

instruction cycle. This operation is the basic step for performing vector product which is the key to 

computing digital filters, Fourier transforms and correlation. Underlying many of these is the need for 

accurate and reliable results, but errors can lead to inaccuracies [1] [2] [3]. There are basically three different 

sources of error associated with numerical computations: 

1) Data Problem: occurs due to the fact that some given parameter values may not be known exactly 

(i.e. true for physically determined parameter values), or else they may not be exactly represented in a 

computer (i.e. the number π). Consider the expression f (x) = 1−x+ x2/2 with x = 0.531, i.e. with 10-3 

precision. Computing this expression with classical arithmetic gives the result f (x) = 0.610. Now, if we 

perform the computations using IA, we get f (x) = 0.469 + 0.5312/2 ∈ 0.469 + [0.281, 0.282]/2 and so f (x) 

∈ 0.469 + [0.140, 0.141] = [0.609, 0.610]. Through this method it is made sure that the interval [0.609, 

0.610] contains the exact answer. 

2) Truncation Error: occurs due to the necessity to terminate some infinite converging process after a 

finite number of steps. Or by the requirement that some well-defined expression is evaluated at some point 

whose location is known only approximately (i.e. the reminder term of Taylor series).  

3) Round-off Error: is caused by the necessity to restrict computational processes to operate on 

numbers which do not exceed some predetermined number of digits in length. It is the difference between 
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the calculated approximation of a number and its exact mathematical value. It has traditionally been the most 
troublesome, primarily because of its non-analyticity. 

Interval Arithmetic is a methodology which is used to examine and control numerical errors in 
computers. Ramon E. Moore published the first book on the subject entitled "Interval Analysis" [4] in 1966. 
In the 1990's, the interval arithmetic community observed substantial emergence and nowadays problems 
like global optimization, numerical analysis and many engineering and CAD issues, are being solved by 
utilizing interval algorithms [5] [6]. Interval based algorithms continually keep on being answer to many 
signal processing and controls problems. For example, finding the optimal solution to a problem is often 
quite necessary in signal processing, i.e., cost function minimization. The fact that makes the techniques of 
interval global optimization approaches quite fetching in DSP and control applications, is that they ensure 
convergence to global minimum point(s). Reliable results are interpreted as the solutions in which the 
outcome of the operation being executed is ensured to be exactly the accurate result. The interval established 
by interval analysis is guaranteed to contain the accurate answer expected from an operation executed on 
two input interval numbers. The principal advantage of traditional interval arithmetic is its ability to furnish 
the range of all the possible results of a given operation.   

As many of the applications in DSP include tasks that are recursive and manipulate a sequence of data, 
hence there is always a chance of errors and uncertainties growing unboundedly over time [7]. Utilization of 
interval arithmetic in such applications keeps the errors within limits. Better performing algorithms are 
established from the utilization of interval arithmetic due to its practice of: 
• Eliminating instabilities occurring due to mathematical operations of numbers of very different 
order of magnitude, by monitoring certain parameters of the optimization algorithm  
• Limiting the results to lie within certain bounds.  
• Ensuring the convergence of the algorithm towards a stable filter by limiting the parameter space to 
certain bounds.  

Slower computational speed is the main disadvantage in employing this algorithm in software. This 
happens because of the reason that interval arithmetic deals with two numbers instead of just one i.e. to 
operate on intervals.  Implementation of interval arithmetic in software experiences the disadvantage of 
additional overhead resulting from error and range checking, rounding modes, function calls and memory 
management. As a consequence, interval algorithms faces the weakness of  experiencing relatively high 
execution time on contemporary computers, as compared to real arithmetic their counterparts [8] [9] [10]. To 
subdue the overhead experienced because of rounding, a hardware solution is mandatory that can perform 
the rounding calculations for each interval simultaneously. Interval Arithmetic Logic Units (I-ALU) are 
designed particularly to serve the purpose of operating on interval numbers. Any digital signal processor 
finds this type of an Interval ALU (I-ALU) attractive to be used as its core. The throughput of this ALU is 
desired to be comparable to that of non-interval units. DSPs are aimed to support the execution of algorithms 
that are characterized by repetitive multiply-and add operations, in contrast to the common general purpose 
microprocessors that are supposed to manage general computing operations. They utilize a modified 
Harvard architecture supporting separate data and program memory [11].  

The paper demonstrates Interval Multiplier unit that will furnish the basis for building digital signal 
processing systems for producing reliable answers expeditiously. Section 2 will discuss Interval arithmetic, 
some background information and previous work done. Section 3, discusses the basic architecture of the 
proposed Interval Multiplier Unit. Comparison of the time and efficiency of this algorithm with previously 
utilized methods and algorithms through Implementation and analysis is manifested in the section 4 and 
finally, section 5 provides the conclusion and future directions related to the proposed approach. 
 

2 Interval Arithmetic 

Generally, capital letters are used for representing intervals and small letters are used for representing 
real numbers. The upper and lower interval end points of an interval X are represented as xu and xl, 
respectively. Any closed interval X= [ xl , xu] contains all the real numbers that lie in-between and including 
the two endpoints xl and xu (i.e., X={x: xl < x <xu}) as well. When arithmetic operation is performed on 
computer, it may not be possible to represent one or both end points of interval. In this case, outward 
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rounding is used for computing the interval endpoints. Outward rounding is performed by rounding the 
lower endpoint towards negative infinity (Ñ), and rounding the upper endpoint of the interval towards 
positive infinity (D), i.e. increasing the bound of the interval. While rounding towards negative infinity is 
called round down technique and rounding towards positive infinity is called round up technique. Outward 
rounding ensures that the resulting interval encloses the correct result. Addition, subtraction, multiplication, 
and division (basic arithmetic operations) are described for interval numbers as follows:  
 
• Z=X+Y= [xl+yl,xu +yu] 
• Z=X-Y= [xl-yu, xu – yl] 
• Z= X*Y= [min (xl*yu, xl*xu ,xu*yu, xu*yl), max (xl*xu, xu*yl, xu*yu, xl*yu)]  
• Z= X/Y= [min (xl/yu, xl/xu, xu/yl, xu/yu), max (xl/xuxu/yl, xu/yu, xl/yu,)] 

Previously implementation of interval arithmetic was performed in software. Slow speed was the main 
drawback of software implementation. They experienced large number of overhead due to the facts like 
function calls, changing of rounding modes, memory management, exception handling. For instance, 
multiplication operation requires large number of conditional branches to make the decision between the 
endpoints for multiplication to produce the proper required result. It is shown in the Table 1. 
 

Table1. Cases for interval multiplication 
Case  Condition  Z 

1 xl>0, yl>0         Zl=xlyl,Zu=xuyu 

2 xl>0,yu<0 Zl=xuyl, Zu=xlyu 

3 xu<0,yl>0 Zl=xlyu, Zu=xuyu 

4 xu<0, yu<0 Zl=xyyu, Zu=xlyl 

5 Xl<0<xu, yl>0 Zl=xlyl, Zu=xuyu 

6 Xl<0<xu, yu<0 Zl=xuyl, Zl=xlyl 

7 Xl>0, yl<0<yu Zl=xlyl, Zu=xuyu 

8 Xl<0, yl<0<yu Zl=xlyu, Zu=xlyl 

9 Xl<0<xu,yl<0<yu Zl=m n, Zu=m x 

 
As we can see, for selecting the end points, depending on the values of the input intervals with respect 

to zero, nine distinct cases are to be considered for multiplication. In order to select between the 
multiplications cases, large number of conditional statements was needed. As individual operations were 
performed sequentially, extra work is done and it involves several time-consuming steps. In case of the 
misprediction of conditional branches, the performance penalty to be paid for was quite heavy in fully 
pipelined processors. Quite a large number of computational cycles are needed to change the rounding 
modes in software. A numerous cycles delay and sever limitations in parallel execution are experienced due 
to the fact that changing of rounding mode on many processors requires the complete floating-point pipeline 
to be flushed. General implementation of interval multiplication in software is carried out through 
subroutines, and so due to several subroutine calls and returns, an extra overhead is faced during execution. 
Hence, contemporary computer architectures face the drawback of causing slower execution of interval 
algorithms as compared to that for their counterparts in real arithmetic [9]. It was observed that software 
implementations turn out to perform almost four times slower than the executions performed by functionally 
equivalent hardware.  

In order to overcome these performance drops caused by software limitations, hardware support was 
employed. An ALU design based on interval was proposed to provide almost the same computational 
execution time for interval operations as that is provided in many DSPs [12]. In this design there were two 
independent modules working in parallel to compute the lower and upper bound of the output interval. A 
particular functional unit of the ALU was designed to support the execution of the basic fixed-point interval 
arithmetic operations of addition, subtraction, multiplication along with the interval set operations of union 
and intersection. Another plus point is that through the multiply-accumulate instruction; the ALU was 
improved to perform dot products. Conventionally, division can only be implemented through shift 
operations on DSPs.  In this design, division was done by shifting. The goal to achieve was to design ALU 
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in order to have maximum throughput while diminishing area. The objective of this design was to solve DSP 
field problems with improved accuracy and faster rate. 
 

3 Interval Arithmetic Multiplier 

The most general definition of interval(X= [xl,xu] and Y=[yl ,yu] )  multiplication is :  
 
Z=X.Y= [min (xuyl,xlyl, xlyu, xuyu), max(xlyu ,xuyl, xuyu ,xlyl )] 
 
If the floating point multiplier can provide at least two times of the accuracy in the inputs operands, in the 
resulted product, the interval multiplication can be calculated as:  
 
Z=X.Y= [  min (xlyl, xlyu ,xuyl, xuyu), Δmax(xlyl, xlyu ,xuyl, xuyu)] 
 

where   and Δ represents rounding down and up towards negative and positive infinity respectively. 
According to this definition, calculating the endpoints of interval of Z involves four multiplications, four 
comparison operations, and two steps of fixed rounding [13]. Normally interval arithmetic is still being 
practiced to perform on double precision input operands in order to produce a double precision output. In 
such case, X.Y can be calculated as: 

 
Z=X.Y= [min ( xl.yl, xu.yl, xl.yu,  xu.yu), max(Δ xl.yl, Δ xl.yu , Δ xu.yl, Δ xu.yu )] 
 
According to this definition, the interval endpoints of Z are calculated by doing eight multiplications, 

and six comparison operations. By employing the different technique, the number of multiplications can be 
reduced. This approach requires inspection of the signs of endpoints of the given intervals in order to make a 
decision of which endpoints should be multiplied to obtain the proper result. The endpoints signs of the 
intervals X and Y state the comparison of the numbers with zero i.e. whether X and Y are less, greater or do 
they contain zero within their intervals. This gives nine possible cases, as shown in the Figure 1. 

The first eight cases require only two multiplications of floating-points to be performed. However, in 
the ninth case (when both intervals contain zero) only the sign bits inspection is not enough to determine the 
endpoints that are to be multiplied. One approach for dealing with this case is letting the interval multiplier 
handle it automatically on its own conditions. However, this method involves a substantial amount of extra 
hardware for storing the temporary values and calculating the minimum and maximum among them to 
decide the output. Control logic also gets complicated by this. Large numbers of conditional statements are 
employed to select among the nine cases, this causes the execution time of interval multiplication to 
increase. As this case arises seldom, the approach described in this paper includes four multiplications of 
floating points and four comparisons of the products obtained. The main drawback of such an algorithm is 
the difficulty in implementing it with pipelined structure due to the fact that the numbers of multiplication 
steps varies from case to case. 

We propose new algorithm to evaluate the result for interval arithmetic multiplication shown in Table 
2. 

Table 2.Efficient Algorithm used for interval multiplication 
 

P=xlyl Min1=min(p,q) 

q=xlyu Max1=max(p,q) 

R=xuyl Min2=min(min1,r) 

T=xuyu Max2=max(max1,r) 

Zl=min(min2,t) Zu=max(max2,t) 
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Figure 1a.Nine cases for interval multiplication 

 
Figure 1b.Nine cases for interval multiplication 

*mn= min ( xlyu , xuyl) 

*mx= max ( xlyl, xuyu) 
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It has much less calculations than the conventional interval multiplication shown in Figure 1.  Two 

stages are involved in Interval Multiplication. In stage1 evaluation, product of two 64 bit double precision 

IEEE 754 floating point numbers is obtained. The following result for stage 1 is obtained, i.e. p=xl.yl, 

q=xl.yu, r=xu.yl, t=xu.yu, shown in figure 2.  In stage 2 calculations, we find the minimum and maximum 

values of compared results of p, q, r & t, and then store the final result of multiplication in Zl and Zu 

registers. 

Minimum1 and maximum1 values are obtained by comparing p and q during stage 2. Also by 

comparing minimum1 and r, minimum2 and maximum2 values are obtained. Finally we get Zl and Zu by 

comparing minimum2 and t. The final result is stored in Zl and Zu registers, shown in Figure 3. With this 

approach, we need only three floating-point comparisons and four floating-point multiplications to obtain 

result of interval multiplication. But conventional interval multiplication involves nine cases to verify which 

consume more time and hardware. 

 
Figure 2.Stage 1 Evaluation of Interval Multiplier 

 
Figure 3.Stage 2 evaluation 
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Figure 3 shows the stage 2 evaluation of interval multiplier. The calculated values of p,q and r,t are 

used as input to mux1 and mux2 respectively. P and q are selected and passed to 64 bit comparator when 

select line is (s0, s1) “0”. When select line is “1”, r and t are selected and passed to 64 bit comparator. The 

comparator produces the min1 and max1 values, min1 along with r is given to mux3 and mux4 respectively, 

max1 along with r is given to mux5 and mux6 respectively. 

The output of mux3 and mux4 (r, min1) are fed into 64 bit comparator and the output of mux5 and 

mux6 (r, max1) are fed into the 64 bit comparator. Select lines along with p, q are passed to mux5 and mux6 

to evaluate minimum1 (min1) and maximum1 (max1) respectively.  Next time select lines (s02, s12) 

becomes 01, minimum1 (min1) and r are selected from mux33 and mux4, passed to 64 bit comparator, 

resultant select lines(se13) along with minimum1 and r are fed to mux7 to get minimum2 (min2) value. Now 

select line (s02, s12) become 10 and minimum2 (min2) and t are passed to 64 bit comparator, depending on 

select line (sel323) and minimum2 (min2), t the result minimum3 (min3) is obtained through mux9 which is 

stored in Zl. now select line is (s02, s12) made 01, maximum1 (max1) and r are selected through 

multiplexers 3 and 4, and passed to 64 bit comparator. 3 bit select line (sel321) along with max1 and r are 

given to multiplexer (mux8) to obtain the result maximum2 (max2). Next the select line(s02, s12) becomes 

10, maximum2 (max2) and t are selected through mux3 and mux4, passed to 64 bit comparator, compared, 

the resultant select line(sel322m) along with max2 and t are given to mux10 to get maximum3 (max3), the 

result maximum3 is stored at Zu. The result Z of interval multiplication is denoted as (Zl, Zu). By applying 

this algorithm, number of comparisons has been reduced to almost half of the required. 

 

4 Performance Analysis 

Efficiency is the basic purpose of any design or algorithm. One way to measure the efficiency is 

through the analysis of execution speed of the algorithm.   

 

 
Figure 4a.Time analysis of IA multiplier 
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Figure 4b.Time analysis of IA multiplier 

 

The algorithm we have described in the last section has been executed and analyzed on MATLAB for 

the multiplication of random numbers. We have compared the previous algorithm with our proposed 

algorithm on the basis of time taken for the execution of multiplication of some random numbers chosen by 

MATLAB. We observed that the time taken by the previous approach is comparatively higher than that of 

the newer approach, as demonstrated by the Figures 4a and 4b.We made a function in MATLAB that 

executes both the old and new algorithms of interval multiplication for the same set of numbers, generated 

randomly. Then calculates the time taken by both algorithms and plots them against each product on same 

graphs, old algorithm time shown in green color and new in red color in figures 4a and 4b. These are two 

graphs for two different set of numbers but both show that the new approach takes comparatively less time 

to calculate the output interval. 

 

5 Conclusion & Future Directions 

An effective way to design and implement interval arithmetic units is demonstrated in this paper, by 

proposing a new algorithm for interval multiplier that is aimed to be employed in the fields of DSP and 

control. The algorithm discussed here finds its application in multiplication of both intervals as well as 

floating-points. Because of the execution of interval comparisons along with interval multiplication, interval 

multiplications are executed with better accuracy and performance as compared to formal floating point 

multiplication. To compute given any two Interval numbers, the proposed IA multiplier uses four 

multiplications and three comparisons, whereas for convention interval multiplication algorithm, with 

respect to cases the number of steps for the multiplication is not fixed, because of which pipeline 

implementation becomes difficult. However, the hardware implementation of the proposed multiplier 

algorithm is a future prospect of our work, pipelining can be an efficient way to increase performance. 

Moreover the comparator can also be used for other important interval operations, such as interval hull and 

intersection. Efficient utilization of active area along with improved functionality and performance can be 

achieved this way. 
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