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ABSTRACT 

 

The unsteady problem of thin film flow of a Power law fluid on a vertical cylinder for a drainage problem has 

been studied. The nonlinear differential equation has been derived from the momentum equation by Jeffrey's 

approach (Gutfinger and Tallmadge 1964; Bagchi1965; Dutta 1973). Series solutions have been obtained by 

binomial series method. Expressions for velocity, flow rate, thickness of the fluid film, mean thickness, 

vorticity vector and force exerted by the fluid on the cylinder are calculated. The graphical results for velocity 

profile and thickness of the film are discussed and examined for different parameters of interest. 

KEYWORDS: Thin film flow; power law fluid; Jeffrey's approach; Binomial series method. 

 

1 INTRODUCTION 

 

In recent years, the flow of non-Newtonian fluids have been intensively studied due to their industrial 

application in medical and engineering sciences. Tooth paste, greases, paints, drilling mud, blood, clay 

coatings, polymer melts etc., are the some examples of non-Newtonian fluids. In addition the conservation 

of mass and momentum, material constitutive equations are necessary for taking into account the memory 

effects of such fluids. It is very complicated to propose a particular model which display all properties of 

such fluids, appropriate to its mathematical complexity. Due to this cause numerous models have been 

projected to investigate the behavior of various kinds of non-Newtonian fluids (Deshpande and 

Barigou2001; Kemihaet al., 2006;Jieand Xi-Yun 2006; Mahomedet al., 2007). 

In the category of non-Newtonian fluids the power law model have been extensively studied because 

of mathematical simplicity and wide spread industrial applications. During the last four decades significant 

progress has been made in the development of analytical solution and numerical algorithms of power law 

fluid flow problems ( Yong-Li et al., 2009; Kapur 1963;Nejat et al.,. 2011; Ghoreishy and Razavi1998). 

Study of thin film flow has received significant attention due to practical concentration in physical 

and biological sciences. Many researchers have grappled with the analysis these type of flows since their 

formulation. The non-Newtonian fluids have been used by researchers (Siddiqui et al., 2006; Hayat and 

Sajid 2007; Sajid and Hayat 2008) for thin film flow to investigate and solve them analytically and 

numerically. 

In this paper we investigate the thin film flow down a vertical cylinder of a power law fluid using 

Jeffrey's approach(Jeffreys 1930; Van Rossum 1958; Gutfinger and Tallmadge 1964; Bagchi 1965; Dutta 

1973)for drainage problem, two cases are discussed, Newtonian and power law fluid respectively. In 

Newtonian case we find the exact solution while in power law series solution is obtain. According to the 

best of our knowledge the solution of the problem has been not reported in the literature. 

This letter is organized as follows. Section 2 contains the governing equations of the fluid model. In 

Section 3 the problem under consideration is formulated. In section 4, the governing equation of the problem 

is solved. Section 5 deals with the results and discussion. Concluding remarks are given in section 6. 

 

2. BASIC EQUATIONS 

 

The basic equations, governing the flow of incompressible power law fluid neglecting the thermal effects, 

are:  

0,=V    (1) 
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,= Sf
V

divp
Dt

D
       (2) 

where   is the constant density, V  is the velocity vector, f  is the body force, p is the pressure, S  is the 

extra stress tensor and 
Dt

D
 is denoting the material time derivative derivative. As discussed in(Bird et al., 

1987), the stress tensor defining a power law fluid is given by:  

,
2

)(
= 1

1
2

1 A
A

S

n

tr
         (3) 

 where   is the coefficient of viscosity and n  is the power law index. The Rivilin-Ericksen tensor, 1A  is 

defined by  

    .=1

T
VVA     (4) 

Remark: On behalf of consequent model for 1<n  the fluid is "pseudoplastic" for model or "shear 

thinning" for 1>n  the fluid is "dilatant" or "shear-thickening" and for 1=n  the Newtonian fluid is 

recovered. 

3. PROBLEM FORMULATION 
 

Consider unsteady, laminar and parallel flow of an incompressible Power law fluid moving slowly 

down an infinite vertical cylinder. As a result, a thin fluid film of thickness h which varies with time 

adheres to the cylinder and drains down under the action of gravity. The geometry of the problem in Figure 

1 shows that rz- coordinate system has been chosen such that r-axis is normal to the cylinder axis and z-axis 

along the cylinder in downward direction. For simplicity, we assume that the fluid is non-conducting and 

completely wets the cylinder. Further there is no applied (force) pressure driving the flow and body force is 

only due to gravity and therefore we shall look for a velocity and a stress field of the form:  

  ).,(=,),(0,0,= trStrw SV
           (5) 

Using equation (5), the continuity equation (1) is identically satisfied and the momentum equation (2) 

reduce to, 

 

 

r – component: 

,=0
r

p




 (6) 

 - component:  

,=0



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p
 (7) 

z – component:  
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310 



J. Appl. Environ. Biol. Sci., 4(9S)309-319, 2014 

 

 
Figure1.Geometry of the thin film flow down a vertical cylinder. 

 

Equations (6) and (7) implies that )(= zpp  only. Assume that pressure p  is atmospheric pressure i.e., 

p  is zero (gauge pressure) everywhere. As we are discussing the drainage flow problem, therefore, we 

take 
r

w




 positive. Thus equation (8) reduces to, 

.= g
r

w
r

rrt

w
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  (9) 

Neglecting local acceleration term 
t

w




 which is small compared to gravity except in the initial emptying 

of the vessel, we get,  

,=
1


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w
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            (10) 

which is non linear differential equation. The boundary conditions for this problem are: 

,=0= Rrat
r

w




   (11)                       

,=0= wRratw    (12) 

4. Solution of the Problem 

 

Integrating equation (10) with respect to r  and using boundary condition (11), we obtain, 

.
2

=

1

2
1 n

n

r
r

Rg

r

w

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











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






                                                      (13) 

which is a linear differential equation, here two cases arise: 

Case-I: 1=n  (Newtonian fluid) 

Case-II: 1n  (Power law fluid)     

Solution for the Newtonian Fluid 

Velocity profile  

For 1=n , the solution of equation (13) using boundary condition (12) is,  
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  .ln2
4

= 222






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

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The z – component of the force exerted by the fluid on the cylinder surface is given by, 

  .drSF

R

R

Rrrzz

w

w 
                                                          (15) 

Inserting the value of rzS  from equation (3) into equation (15), we get, 

.1)(
2

2



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
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                                                 (16) 

The vorticity vector   is calculated as: 

jV 







 r

r

Rg 2

2


,                                                 (17) 

wherej is the unit vector in  - direction. The negative sign indicates that vorticity decrease with the 

increase in r. We note that vorticity is zero at the free surface, while its magnitude is maximum at the 

cylinder given by










 w

w

R
R

Rg 2

2

 . 

Volume Flow Rate:  

In dimention form, the flow rate Q , is given by,  

.)(2=)(=
2

0
drrrwdrdrrwQ

R

w
R

R

w
R  



                                   (18) 

By making use of equation (14) in (18), we obtain, 
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Thickness Of The Fluid Film: 

Volume flow rate in term of continuity equation is given by,  

.2=
t

R
R

z

Q








  (20) 

Substituting equation (19) in equation (20), after considerable simplification, we obtain, 
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After simplification, we get,
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2
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Now integrating equation (22) with respect to t  and using the boundary condition 
wRtR =)(0, , we get 

the relation between film thickness z  and t  as,  

  .ln2
2

= 222

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

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w

w
R

R
RRRt

g
z




(23) 

Here two cases arise first for drainage on convex surface when 
wRRh =  and second for drainage on 

concave surface when RRh w = . 

For convex surface by substitution hRR w = , we get, 
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and for concave surface ,= hRR w  we arrive at,  
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The amount of fluid adheres to the cylinder of length z is of great interest and can be obtained by defining 

mean thickness h , which is, 

.
1

=
0

hdz
z

h

z

 (26) 

Differentiating equation (24) with respect to h and using the value of dz into equation (26) gives the 

mean thickness h for a cylinder of length z in terms of the fluid properties and the point thickness at z
(Raghurman 1971).The mean thickness is given by, 
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Solution for the Power Law Fluid 

Velocity profile: 

In case of 1,n  from equation (13), we have, 
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By the use of binomial series, it is simplified to: 
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The expression for velocity field is obtained by solving equation (29) corresponding to boundary condition 

(12) as,  
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The vorticity vector   is calculated as: 
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wherej is the unit vector in  -direction. The negative sign indicates that vorticity decreases with the 

increase in r. We note that vorticity is zero at the free surface, while its magnitude is maximum, given by  
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Volume Flow Rate: 

By making use of velocity field defined by equation (30) in (18), we obtain,  
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Thickness Of The Fluid Film 

Simplifying equation (32) after making use of equation (20), one obtains,  
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By integrating equation (33) with respect to t , and then using the boundary condition 
wRtR =)(0, , we 

get the relation between film thickness z  and t  as,  
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For drainage on a convex surface, we get, 
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and for drainage on concave surface, we arrive at,  
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The mean thickness is given by,  
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where,
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Figure2.Velocity profile for Newtonian fluid for drainage in thin film flow, when   =7 poise, R=11 

cm, Rw=10 cm and
3/78.0 cmg .
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Figure3.Velocity profile for Power law fluid for drainage in thin film flow for different values of n , 

when   =7 poise, R=11 cm, Rw=10 cmand
3/78.0 cmg . 

 

 
 

Figure. 4.Velocity profile for Newtonian fluid for drainage in thin film flow for different values of   

=7 poise, when R=11 cm, Rw=10 cm. 

 

 
Figure5.Velocity profile for Power law fluid for drainage in thin film flow for different values of   =7 

poise , when R=11 cm, Rw=10 cm and .1.1n  
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Figure6.Velocity profile for Newtonian fluid for drainage in thin film flow for different values of R 

measured in cm, when   =7 poise, Rw=10 cm and
3/78.0 cmg . 

 
Figure7.Velocity profile for Power law fluids for drainage in thin film flow for different values of R when 

  =7 poise, Rw=10 cm, n=1.9 and
3/78.0 cmg . 

 
Figure8. Growth of film thickness with respect to time for Newtonian fluid, when Rw=10 cm,   =7 poise, 

h=1 cm and
3/78.0 cmg . 
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`   

Figure9. Growth of film thickness with respect to time for Power law fluid for different value of n, when 

Rw=10 cm,   =7 poise, h=1cm and
3/78.0 cmg . 

 

5. RESULTS AND DISCUSSION 

 

The systematic investigation for effects of Power law index n , density   and R  on velocity profile 

and growth of film thickness with respect to time are observed graphically in figures (2) – (9). The 

variation of axial velocity for n ,   and R  for both Newtonian and Power law fluid in case of drainage is 

displayed in figures (2) – (7). From figures (2) – (7), we observed that, with an increase in n ,   and R , 

velocity profile increases. The difference of   and n for growth of film thickness with respect to time in 

figure (8) – (9) have been plotted, in which it is observed that thickness of fluid film increases for all n. 

 

6. CONCLUDING REMARKS 

 

We have presented results for the thin film flow field of a fluid called the Power law fluid, on a vertical 

cylinder for drainage problem. The resulting nonlinear differential equation has been solved by binomial 

series method, which is a suitable analytical method for the proposed problem. The velocity profile, 

vorticity vector, volume flow rate, growth of thickness of the fluid film, mean thickness and force exerted 

by the fluid on the cylinder have been derived for the title problem. 
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