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ABSTRACT 

 

In this paper, we show that the performance of invariant moments in shape recognition can be significantly 
improved. This is achieved without any additional computational cost by taking the moments of 3 to 4 
annuli around the center of gravity of a given picture. Our idea is applied to different datasets of leaves and 

achieves in some cases an improvement of the recognition rate from 57% to 84%.  
KEYWORDS: Invariant moments, Hu moments, Chen improved moments, shape recognition, neural 

networks 

 

1 INTRODUCTION 

 
Invariant moments are by now more than 50 years old. In 1962, Hu [1] introduced 7 invariants that he 

derived using the theory of algebraic invariants and that later  became known as Hu’s moments. Six of 
these moments are given by the expressions: 
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is the central moment of the domain Ω and (xc ,yc) are the coordinates of the center of gravity of Ω. Hu 
[1], showed that these computationally simple to obtain moments are invariant to rotation, scaling and 
translation and have the discriminative power to be a reliable tool for shape recognition. According to [3] 
and [4], Hu’s moments are considered as a numerical, global and non-preserving technique for shape 
recognition as it uses all of the pixels of a picture (rather than just the boundary) and from which one 

cannot recover the original picture. This is why many researchers sought to generalize and improve Hu’s 
moments into a complete theory of invariant moments that is now fully and beautifully summarized in the 
recent book by Flusser et. al [2].  In fact, in order to remedy the redundancy of Hu’s moments and their 
inability to recover the initial shape of the domain, many turned to orthogonal moments that replace the 
expression of (x-xc)

p
(y-yc)

q
 in (2) by Pm(x)Pn(y) where the family {Pm(.)}m=0, 1, 2,….is a familyof orthogonal 

polynomials thus leading to the birth of Zernike moments [5-6], Pseudo-Zernicke moments [7], Legendre 

moments [8-9], Chebychev moments [10-11], Fourier-Mellin moments [13],  Chebychev-Fourier [14] and 
radial harmonic Fourier moments. Besides removing the redundancy in the original Hu’s moments, these 
invariant moments based on orthogonal polynomials are relatively fast and stable and allow the user to 
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recover the shape of the domain in the same way a periodic function is recovered from its Fourier 
coefficients. One should caution here that the ability of reconstructing a shape from its orthogonal moments 
is rather limited compared to the standard techniques such as wavelets [2].       

Since the original work of Hu did not leave much of an insight on how to obtain higher order 

moments many authors turned to the complex moments of the form 

    


 dxdyiyxiyx
qp

cpq
  (3) 

for domains centered at the origin. Thus many authors were able to obtain higher order moments 
using different approaches [2], [16-21]. However, except for the work of Flusser [2, 20, 21] many of the 
obtained higher moments were either incomplete or interdependent. In fact, as it turns out, the original Hu 
moments are dependent and one can express ϕ3 in terms of ϕ4, ϕ5, and ϕ7 (see [2] for example) and this is 
the reason we only listed 6 out of the 7 original moments in equation (1). 

Hu’s moments and complex moments carry most of the information about a shape in their first few 
terms, in the same way the first few terms of a series expansion yield a good approximation about  a given 
function. Moreover, one can easily see from equations (2) and (3) that both moments give more weight to 
pixels that are farthest from the center of gravity of the picture which is mostly a good thing because most 
of the information about a shape is located on its boundary. In fact, Chen [22] generated moments that are 
computed only on the boundary of the shape with reasonable success. However, the unequal weight given 

to pixels tends to give an unfair emphasis of extracted features on portions of the domain and yield a 
negative impact on the discrimination ability of the moments [23]. In addition, when the resolution of a 
picture is below a certain threshold moment invariants tend to fluctuate wildly when scaled and rotated 
(from 47% to 124%) especially for high order moments [24]. The purpose of this paper is to show that this 
problem can be remedied by simply computing the moments of different annuli whose union constitutes the 
totality of the shape.  

The rest of the paper is organized as follows: In Section II, we explain our method and show that the 
moments on the annuli are indeed scale and rotation invariant. Section III describes the different data sets 
that we used and the results of our experiments with a comparison of the recognition rates obtained using 
our idea versus those of standard methods.  Finally Section IV concludes the paper. 

 
2. ANNULI MOMENT INVARIANTS 

 
Suppose that the domain Ωis the disjoint union of n subdomains Ω1,Ω2, …,Ωn then it is obvious that the 

quantities )( ipq  are rotation and scale invariant.  In fact, the domain specific )( ij  specific to each 

subdomain are also rotation invariant. The only remaining question is how to choose to divide the domain 
Ω into subdomains Ωi’s in a systematic way that is also translation, scaling and rotation invariant. A 
possible way to achieve this goal is to  

a) Define R the radius of Ω as the largest distance from the center of gravity of Ωto the boundary of 
Ω. 

b) Consider a finite sequence of positive numbers 1=αn>αn-1>αn-2>…>α1>α0=0. 

c) For i=1 to n,  

 Let Ai be the annuli centered at  (xc,yc) the center of gravity of  Ω of inner radius (αi-1R) 
and outer radius (αiR). 

 Take  Ωi=Ω  Ai 

Clearly, if n=1, then we are dealing with the regular Hu moments. If on the other hand n is too large, then 
each of the subdomains Ωiwould only contain a few pixels and we would run the risk of representing a 

shape with a high dimensional feature vector with all the problems that can come with it. Figure 1.1 shows 
an example of a domain divided into 3 subdomains according to the above algorithm. 
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Figure1.1 Dividing a domain into 3 subdomains. 

 
To show the invariance of the moments with respect to scaling and rotation, Table 1.1 presents the 
moments for each of the subdomains of the leaf in Figure 1.2 in comparison with those computed when the 

picture is scaled down and up by 20% and 40% respectively and when the picture was rotated by 45 
degrees. Clearly, almost all moments of each subdomain are consistent except for the 7

th
 moment. 

 
Figure 1.2 (from the Swedish leaves dataset [25]) 

Moment

Annulus 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Original 0.173 0.0044 0.0145 0.00117 1.9E-05 0.0002 6E-05 3E-05 0.0005 6E-06 3E-05 0.0005 -8E-08 1E-07 7E-06 -1.2E-10 1.8E-13 2E-10

80% Size 0.173 0.0044 0.0146 0.00117 1.9E-05 0.0002 6E-05 3E-05 0.0005 6E-06 3E-05 0.0005 -8E-08 1E-07 7E-06 -1.2E-10 -3.2E-13 2E-10

140% Size 0.173 0.0044 0.0145 0.00117 1.9E-05 0.0002 6E-05 3E-05 0.0004 6E-06 3E-05 0.0005 -8E-08 1E-07 7E-06 -1.2E-10 -9.4E-14 2E-10

45 Degree 0.1729 0.0044 0.0145 0.00117 1.9E-05 0.0002 6E-05 3E-05 0.0005 6E-06 3E-05 0.0005 -8E-08 1E-07 7E-06 -1.2E-10 9.5E-14 1E-10

6 71 2 3 4

 
Table1.1: Annuli Moments for Figure 1.2 scaled and rotated 
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In order to show the relative stability of the annuli invariant moments, we considered two classes of 
leaves from the Swedish Leaf Dataset. Each class contains 75 different pictures each for which we 
computed 6 moments of the annuli for these leaves. The averages and standard deviations of the 6 moments 
for each of the annuli are given in Table 1.2 for the leaf class 1 and Table 1.3 for leaf class 2.  Both tables 

clearly show that the first moment of the first inside annulus is very stable for both classes of pictures. As 
the degree of the moment increases, the relative size of the standard deviation compared to the mean also 
increases. This is quite expected as this is a common problem with moment invariants. Moreover, as one 
moves farther from the center of gravity (to the outer annuli) the ratio σ/μ also increases reflecting the fact 
that the effect of fluctuations and noise are over magnified as we move away from the center.    
 

 Moment Number for Leaf Class 1  

 1 2 3 4 6 7 

Annulus1 Average 0.139122427 0.002184826 9.1615E-06 5.2682E-06 2.3690E-07 -6.1848E-12 

STDev 0.02005192 0.001703412 1.5412E-05 5.3647E-06 2.9642E-07 7.46178E-11 

Annulus2 Average 0.034379534 0.00103974 1.6885E-05 1.8025E-05 5.1872E-07 -2.5324E-12 

STDev 0.012023417 0.000529779 1.6498E-05 1.9208E-05 6.0793E-07 4.64824E-11 

Annulus3 Average 0.006411139 8.20494E-05 4.5733E-06 3.9907E-06 3.9530E-08 6.59851E-13 

STDev 0.007154877 0.00017011 7.5496E-06 7.9759E-06 1.3564E-07 3.49737E-12 

 
Table1.2: Annuli Moments for Figure 1.2 scaled and rotated 

 
  Moment Number for Leaf Class 2 

  1 2 3 4 6 7 

Annulus1  Average 0.175781662 0.005901582 0.0087415 0.000775685 3.05546E-05 0.000122693 

STDev 0.005025624 0.003174222 0.006866421 0.000474111 3.38665E-05 0.000185802 

Annulus2  Average 0.005901582 0.0087415 0.000775685 3.05546E-05 0.000122693 0.000102115 

STDev 0.003174222 0.006866421 0.000474111 3.38665E-05 0.000185802 9.08174E-05 

Annulus3  Average 0.0087415 0.000775685 3.05546E-05 0.000122693 0.000102115 5.27962E-05 

STDev 0.006866421 0.000474111 3.38665E-05 0.000185802 9.08174E-05 7.31053E-05 

 
Table1.3: Annuli Moments for Figure 1.2 scaled and rotated 

 
 

 
 

Figure 3.1 Easy dataset 
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Figure 3.2 Medium dataset 

 
Figure 3.3 Hard dataset 

 

 

 
Figure 3.4 Objects with handles 
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1. DATASETS & RESULTS 

 
For our experiments we use four different sets. The first three sets (fig 3.1-3) are datasets of leaves 

taken from the Swedish leaf dataset. The first set Fig 3.1 consists of 5 different classes each containing 75 

different pictures of leaves. The original pictures are color pictures that we transformed into black and 
white pictures. We called the first set ‘Easy” because the classes are easily distinguishable by humans. The 
second set that we worked with, is the “medium” set given in Fig 3.2. It also contains 5 classes of leaves 
with 75 pictures each. The third set consists of 4 classes that are hard to distinguish especially when the 
pictures were transformed into black and white.  The last dataset is a collection of objects with handles and 
contains 7 classes of pictures of tennis, badminton and squash rackets, banjos, guitars, violins and frying 

pans. Each class of these objects with handles contains 35-40 pictures each all downloaded from the 
internet. Figure 3.5 gives an idea about the variability of pictures in the squash class. 
 

 
Figure 3.5 

 
For each of the datasets we trained a simple feedforward neural network with one hidden layer using 

the invariant moments of the 3-4 annuli as inputs.  As can be seen from table 3.1.a. when 3 annuli are used, 
the recognition rate using just the 3 first moments of each annulus varies from 64% for the hard set to 93% 
for the easy dataset. For the hard dataset, the recognition rate steadily increases as we increase the number 
of moments used to reach 82.4%. For the easy and medium datasets, the best recognition rates are 
respectively 97.4% and 93.8% both reached when all 18 moments (6 for each annuli) are used. But we 
should notice that using only 9 moments in the easy and medium datasets the recognition rates are very 

comparable with the maximum recognition rates.   Using 4 annuli instead of three did not improve the best 
recognition rate by much in all cases. However, when using only the first moment of each annuli, the 
recognition rate is definitely better. Again as the number of moments in increased the recognition rate gets 
better especially for the hard dataset.  

 
 Number of invariants used in the neural network 

3 6 9 12 15 18 

Easy  93.3 97.1 97.2 96.8 96.9 97.4 

Medium 77.3 89.1 93.1 92.4 93.3 93.8 

Hard  64.1 70.2 75 79.4 80.7 82.4 

(a) 
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 Number of invariants used in the neural network 

4 8 12 16 20 24 

Easy  93.7 96.6 96.4 96.9 96.2 97.2 

Medium 81.2 89.6 93.5 93.2 92.9 93.3 

Hard  67.7 72.3 81 83.4 80.4 83.6 

(b) 
Table 3.1 Classification results for the Easy, Medium and Hard datasets  

(a) with 3 annuli and (b) with 4 annuli. 
 

Table 3.2 gives a comparison between the recognition rates obtained using the moments of the annuli 
versus those of the regular Hu moments [1] and Chen’s improved moments [22]. These improved moments 
are the same as Hu moments except that they are computed only on the edge of the image by the replacing 
the double integrals in equation (2) by simple integrals on the boundary of the domain and replacing the 
exponent of the denominator by (p+q+1)/2. For full comparison we also computed improved moments for 
each of the annuli.  We labeled those in table 3.2 as Chen 18 and Chen 24  (6 moments for each annulus). 

The table clearly shows that the recognition rates for the annuli moments are much better than those of the 
regular Hu moments and the improved moments for both the Hard leaf dataset and the Objects with handles 
dataset.  The improved moments were not computed for the objects with handles because of the low quality 
of the pictures in this data set resulting in wild edges (that we obtained for the rackets, and the strings of the 
musical instruments) that resulted in very poor recognition rates. For the Easy and Medium datasets, the 
recognition rates of the improved edge annuli moments had the best performance slightly better than the 

regular Hu moments and the Chen moments. But the annuli moments recognition rates were very 
comparable. 
 

 
 

 

 

 

 
 

3. CONCLUSION 

 
In this paper, we showed that dividing a domain into 3 or 4 subdomains, and computing their invariant 

moments improves the recognition rates in a variety of datasets. This division does not result in any extra 

computations. In fact, each integral or sum computed in the regular Hu moments is simply divided into 3 or  
4 partial sums. We believe that this improvement is due to the simple fact that the annuli moments seem to 
remedy the fact that regular Hu moments tend to give way more weight to pixels that are farthest from the 
center of gravity.  We plan to run the same idea on orthogonal moments to see if the annuli moments would 
improve the recognition rates and the reconstruction procedures of the original shapes. 

Acknowledgement: This work was made possible by UREP grant 14-085-1-011 from the Qatar National 

Research Fund (a member of Qatar foundation). The statements made herein are solely the responsibility of 
the author(s)." 
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