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ABSTRACT 

 

Suppose R is a displacement and unit ring and M is a R− module. In this article, the graph depends on M, we show 

with )M(Γ , so that M=R, then )M(Γ is classic zero divisor graph. We show that the )M(Γ graph with 

3))(( ≤Γ Mdiam is a connected graph and in M Lesser module with condition }/{)( * OMMZ ≠ , have

∞=Γ ))(( Mgr , if and only if )(MΓ is a star graph. 

KEYWORDS: Module, Zero divisor graph of modulus, Round, Diameter, Complete bipartite graph 

 

1. INTRODUCTION AND PRELIMINARIES 

 

The first time in 1988, Beck [10] stated the concept of zero divisor graph for a commutative ring. Beck was 

considered all members of the displacement and unit ring as vertex of the graph and his main task was to find the 

necessary and sufficient conditions for the finiteness of chromatic number of a graph. Also, according to definition 

of0 and 1,two vertex of x and y Were adjacent, if and only if xy=0. Reviews related to graph coloring continued by 

Anderson and Nasir [4]. But from this graph is not obtained interesting results. And in addition to were obvious 

properties. For example, all its vertices were adjacent to zero. Recently, the zero divisor graph from displacement 

ring has been extended to the graph maker absurd ideal from displacement ring. (Two ideals I and J are adjacent, 

whenever )(OIJ = ).  

In [8], the classic zero divisor graph has been extended to modules on displacement rings. According to [11], 

Mnm ∈, are adjacent, if and only if oMMnmRMmR RR =):)(:(  that is a direct extension of classical zero 

divisor graph. In [4] and [13],the authors presented two different graphs to a M module R− according to the first 

duality ),(* RMHomM = . Although they necessarily is not generalizations of the classical divisor graph, but 

there are some deep mutual relations between these two graphs and type of its classic. We first analyzed the 

expression of several basic definitions. 

Definition (1-1): Suppose M is a Abelian collective group and R is displacement ring, in this case the M calls a 

right R− module, whenever a scalar multiplication of M elements defined in the following way. 

rmrm

MRM

.),(

:

=

→×
 

So that for each Rrrr ∈21 ,, and Mmmm ∈21,, have: 

1. rmrmmm 2121 )( +=+  

2. 2121 )( mrmrrrm +=+  

3. 2121 )()( rmrrrm =  

And if R is unit and mm R =1. , then call M as a unitary module R− . 

Definition (1-2): In the ),( EVG = graph (V is represents the vertex, and E is represents the graph edge)a 

cycle with 1−n length is a series of Vxi ∈ distinct vertices, as nxxxx −−−− ...321 such nxx =1 .  
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Definition (1-3): In the ),( EVG = graph the shortest path length between two u and v vertex show with 

)v,u(d and the diameter of the graph are defined as follows: 

},|),({)( VvuvudSUPGdiam ∈=  

Definition (1-4): The shortest distance in a graph called back graph that show with )G(gr symbol. For 

example, the back cube to length 4. 

Definition (1-5): The ),( EVG = graph called bipartite whenever can the set of v vertices partitioned into two 

sets, so that between the vertices of any set, there is no edge. In addition, the G bipartite graph call complete if any 

two vertices in a set are not partitioning be adjacent to each other. Complete graph with n of vertex showed with nK  

Definition (1-6): Suppose R is a unit displacement ring and M is a module R− . In the dependent graph on M 

means )M(Γ , we say Mn,m ∈ are adjacent if and only if oMMnRMmR RR =):)(:( .2. Main Results 

In this chapter, we look to articulate definitions, theorems, concepts and the main results in conjunction with 

the complete and bipartite graph from zero divisor graph. In the following figure, we show zero divisor graph the 

some of the Z− modules. (Example 2-1) 

 
Figure1. 

According to the above example, we know that zero divisor graph from
33

ZZ ⊕ is a complete graph. 

Therefore, it is possible for the P first number can be result that the Z module pp ZZM ⊕= is a complete graph 

with 1)( 2* −= PMZ .  

Theorem (2-1): Suppose S and S ′ are the two R− module of simple identical and SSM ′⊕= then 

}{\)( * oMMZ = and )M(Γ is a complete graph.  

Proof: Suppose that M1 and M2 are two identical modules. Then )(~)( 21 MM Γ−Γ .With this fact is enough to 

prove the theorem. Web show that SS~M ⊕− . For each Sxo ∈≠ have )(:),(( SannRox . Also for each 

Mba ∈),( have oMRoxba =):),)((,(  and also ),( ox is adjacent to each element of M)b,a( ∈ nonzero. 

This result is achieved to )o,x( . Now suppose that x and y is two nonzero element from S. It is easy to show that

)S(a)y(a)x(a nnnnnn == is a ideal maximal from R. It is obvious that )M:R)y,x(( is including )(Sann . On 

the other hand if ):),((1 MRyx∈ then we have Ryxox ),(|),( ∈ and also for each Rr ∈ , we have

ryxox ),(),( = . Then 0=yr be result that )()( xayar nnnn =∈  and also 0== xrx , which is a 

inconsistency. Therefore, )():),(( SaMRyx nn= and )y,x( is adjacent any nonzero element from M.  
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Theorem (2-2): Suppose R is a commutative ring. In this case, R is a field if and only if )M(Γ for each R−  

modulus, the M is a complete graph.  

(⇒) 

 

Proof: Suppose that M is a field. If 1)dim( =RM then φ=Γ )M( and therefore, )M(Γ is a complete graph. 

If 2)dim( ≥RM for each Mmo ∈≠ , we have )M:mR( , because there is ):( MmRro ∈≠ , that result is

mRMr ⊆ and also mRRmrM ⊆⊆ −1
that is inconsistency. Therefore, for each n,m element from M, we 

have o)M:mR(n = . (⇒) The oN assumption is ideal maximal from R. Put R
N

R
M

o

⊕= . Then for each

oNRx /∈ and Rro ∈≠ , we have oR
N

R
Rroox

o

=⊕ ):),)((,( . So for each distinct element of s, r apposing 

zero in R, we have oR
N

R
Rsoro

o

=⊕ ):),)((,( . Then for each RS,o ∈≠1 , we have oSRN),o( o =1 . 

Because )R
N

R
:R)s,o((SRN

o

o ⊕⊆ . And this implies that for each 1,os ≠ , we have )o(SNo =  and 

o)s(No =−1 and therefore, )o(No = and so  R is a field.  

Theorem (2-4): Suppose M is a R−  modulus of semi-simple finite generator, which homogeneous 

components is simple, then x, y is adjacent member of }{\ oM , if and only if oyRxR =I .  

Proof: Suppose that iIi SM ∈⊕= , which iS are non-identical simple below modules from M. suppose that

*)M(Zy,x ∈ are adjacent. We need to show that oyRxR =I . Suppose oyRxR ≠I , therefore, there is 

I∈α that yRxRS I⊆α , since y R and x R are below modules from M, there are subsidiaries of A and B from I 

that )( iAi SxRM ∈⊕⊕= and )( iBi SyRM ∈⊕⊕= . (Lemma at the source [7]). Suppose )():( oMyRx =

then: 

)()()(:():( innBiiBinniBi SaTaSyRyRMyR ∈∈∈ =⊕=⊕⊕= I  

And iAIi SxR \~ ∈⊕ as a result: )()()()( \\ innAIiiAIinnnnnn SaSaxaxRa ∈∈ =⊕== I .However, since

o)M:yR(x = , therefore, )():( xaMyR nn⊆ and also we have )S(aS innA\IiiBi ∈∈ ⊆⊕ I . However, since 

for each Ij,i ∈ ، )S(a inn ، )S(a jnn are preliminary, so for each A\Ir∈ , we have 

)()()()( \ rnninnAIiinnBiinnBi SaSaSaSa ⊆⊆∏= ∈∈∈ II . However, for A\Ir∈ , there is Bjr ∈ , which 

)()( rnnjrnn SaSa ⊆ and so we have )()( rnnjrnn SaSa ⊆ . So rjr SS −~ and according to our assumption

rjr SS = . Because, there is I∈α that yRxRS I⊆α . Since iAIi SxRS \
~

∈⊕−⊆α , therefore, there is 

A\Ii∈ , which iS~S −α . However, the above equations, there is Bj j ∈ that ii SjSS ==α , which in result, we 

have )o()S(yRS iBi =⊕⊆ ∈α I , which is an inconsistency. Proof the second side, as resulting using the 

following lemma. 

Lemma (2-3): Suppose M is a R− module and m and n are in nonzero element from M.  

(1) If m and n are adjacent, then for each Rs,r ∈ that omr ≠ and ons ≠ , we have onsmr =* . 

(2) If onRmR =I , then m and n are adjacent.  

Proof (1): Suppose o)M:nR(m = , easily it can be shown that for each Rr∈ , o)M:nR(mr = .On the 

other hand for each RS∈ , we have ):():( MnRMnsR ⊆ . So oMnRmrMnsRmr =⊆ ):():( .  

(3) Since mRnRMnR I⊆):( is resulted o)M:nR(m = that can be concluded onm =* . 
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Result (2-4): Suppose 21 MMM ⊕= that M1 and M2 are two non-identical simple sub graph from M. Then 

)M(Γ is a complete bipartite graph. 

Proof (proof of 1):Suppose
*)(, MZyx ∈  are adjacent, according to the before theorem )o(yRxR =I . 

We are showing that iMx∈ and jMy∈ , which ji ≠ and },{j,i 21∈ . It is easy to show that xR and yR are two 

non-identical simple sub modulus From M, therefore, iMxR = and jMyR = for each ji ≠ .  

(Second proof):For each 1Mx∈ and 2My∈ , we have oyRxR =I . Therefore, from lemma (2-5), x and 

y are adjacent. Show that any two elements from iM are not adjacent. If }o{\My,x ∈ so that o)M:yR(x = , 

then o)M:M(M)M:yR(xR ==
11

. On the other )():( 21 MaMM nn= and therefore, 

oMaM nn == ))(( 21 that is resulting )()( 12 MaMa nnnn ⊆ . Because )( 2Mann is ideal maximal from R, so 

)()( 21 MaMa nnnn = , then 2

21

1
)(

~
)(

M
Ma

R

Ma

R
M

nnnn

≅−≅ , which is a contradiction. As a result, we show 

that for 1Mxo ∈≠ and 2Myo ∈≠ , )yx( + are not adjacent of any element from iM for 21,i = and for each 

2
MZ∈ , we have: )():():( 12 MaMMMz nnR == therefore, o)M:zR)(yx( =+ is resulted that 

))(()()(():)(( 11 MayMayxMzRyxo nnnn =+=+= and so ))(()()( 21 MayyaMa nnnnnn =⊆ . 

Because )M(a nn 1
is ideal maximal from R. Therefore )()( 21 MaMa nnnn = , this is a contradiction. If 

o)M:R)yx((z =+ , then by lemma (2-9) in the source [7] one of the following conclusion: 

(Case 1):If 2)( MRyxM ⊕+= , then 1

2

~~),( M
M

M
Ryx −− , in the other words

)()(
~

)(
~),(

yaxa

R

yxa

R
Ryx

nnnnnn I
−

+
− , which is not a simple module, because: 

)()()(),()()( xayaxaxayaxa nnnnnnnnnnnn ⊂= II , which result )y(a)x(a nnnn = and therefore 

21
~ MM − , which is a contradiction. Therefore, 

)()(

)(

)()(

)(

yaxa

xa

yaxa

xa

nnnn

nn

nnnn

nn

II
≠< is a contradiction. 

(Case 2): If 1)( MRyxM ⊕+= then similar case 1, a contradiction occurs. 

(Case 3): Suppose RyxM )( += therefore, RMMMRyx ==+ ):():)(( , so oMRyxz =+ ):)((

is resulting that oz =  that this is a contradiction. Similarly, by replacing 2M instead 1M , also a contradiction 

occurs. Finally, about the oMRyxyx =′+′+ ):))((( is resulting that 

oMRyxxoMRyxy =′+′=′+′ ):)(,):)( , which is impossible. Suppose i

n

i MM 1=⊕= for 3≥n that its 

homogeneous components are simple. Can be predicted in this case the )M(Γ is a complete n-part graph.(In 

theorem the source 4-2 [6]) has been shown to R reduction the displacement ring, we have that the non-empty )R(Γ

is with ∞=Γ ))(( Rgr , if and only if 
nKR ,1)( =Γ for each 1≥n , then, we generalize this result for )M(Γ . 

Definition (2-7): The R− module of M called reduction, whenever for each Ra∈ and Mm∈ that we have 

oma =.2
then oaRm = . 

Lemma (2-8): Suppose M is a reduction R module with }o{\M)M(Z * ≠ . If )M(Γ is a bipartite graph by 

sector of V1 and V2then }{1 oVVi U= for each 2,1=i is a sub module from M. 

Proof: Suppose 121, VxxRr ∈∈ . We must show 121 VVV ∈+ and 11 Vrx ∈ . If orx =1 then 11 Vrx ∈ . 

Now suppose orx ≠1 . From assumption, 
1

x is adjacent of an element from 
2

V in the name of
1

y . If 11 yrx = then 
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from lemma (2-5), oMRyy =):( 11 that is resulting for each Mm∈ , o)M:Ry(r =∈
1

, omr =2 , since 

theM is a reduction R− module, so omr = , which is resulting m is adjacent 
1

y that is a contradiction. So

11 yrx ≠ and from lemma 2-5, 
1

rx is adjacent 1y  , since 
21

Vy ∈ , therefore 
11

Vrx ∈ . If 
1

x or 
2

x are equal to 

zero, then 
121

Vxx ∈+ , so it can be assumed that none of the 1x or 
2

x is not equal to zero. Since that 
121

Vx,x ∈ , 

therefore, there is 
221

Vy,y ∈ , which ix are adjacent iy , for each 21,i = . From lemma 2-5, we have 

)o(RyRy ≠
21

I , therefore, Ryywo
21

I∈≠ , science that for each 21,i = , we have 

)o(VVwRRx)M:wR(x ii =⊆⊆
21

II , we have )o()M:wR)(xx( =+
21

, now if oxx =+
21

, that 

is belonging to 
1

V and if oxx ≠+
21

, because 
2

Vw∈ therefore, 
121

Vxx ∈+ , similarly, can be shown that
2

V

is a sub module of M.  

Lemma (2-9): If 
*)(MZm∉ , then mR is a fundamental sub module from M.  

Proof: If mR is not fundamental, then there is non-zero sub module of K from M, which oKmR =I , from 

lemma 2-5, the m is adjacent each nonzero element from K, so 
*)M(Zm∈ , which is a contradiction, therefore, 

mR is a fundamental sub module from M.  

Theorem (2-10): Suppose M is a reduction R module with }o{\M)M(Z * ≠ . If )M(Γ is a bipartite graph, 

then following items conclusion: 

(1) )M(Γ is a bipartite graph. 

(2) 2. =MdU in  

Proof (1): Suppose 21

*)( VVMZ U= that φ=21 VV I and no element of iV are not adjacent. From lemma 

2-8, we have: }{11 oVV U= and }{22 oVV U= are sub modules of M. For each 1VZ ∈ and 2Vy∈ , we have 

)(21 oVVyRZR =⊆ II and from lemma 2-5, z and y are adjacent.  

Proof (2): Since
*)V(z

1
and 

*)V(z
2

are empty, of lemma 2-9, each submodule of 
1

V and 
2

V are fundamental. 

So, 
1

V and 
2

V are uniform sub module from M. Now we show
21

VV ⊕ in M is fundamental. Suppose K is a sub 

module from M, which )o()VV(K =⊕
21

I and Ky)o( ∈≠ . Then, for each 
1

Vzo ∈≠ and 
2

Vzo ∈≠ , we 

have wRzR)o(yRzR II == . Therefore, z is adjacent of y and w, so that )o(VVz =∈
21

I , which is a 

contradiction, therefore,
21

VV ⊕  in M is fundamental. 

Lemma (2-11): Suppose M is a reduction R module with }o{\M)M(Z * ≠ . Then ∞=Γ ))M((gr if and 

only if )M(Γ is a star graph. 

Proof(⇒):It is obvious. 

(⇒) Suppose )M(Γ is not including a cycle, )M(Γ is a tree and therefore is a bipartite graph. Now from 

theorem2-10, )M(Γ is a complete bipartite graph. Suppose
1

V and 
2

V are part of )(MΓ graph. Since the )M(Γ is 

not any cycle, we have 1
1
=V or 1

2
=V  , which concluded that )M(Γ is a star graph.  

Define (2-12): A half group graph is bipartite zero divisor, if and only if is not including any triangle. ([14]) 

Lemma (2-13): Suppose M is a R module. )M(Γ is including a cycle of odd length, then )M(Γ is a triangle.  

Proof: By induction, we show for each cycle the odd length, 512 ≥+n , there is a cycle of length of 12 +k for 

nk < . Suppose
1122321

xxx...xxx nn −−−−−− +  is a cycle of odd length of 12 +n . If two non-consecutive 

vote of ix and jx are adjacent, then proof is complete. Otherwise element of )o(RxRxz)o( =∈≠
31

I from 

lemma 2-5, ixz ≠ for each 121 +≤≤ ni . So again z is adjacent to both elements of ix and
12 +nx . Therefore, we 

have the cycle of 
125412 ++ −−−−− nn x...xxzx , that this is desired same distance. 

21 
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Theorem (2-14): Suppose M is a R module. If is 4=Γ ))M((gr , then )M(Γ is a bipartite graph with parts of 

1
V and 

2
V , so that 2

21
≥V,V . Conversely, it is true if the M is a reduction module with }o{\M)M(Z * ≠ .  

Proof: Suppose 4=Γ ))M((gr . Using lemma 2-13, we show that the length of each cycle of )M(Γ is even. 

Since )M(Γ has cycle of length 4, this hypothesis is confirmed. On the contrary, also theorem 2-10can is proved. In 

the following, we explain the between generalization relationship from the definition of zero divisor graphs in [11], 

(it will show by bΓ ) and what, we have shown in this paper. First, it is worth noting that )M(Γ is a sub graph from 

bΓ that if 
*)M(Zn,m ∈ are two adjacent vertices in )M(Γ , Or such as equivalence o)M:mR(n = or 

o)M:nR(m = then o)M:mR)(M:nR( = . However, the reverse is not true as the following example. 

Example (2-15): Suppose
42

ZZM ⊕= is a Z module. Then vb K=Γ , however )M(Γ different from vK , 

which we are showing in figure 2.2.  

 
Figure2.2 

 

However, when the M is a multiplicative R module (As for each sub modules of N from M, there is a ideal of I from 

R, which MIN = ) , then b)M( Γ=Γ .  Suppose o)M:nR)(M:mR( = . Therefore, nRMMnR =):( and 

mRMMmR =):( , so both of oMnRm =):( and o)M:mR(n = . 
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