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ABSTRACT 

 

     Water level fluctuation in concrete dams can have a significant effect on stress-strain behavior at different locations in 

the body of such structures. This effect is more pronounced when the earthquake induced forces are present. Sefidrud 

dam which is located in the north part of Iran, has suffered from the progressive crack development during the earthquake 

occurred in 1990 in that region. Creation of the longitudinal crack near the normal water level of the mentioned concrete 

dam while the reservoir was full has caused the motivation to investigate the effect of reservoir water level on crack 

development in the body of the dam. In this paper, using the data of the Rudbar-Manjil earthquake, the behavior of 

Sefidrud dam is modelled numerically and the effect of different reservoir water levels on generation and development of 

crack in the body of the dam is investigated. The relation between the water level and dimension of crack is empirically 

estimated and verified using the real field measurements indicating a good agreement. Following the dynamical analysis 

of Sefidrud dam, the stress-strain counters are achieved indicating the critical points in the cross section of the concrete 

dam. Based on these results the location and dimensions of possible cracks are estimated and compared with the 

measured data available after the mentioned earthquake. The results are encouraging for further development of the 

proposed model to predict the location and estimate the dimension of progressive cracks in such conditions when the 

seismic forces due to earthquake exist. 
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1. INTRODUCTION 

 

In recent centuries, many concrete dams have been affected by the earthquakes with magnitudes over than 6.5 on the 

Richter scale that their amount of damages was very high, including Shih-Kang dam in Taiwan (2001), Sefid-Rud dam of 

Iran in 1994 and Hessing Fing Kiang in China [1]. One of the most important factors influencing the damages severities 

caused by the dynamic forces is the reservoir water level and the forces derived from it on the dam wall. 

Sefid-Rud dam as one of the four large dams in Iran, a non-reinforced concrete buttress type, has been constructed on 

a river with the same name during 1958 and 1962. The dam's height and crest length are 106 and 425 m, respectively; and 

it consists of 7 weight blocks and 23 stable blocks, which the length of each block is 14 m. This dam with an initial 

reservoir volume of 1,800,000,000 m3 has been located on a basaltic and andesitic foundation in the city of Manjil, Guilan 

province. With respect to the high-seismicity potential of Central Alborz and its seismic history, the assessment and 

investigation of the dam's seismic behavior influenced by severe earthquakes is one of the major issues in engineering. 

Most of the dams that were constructed in the not-so distant past have linearly been calculated with the static-analytical 

method. Thus, these dams are always vulnerable to non-linear analyzes and dynamic forces caused by the earthquake. 

Therefore, these dams' assessments against the new forces are very important and effective. 

In recent years, many studies have been conducted to make dynamic analyzes of the concrete dams using the shaking 

tables in vitro [2 & 3]. Although the scale and material used in the tests are debatable, a dynamic analysis of the concrete 

dams has not yet been made regarding the earthquake impact of the Sefid-Rud dam. In the literature, the critical stresses 

and their locations, increasing trend of stress and the dynamic forces exerted on the dam wall depend on the factors such as 

the dam geometry, concrete heterogeneity, the status of reservoir, the reservoir water level, the dam longevity and the 

characteristics of earthquake that must exactly be applied during modeling procedure of the dam [4]. 

 

2. Non-Linear Behavior of Concrete 

Tensile strength of concrete is one of the important factors influencing the non-linear behavior of concrete. The tests 

conducted on the concrete specimens showed that in addition to the mechanical properties of the concrete constituents and 

the specimen dimensions, the loading speed impacts on the tensile strength of concrete. The results obtained from the 

studies conducted on the concrete specimens of Sefid-Rud dam, which were exposed to the  static and dynamic loading in 

vitro, showed that the compressive and tensile strength of concrete represent a different behavior, and the concrete 

compressive and tensile strengths will be increased by increasing the strain rate. According to the split cylinder tests for 

142 



Neshaei et al.,2015 

 

tension strength, researchers reported that the proportion of tensile strength of concrete in the dynamic loading is almost 

1.30, 1.44 and 1.45 times larger than the tensile strength in the statistic loading [5].  

 

3. Non-Linear Concrete Model 

The Drucker-Prager failure criterion is used for the non-linear concrete model.  

 
where,   

K & a =constant values dependent material properties that depend on the material adherence and the internal friction 

angle. 

I1 = the sum of main tensions in 3dimensionality.  

J2 = deviatoric tension matrix 

If F(I1 & J2) = 0, there is no problem in the materials and they are not included in the elastic range, but if F (I1 & J2) ≥ 0, 

the materials lose their strength and will flow. 

The relationship between coefficients K and a and Mohr-Coulomb parameters can be expressed as follows:  

For the symmetric flow: 

 

 
For the deviatoric and plain strains: 

 

          
Therefore, in order to define the non-linear materials with Mohr-Coulomb and Drucker-Prager methods, it is enough to 

define the parameters v, E, φ and C. 

 

4. Modeling and Allocation of the Environmental Characteristics 
Two modeling methods can be used for modeling the dam and the reservoir water. The first is Lagrange-Lagrange 

method and the second is Euler-Lagrange method, which the former has been used in this paper. In Euler-Lagrange 

method, the main parameter of water element is pressure. Therefore, the hydrodynamic pressure can directly be obtained 

after analyzing the model. [6] 

 

4.1. Lagrange-Lagrange Method 
In this stage, for the dam-foundation-reservoir system, the dynamic equation of motion should be solved according to 

the nodal point displacements of finite element network as follows [7]:  

 
Where, 

M = Mass Matrix               

C = Damping Matrix 

K = Stiffness Matrix 

 = Acceleration Vector 

 = Velocity Vector 

 = nodal point displacements of finite element network vector 

 = external forces vector  

According to Fig. 1, the boundary conditions of dam-foundation-reservoir system will be applied in the planes R1 to R5 as 

follows [7, 8 & 9]:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Dam-foundation-reservoir system and the method of distributing pressure throughout the dam body- Agraphical 

representation of Vector Point 
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4.1.1. The boundary conditions for the dam-foundation-reservoir in lagrange method 

In Fig.1. at the upstream boundary of reservoir (R1), the boundary condition should be applied in order to meet the 

condition for passing the water pressure waves without any reflection. The depreciation matrix derived from these 

components can be written as follows [8 & 9]:  

 
 

 

Where, 

N = shape functions of reservoir parts at the boundary S1 

n = normal vector perpendicular to the boundary 

= density of the fluid                                 

= elastic wave velocity in the reservoir    

 

4.2. Euler-Lagrange Method 
In this section, for the structures' environment (dam and foundation), the dynamic equation of motion has been 

expressed in Eq. (6) in terms of nodal point displacement of structure [7, 8 & 9].  

The differential equation for the hydrodynamic pressure waves in the reservoir will follow the equations called the 

quasi-harmonic equations which are expressed as follows [9 & 10]: 

 

 

   
Where, 

I = unit matrix 

=the second derivative with respect to time 

= Transpose operator   

 = internal surface of reservoir 

Ritz-Galerkin's method was used to solve the above differential equation.  

 

4.2.1. The boundary conditions for the dam-foundation-reservoir system in in Euler method 

The boundary conditions for the four boundaries of the reservoir are computed as follows [8, 9 & 10]: 

Boundary conditions for the wave propagation in the boundary (R1) are expressed as follows: 

 

 
where, 

             = the first derivative with respect to time 

The integral inside the brackets will be expressed as A1 and the depreciation matrix is a diffusion one.  

 

5. Selection of Element in the Element Formulation Model 
Each element of the ANSYS software has different capabilities that have been determined in the input table for each 

element (the maximum capabilities for each element is 13). It can be made with the command KEYOPT. For example, 

with respect to the input table for the fluid element, if KEYOPT(2) = 0, then there is an interface between the element and 

structures, and the degrees of freedom will be Ux, Uy and PRES, and if KEYOPT(2) = 0, then there is no interface 

between the element and structures and the degree of freedom will just be PRES. Therefore, we have two fluid elements 

(we select the element FLUID29 twice when selecting the fluid element): The first is the fluid element adhered to the dam 

and the second is KEYOPT(2) = 1 where there is no interface between the fulid elements of the reservoir and dam and 

KEYOPT(2) = 0.  

Since the analysis of gravity dam has been made in terms of the plane strain, we should use KEYOPT (3) = 2 for the 

element of PLANE82 which has been applied in the dam model (with respect to the input table for element in the guideline 

of ANSYS elements).  

 

6. Numerical Analysis 

In the current study, the dynamic response of dam to the Modal and Harmonic analyzes with the horizontal acceleration 

of 0.5 g and the vertical acceleration of 0.25 g is investigated. This acceleration is almost equal to the ground acceleration 

in the earthquake of Avaj (Qazvin) and the project acceleration in the reference [6] for comparing the results.  

 

6.1. Characteristics of Analyzed Dam 

In order to analysis the dam with the height of 106 m, the reservoir water level should be 100 m in height. We decrease 

the water level as much as 10 meters during a few steps in order to investigate the impact of water level on the analysis. 
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Figure 2 shows the geometric characteristics and boundary conditions. In this model, the damping factor of 5% has been 

used for the dam and reservoir. The length of reservoir and the width of crest were 200 and 10 m, respectively.  

 

6.2. Characteristics of the Concrete and Water 

The materials properties are as follows: 

The density of concrete = 0.255t – S2/m4 

The elastic modulus of concrete = 3.5e6 t/m2 

The speed of sound in water = 1435 m/s 

The density of water = 0.1019t – S2/m4 

The compressive strength of concrete = 266 Ton/m3 

The tensile strength of concrete = 15% of the compressive strength of concrete (with respect to the factors affecting it), 

thus its value will be 39.9 Ton/m3 

Therefore, the values of C and φ have been calculated as 43.21 Ton/m3 and 54˚, respectively.  

 

 

 

 

    

    

 

 

 

 

 

 

 

 

 

Fig. 2. The dam-foundation-reservoir system and a graphical representation of the location of critical stresses and a general 

crack throughout the dam body 

 

6.3. Modal Analysis 

Diagram (1) shows the predominant mode (the first mode) of the ten water level and dam models with an empty 

reservoir. α is the reservoir water level ratio to the reservoir height that has been illustrated in the plotted curve. 

As can be seen in Diagram (1), the changes in frequency within the range of  are negligible and the 

frequency remains in the range of 3.4 and the first mode's frequency will be decreased more quickly by increasing the 

water level (a > 0.5). 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

Diagram. 1. The First Mode Frequency- Changes in the reservoir water level relative to the reservoir height and changes 

in the frequency 

 

6.4. Harmonic Analysis 

In order to conduct a harmonic analysis, the dam and reservoir system has been analyzed in the frequency range of 0 

Hz to 10 Hz. Five critical points of the dam have been selected to compare the results obtained from the models' harmonic 

analyzes: 
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     A = Upstream heel 

     B = Downstream heel 

     C = A point with the height of 2 H in upstream 

     D = A point with the height of 2 H in downstream 

     E = the point of slope variations in downstream 

     F = Height of dam 

 

                                                                                                        

 

 

 
 

                                                                                                Fig. 3. Changed the mesh with increased water level 

 

7. Extended Finite Element Method 

The extended finite element method (XFEM), also known as generalized finite element method (GFEM) or partition of 

unity method (PUM) is a numerical technique that extends the classical finite element method (FEM) approach by 

extending the solution space for solutions to differential equations with discontinuous functions. The extended finite 

element method was developed to ease difficulties in solving problems with localized features that are not efficiently 

resolved by mesh refinement. One of the initial applications was the modeling of fractures in a material. [11] In this 

original implementation, discontinuous basis functions are added to standard polynomial basis functions for nodes that 

belonged to elements that are intersected by a crack to provide a basis that included crack opening displacements. A key 

advantage of XFEM is that in such problems the finite element mesh does not need to be updated to track the crack path. 

Subsequent research has illustrated the more general use of the method for problems involving singularities, material 

interfaces, regular meshing of micro structural features such as voids, and other problems where a localized feature can be 

described by an appropriate set of basis functions. It was shown that for some problems, such an embedding of the 

problem's feature into the approximation space can significantly improve convergence rates and accuracy. Moreover, 

treating problems with discontinuities with extended Finite Element Methods suppresses the need to mesh and remesh the 

discontinuity surfaces, thus alleviating the computational costs and projection errors associated with conventional finite 

element methods, at the cost of restricting the discontinuities to mesh edges. The present study is the application of this 

concept for solving three real life problems. 

 

7.1. The extended finite element discretization 

The discretization of the displacement set U is accomplished by the extended finite element method which allows the 

crack location to be arbitrary with respect to the mesh. We shall here summarize the main idea of this extension. For a 

complete presentation [12]. Fig. 3,4,5 shows a discontinuity (cohesive crack) placed on a structured and on an unstructured 

mesh. The classical finite element approximation on these meshes reads[13]. 

 
where I is the set of all nodes in the mesh  is the classical (vectorial) displacement degree of freedom at node i and  

is the shape function associated with node i. Each shape function  has compact support  given by the union of the 

elements connected to node i. In the numerical studies the shape functions are linear (three-node triangle shape 

functions). 

 
 

 Fig. 4. Discontinuity on a structured mesh (a) and on an unstructured mesh (b). The circled nodes are enriched by the 

jump function H 
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 Fig. 5. Discontinuity on a structured mesh (a) and on an unstructured mesh (b and on an unstructured mesh (c)  

 

8. RESULTS AND DISCUSSION 

 

The following results have been obtained from all of the analyzes conducted in this paper. The following tables (Tables 

1, 2, 3, 4, 5 and 6) indicate the maximum stress variations in the 5 points of the dam and the maximum dam crest's 

movement in 11 models. 
 

Table 1.  Modified Stresses in upstream heel (T/m2) 
Model 1 2 3 4 5 6 7 8 9 10 11 

A 672.1 603.5 524.4 461.7 418.7 414.8 460.8 470.5 516.5 655.9 465.4 

 

Table 2.  Modified stresses in downstream heel 
Model 1 2 3 4 5 6 7 8 9 10 11 

B 564.6 436 386.8 335.7 339 270.5 290.7 267.1 265.7 218.3 187.4 

 

Table 3.  Modified stresses in upstream dam with the height of  

Model 1 2 3 4 5 6 7 8 9 10 11 

C 278 274 241 230.7 220.8 209.6 198.3 201.6 185.7 169.6 140.5 

 

Table 4.  Modified stresses in downstream dam with the height of   

Model 1 2 3 4 5 6 7 8 9 10 11 

D 267.7 265 228.5 202.5 194.3 181.2 172 170.6 133 121.5 111.1 

 

Table 5.  Modified stresses in the point of downstream slope change near the crest (T/m2) 
Model 1 2 3 4 5 6 7 8 9 10 11 

E 27.9 58 32.06 58.77 57.71 44.64 38.86 38.46 38.07 38.14 36.2 

 

Table 6.  Modified horizontal movements of the dam crest (cm) 
Model 1 2 3 4 5 6 7 8 9 10 11 

UX 5.8 4.8 4.5 3.8 3.5 3.4 3.2 3 2.9 2.7 2.2 

 

In the most cases, the system response will be increased by increasing the period of dam composed system and dam-

reservoir interaction (especially in the horizontal mobility). [15] There is a direct relationship between its increase and the 

main frequency of reservoir. Generally, a significant error may be made (especially for high dams) if the interaction 

between dam and reservoir is accounted. Also, the dam flexibility can increase the system's period of vibration. Therefore, 

this parameter can increase the response too. As we can see in the Tables and Diagrams 2 and 3, almost all of the stresses 

are maximized when the reservoir is full. The stress of toe in the empty reservoir has suddenly been decreased due to the 

removal of water hydrodynamic force. For the dam model with a reservoir water level of 10 m in height, the stress under 

these conditions is not equal to the stress when the reservoir is full. When the water level of reservoir is decreased to 

approximately half of the previous level, the stresses are reduced to about 1/2 m of the dam height and then they will be 

fixed. According to Tables 7 and 8, the stress in the point of the crest slope variation will be increased. The cracks 

locations are equal to the cracks locations of static analysis [11]. The cracks in the heels will be developed to the upstream 

by increasing the loading frequency. The crack in the variation point of the crest slope is limited at this site, which exactly 

corresponded to the output of ANSYS program. The images for this analysis and the stress distribution inside the dam 

body are given in the following sections (Fig. 6) 

Analysis of static and dynamic pressures resulted from the water level changes of concrete dams is especially very 

important in the earthquake-prone areas. Given that Iran is an earthquake-prone country- especially by having the cities 

such as Roudbar and Manjil that Sefid-Rud dam has been constructed there and they were subjected to one of the biggest 

earthquake of the past century (in 1990)- this issue will be important more and more. Therefore, the current paper has 

investigated the impact of different fluctuations of water level into Sefid-Rud dam's reservoir and the seismic forces on the 

dam's body, and the critical surface tension into the dam's body has been determined in the various locations. The 

elastoplastic behavior of concrete dam has been assumed and the stress-strain curve of concrete has been used under these 

conditions. [13] The quasi-static and dynamic analyzes of the dam body were seismically made in the various modes of 

reservoir's water level and the results have been provided as the charts and new relations that link the stress level and 
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deformation of key points of dam body to the reservoir water level position. These relations and charts may be good 

substitutes for other complicated methods in the past and they can be used to optimal design of the cross-sections of 

concrete dams against the dynamic forces derived from the earthquake. [14] 
 

 
 

 

Table 7.  Modified maximum and minimum stresses in the water level from the reservoir bed to the dam crest 
h(m) Strain   

Min-x 

Strain    

Max-x 

Strain      

Min-y 

Strain 

Max-y 

Strain 

Min- z 

Strain 

Max-z 

Displacement/R 

10 -901184 -3208.97 -1840000 -18956.1 -459227 80368.8 0.003992 

20 -935495 -3219.29 -1860000 -18973.9 -464965 81360.9 0.003953 

30 -917399 -3220.96 -1930000 -19008.3 -481680 83358.1 0.003926 

40 -917837 -3200.34 -2010000 -19060.4 -502262 86915.6 0.00393 

50 -914891 -3168.86 -2070000 -19126.2 -516056 91830.4 0.003999 

60 -910214 -3079.44 -2090000 -19176.6 -523413 98228.3 0.004182 

70 -904828 -6683.26 -2110000 26733 -525908 105526 0.004542 

80 -899558 37340.8 -2130000 149363 -528484 112458 0.005153 

90 -895209 60184.5 -2170000 240738 -542702 118698 0.005917 

100 -892614 72813.2 -2200000 291253 -550964 121131 0.00659 

 

Table 8.  Modified maximum and minimum strains in the water levels from the reservoir bed to the dam crest. 
h(m) Strain    

Min-x 

Strain    

Max-x 

Strain     

Min-y 

Strain      Max-y Strain      Min-z Strain Max-

z 

Displacement  

/R 

10 -0.0000294 0.00000925 -0.0000839 -0.000000829 -0.000000793 0.000013 0.003992 

20 -0.0000326 0.00000666 -0.0000845 -0.000000824 -0.00000079 0.0000166 0.003953 

30 -0.0000324 0.00000363 -0.0000867 -0.000000824 -0.000000787 0.0000183 0.003926 

40 -0.0000334 0.00000294 -0.0000904 -0.000000825 -0.000000772 0.0000184 0.00393 

50 -0.0000348 0.0000023 -0.0000929 -0.000000825 -0.00000074 0.0000179 0.003999 

60 -0.000036 0.00000162 -0.0000947 -0.000000822 -0.000000689 0.0000172 0.004182 

70 -0.000037 0.00000155 -0.0000962 0.0000012 -0.000000629 0.0000168 0.004542 

80 -0.0000379 0.00000163 -0.0000973 0.00000672 -0.000000571 0.0000168 0.005153 

90 -0.0000385 0.0000017 -0.000099 0.00000108 -0.000000523 0.0000167 0.005917 

100 -0.0000389 0.00000174 -0.0000999 0.00000131 -0.000000496 0.0000167 0.00659 
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Diagram. 2. Immediate increase of the stress in the cross section of dam with the changes in water level up to10m 

Fig. 6. The color contours of strains in the cross section of Sefid-Rud Dam (the red points show the general cracks) 
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Diagram. 3. The dam crest movements with the changes in water level 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Extended finite element method for cohesive crack growth in Abacus 
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