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ABSTRACT 

 

One of the most serious problems of gas wells is the accumulation of natural-gas condensates. During the operation 
of gas wells, it is probable that some liquids cannot be transferred outside by the use of gas flow and this results in 
fall of liquids to the down-hole and gradual loss of well. For solving this problem, the well must be drained by the 
use of gas lift or hydraulic pumps. Thus the subject of accumulation of liquids in gas wells is considered as one of 
the most important challenges of oil and gas industry. Surveying the gas drain mechanism shows a critical flow of 
gas for preventing from accumulation of liquids. Thus predicting the lowest rate of gas flow is very important for 
preventing from accumulation of liquids. Several models have been provided for calculating the critical velocity. 
The main aim of this research is predicting the lowest rate of gas flow for transferring liquids to the surface by the 
use of comparative neural-fuzzy intelligent systems in order to detect the formation or lack of formation of 
accumulation of liquids. The results of this prediction indicate the optimal performance of conducted modeling for 
predicting the lowest rate of gas flow.  
KEYWORDS: Critical Velocity, Critical Flow of Gas, Accumulation of Liquids, Comparative Neural-Fuzzy 

Systems.  
 

1. INTRODUCTION 

 
Hydrocarbon gas is produced in underground reservoirs and in most cases it has liquid phase with it and it can affect 
the characteristics of flow of well. Liquids could be produced from natural-gas condensates and/or interstitial water 
in the reservoir matrix. During the gas production, some liquids may not be able to come out through the flow of gas 
and due to this they accumulate down-hole. By accumulation of liquids down-hole, the flowing pressure at the 
down-hole increases and it results in increased water saturation around the well and decreased effective gas 
permeability around the well. Thus the flow of produced gas decreases. Ultimately, liquid accumulation results in 
eliminating the gas well. Thus there is a critical velocity in the well for transferring liquids to the surface that in 
velocities lower than the critical velocity, gas is unable to transfer liquids to the surface and it results in formation of 
a liquid column in the well that decreases the productivity of the well and in velocities higher than the critical 
velocity, the liquids are transferred along with gas and the liquid accumulation down-hole is prevented [1-3].  
As it was mentioned, the liquid accumulation phenomenon in gas wells results in decreased produced flow of gas; 
thus if the liquid accumulation is detected on-time, it is possible to reduce the damages caused by lack of gas 
production by the use of different methods of lifting the liquids from the well column. The most common and most 
applicable model of calculating the critical velocity is provided by Turner. Turner has provided two physical models 
for analyzing the permanent lifting of liquids from gas wells. These two models include liquid film movement along 
the walls of the pipes and the liquid droplets entrained in the high velocity gas core. Comparing these two models 
with field data it is concluded that theory of droplets model is a better theory for liquid accumulation and liquid film 
model has less effect on liquid accumulation [4].  

Coleman et al (1991) proposed a model for predicting the liquid accumulation that its foundation was based on 
Turner’s model without 20% increase of minimum gas flow [5]. In this model, in states which the ratio of liquid to 
gas is lower than 22.5 bbl/MMscf, it does not have an effect on determining the beginning of liquid accumulation 
and the gas flow is the dominant factor. Turner used data with wellhead pressure of 1000 psi but Coleman proved 
that Turner’s formula with 20% increase for data with wellhead pressure less than 1000 psi is inefficient. Neviaser et 
al [6] provided a new equation for calculating critical velocity based on Turner’s equation. They used Allen’s model 
and considered the effect of fluid viscosity and flow regimes for calculating critical velocity. In their researches, 
Mian Lay et al. [7], found out that Turner’s model and Coleman’s model do not consider the change of shape of 

196 



Ghadam and Vahid Kamali, 2015 

 

liquid droplets in free fall in the gas environment. They argue that liquid droplets are dragged in high velocities of 
gas flow and a pressure difference happens between the front and back of the droplets and droplets’ shape changes 
by applying this pressure and their change of shape is from spherical to convex or flat. In 2002, El-Sayed et al 
provided a model for predicting the minimum flow pressure for continuous lifting of liquids from wellhead by the 
use of artificial neural networks. Comparing the performance of accuracy of new model and other models, they 
concluded that artificial neural networks model works better than all experimental models and the absolute error 
percentage of this model is 4.61% [8]. Olufemi et al (2005) provided a model for predicting the critical flow rate in 
low pressures for gas wells. Olufemi used laboratory data to calculate parameters to be the drag coefficient for 
cylindrical droplets; thus Olufemi considered that droplets’ shape is cylindrical and provided a new model for 
predicting the liquid accumulation downhole [9]. Zhou et al (2010) introduced the droplet concentration model. The 
foundation of Turner’s droplet pattern is the balance of forces for one droplet and it does not include the effect of 
clash of droplets. When the liquid droplets concentration is low the possibility of clash of droplets is lower and 
Turner’s model works perfectly well. When the liquid waste is below or equal to threshold, the critical velocity of 
model is the Turner’s model; when the liquid waste is more than the threshold the critical velocity changes and the 
critical velocity is calculated through the new model [10].  

Wang Wei et al., (2010) provided a model for calculating the water-retention capacity in gas wells. This model 
is based on analysis of flow regimes during the production of gas wells with water and shape of particles as an 
elliptical disk instead of being spherical and changes are considered based on the existing forces [11]. 

There are different experimental methods based on Turner’s model that predict the liquid accumulation in gas 
wells. Also, most experimental methods use droplets’ model for calculating and predicting liquid accumulation. The 
current research aim is providing a model for eliminating the limitations of experimental models and more accurate 
prediction of critical flow in gas wells. Comparative neural-fuzzy systems are tools that could be used for predicting 
the liquid accumulation and reaching the desired goals. Next, the neural-fuzzy networks and parameters used in 
these networks are going to be introduced.  

 
2. Comparative Neural-Fuzzy Networks 

2.1. Soft Computing 

Soft computing is a branch in computer science using the inexact solutions for solving problems that are 
complicated in terms of computing and they cannot be solved within an acceptable time [12]. Intelligent systems and 
especially hybrid systems are examples of using these traditional methods in this branch. Use of hybrid artificial 
intelligent systems is successfully developing. Some of their applications are process control, engineering design, 
simulation, prediction etc. The same as combination of fuzzy logic and neural networks, genetic algorithm and 
expert systems, the hybrid intelligent systems significantly increase the performance of network in problem solving. 
Each intelligent method has features that may be appropriate for a specific case and not all cases. Theoretically, 
neural networks and fuzzy inference systems (FIS) are equal but practically, each of them has advantages and 
disadvantages. For example, neural networks are appropriate tools for detecting the pattern and estimating the 
function but they are unable to justify their way for reaching the desirable result [13]. Thus, analyzing the trained 
networks is difficult and it is impossible to extract the decision making rules from them; however, fuzzy inference 
systems (FIS) are more desirable because their behavior could be defined based on rules and their performance 
could be interpreted by regulating rules. Fuzzy system explains the logic and the method of its decision making but 
it is unable to automatically regulate rules used for decision making. In neural-fuzzy systems, the neural networks 
could be used for regulating parameters related to membership functions in FISs and so the problem of time 
consuming manual regulation of parameters is solved [14]. 

 
2.2. Structure of a Neural-Fuzzy Network 

Comparative neural-fuzzy inference system was firstly provided in 1993 by Jang. This system acts as a fuzzy 
decision making tree for classifying data to one of the 2n or pn linear regression models in a way it results in 
minimizing the sum of squares for errors [15].  

If there is knowledge based on fuzzy language rules, then it is possible to create FIS and having the data it is 
possible to use neural networks. For creating a FIS it is required to detect fuzzy sets, fuzzy operators and foundation 
of the existing knowledge and for creating a neural system the user must determine the structure and learning 
algorithm [16]. Researchers have shown that each of these methods have problems on their own; thus it is normal to 
combine these two methods to improve the level of these methods. The FIS could not learn thus the learning ability 
is important for FIS; and the structure of language rules is important for the neural networks. In the structure of a 
neural-fuzzy system, ANN learning algorithms determine the parameters of a fuzzy inference system. In a neural-
fuzzy system, the structures participate based on the data and based on the perception, as the input data. The usual 
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method of using this learning algorithm in FIS is that the FIS is provided in a structure such as neural networks [17, 

18].  

 

 
Fig. 1.Structure of Comparative Neural Fuzzy Inference System (ANFIS) [17] 

 

As Fig. 1 shows, generally, an ANFIS has 5 layers. Layer 1, input nodes: each node of this layer is a 

membership grade attributed to each of the input variables of the model (X and Y). Membership grades are 

determined based on the attachment of inputs to each fuzzy set of Ai and Bi; in other words, the output of each node 

in this layer is the membership grade attributed to the input variables in fuzzy sets which is stated as follows: 

 

��
�=µ

��
(x),       i=1, 2…, n 

��
�=µ

��
(y),       i=1, 2…, n 

 

In the above equation, x and y are non-fuzzy inputs for ith node and Ai and Bi are fuzzy membership functions. 

Also membership grade of each input is determined as the output of first layer as µAi (x) and µBi (y). Thus the 

parameters of membership functions which are known as the parameters of the prior part of fuzzy rules, and are 

classified as non-linear parameters must be determined.  

Layer 2: Includes the node rules; in this layer, each node calculates the firing strength of a rule. In this layer, 

operator AND is used for calculating the firing strength of each rule. O2
i indicates the output of Kth node in the 

second layer and it is the product of all incoming signals: 

O�
�=W� � µ

��
(x) µ

��
(y) ,i=1,2,…,n 

Layer 3: Includes normalized nodes and calculates the ratio of the ith rule's firing strength to the sum of all rules' 

firing strengths; as a result this layer is provided in the following equation: 

O�
	=w� �=


�

∑ 
�
�

���

       i=1,2,..  ,n 

Layer 4: Layer 4 is the de-fuzzy layer. In this layer, each node by multiplying its normalized weight in the lower part 

of if-so fuzzy rules, affects the estimation of system output:  

O�
�=w� �f�=w� �(p�x + q�y +r�)          i=1,2,..  ,n 

Layer 5: In this layer all incoming signlas are summed and this summation of all incoming signlas is the overall 

system output: 

O�
=∑ w� �f�

�
���             i=1,2,... 

 

3. Selection of Training Data and Test 

For predicting critical flow for developing a neural-fuzzy model the first step is determining appropriate inputs 

and outputs for the system. The data required for designing and training the designed model is extracted from 

researches related to surveying the prediction of liquid accumulation for removing liquids from gas wells [9]. In this 

study the inputs of neural-fuzzy model of wellhead are temperature, produced gas density, rate of produced liquids, 

ratio of liquid to gas, apparent velocity of gas, and apparent velocity of liquid. The cross-section production of well 

is not considered as input data because it is fixed and the output of network is the critical flow of well. The total 

number of used data is 84 divided to two parts, network training data (42) and test data (42).  

 

4. RESULTS AND DISCUSSION 

 

In neural-fuzzy method the comparative neural-fuzzy inference system was used. Gaussian membership 

functions were extracted by subtractive clustering for each input and its optimal parameters were calculated by the 

use of neural system and hybrid algorithm. In neural-fuzzy method, the most appropriate range of influence for 

198 



Ghadam and Vahid Kamali, 2015 

 

predicting the critical flow is 1.15. In table (1) the best created model compared to real results and the latest model 
provided are shown, in which TAAE% is the total mean of absolute error percentage and Rn is the correlation 
coefficient for normalized data and they are respectively calculated through the following formula: 

TAAE% = (
100

n
)��p�,� − p�,��

p�,�

�

���

 

R� =
∑ [�p�,� − p�,��� ∗ �p�,� − p�,���]�

���

�∑ [(�

���
p�,� − p�,��)	] ∗  ∑ (p�,� − p�,��)	�

���

 

In the above mentioned formula, pe,i, pm,i, pe,av, andpm,avare respectively the desired (laboratory) output,the output 
predicted by the network, mean of laboratory values, mean of predicted values and n is the number of data used for 
training or testing the network.  

Based on table 1, the provided ANFIS model has more accuracy than El-Sayed’s (neural networks) model, in a 
way that total mean of absolute error percentage for the neural-fuzzy model is much lower than the neural networks 
model.  

 

Table 1. Comparing the performance of different models for predicting the minimum critical gas flow.  
 AAE% R 

ANFIS mode                    0.0466 1 

Neural Network(El-Sayed)        4.61 0.9911 

 
For evaluating the comparative neural-fuzzy model, the achieved output of model is compared with actual 

values. This comparison is shown in figure 2. As the figure has shown, the correlation coefficient between the 
modelachieved from comoarative neural-fuzzy system and actual values is 1 which is very good. The results of 
ANFIS model match very well with the actual results and show the high efficiency of this model. 

 
Fig. 2. Correlation between neural-fuzzy inference system model and actual values.  

 
Ultimately, for choosing the best model for predicting the gas flow rate, the comparison of results of 

comparativeneural-fuzzy model with mathematical models is provided in table 2. As it is observable, data predicted 
by the network has the highest conformity with the laboratory data; whereas the mathematical models have several 
errors; thus the accuracy of this method is more than the previous method and it provides a better prediction and this 
shows the accuracy and efficiency of this model.  

Also there is no need to calculations related to formula achieved by mathematical modeling. There is no need 
for recalculation for making a change in data such as increasing or decreasing them and/or changing the parameters 
of the network; and this shows the flexibility of the network.  

Figure 3 shows the comparison of critical flow of different mathematical models and ANFIS model with 
critical laboratory flow based on pressure. As the figure shows, critical flow of ANFIS has high conformity with 
laboratory data; whereas the mathematical models are linear and this indicates the flexibility of neural-fuzzy 
network compared to mathematical models. Another note that must be taken to account is that Turner’s method is 
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applicable for pressures above 1000 Psi and Coleman’s meethod is applicable for pressures under 1000 Psi; thus 
different mathematical models are required for different pressures; whereas, there is no pressure limitation for 
comparative neural-fuzzy networks and they are capable of predicting critical flow for all pressures.  
 

Table 2. Comparison of critical flow of neural-fuzzy model with mathematical models. 
Tubing 

Pressure 

(Psia)  

Lab. 

Critical 

Rate 
(Mscf/d) 

Turner’s 

Critical Rate 

(Mscf/d) 

Coleman’s  

Critical 

Rate(Mscf/d)  

Li’s  

Critical 

Rate 
 (Mscf/d) 

s ,Olufemi

Critical Rate 

(Mscf/d)  

Anfis model  

Critical 

Rate(Mscf/d) 

14.82 59.69 100.23 83.52 39.22 64.61 59.6924 

15.01 64 100.87 84.06 39.48 65.02 64.0006 

15.02 69.96 100.9 84.08 39.49 65.04 69.9698 

15.11 93.13 101.21 84.34 39.61 65.24 93.1087 

15.18 102.17 101.44 84.53 39.7 65.39 102.1602 

15.22 90.36 101.57 84.64 39.75 65.47 90.3402 

15.42 107.29 102.24 85.19 41.01 65.9 107.2586 

17.02 86.41 107.4 95.5 42.03 69.23 86.371 

20.21 99.13 117.03 97.52 45.8 75.43 99.1439 

21.11 69.36 119.6 99.66 46.81 77.09 69.4398 

22.31 83.38 122.95 102.45 48.12 79.25 83.379 

23.07 81.94 125.02 104.18 48.93 80.59 81.909 

24.07 61.02 127.7 106.41 49.97 82.31 61.04 

25.37 68.33 131.1 109.24 51.3 84.5 68.3 

25.66 88.16 131.84 109.86 51.59 84.98 88.18 

25.66 101.5 131.85 109.87 51.6 84.99 101.478 

26.13 115.01 133.06 110.88 52.07 85.77 115.022 

26.18 140.12 133.17 110.97 52.12 85.84 140.128 

16.37 136 133.65 111.37 52.3 86.15 136.003 

26.66 85.41 134.4 111.99 52.59 86.63 85.416 

27.03 109.18 135.33 112.77 52.96 87.23 109.176 

27.33 131.39 136.07 113.39 53.25 87.71 131.39 

29.61 140.03 141.62 118.01 55.42 91.29 140.307 

30.18 83.71 142.98 119.14 55.95 92.16 83.694 

30.81 91.69 144.46 120.38 56.53 93.12 91.694 

31.65 90.32 146.4 122 57.29 94.38 90.339 

31.65 114.41 148.7 123.91 58.19 95.85 114.4 

33.13 117.84 149.8 124.83 58.62 96.56 117.844 

34.69 99.55 153.28 127.72 59.98 98.8 99.572 

35 139.47 153.97 128.3 60.25 99.24 139.443 

38.66 60.46 161.8 134.83 63.32 104.29 60.449 

39.31 93.61 163.14 135.94 63.84 105.16 93.602 

40.31 92.08 165.2 137.66 64.65 106.48 92.057 

40.68 107.49 169.95 138.29 64.95 106.97 107.508 

43.19 92.2 171 142.49 66.92 110.22 92.200 

45.13 86.17 174.77 145.64 68.4 112.66 86.177 

45.13 75.5 174.77 145.64 68.4 112.66 75.524 

45.13 86.22 174.77 145.46 68.4 112.66 86.2203 

47.19 113.27 178.72 148.93 69.94 115.2 113.29 

48.31 135.63 180.82 150.68 70.76 116.55 135.62 

48.31 132.72 180.82 150.68 70.76 116.55 132.832 

Cumulative Error Percent 42.69 18.90 44.15 8.019 0.00113 

Absolute Error Percent 49.68 30.84 41.88 19.63 0.0466 
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Fig. 3. Comparison of critical flow rate of neural-fuzzy model and different models based on pressure.  

 
5. Conclusion 

� For critical flow rate modeling, ANFIS (Genfis2) model could be used as a reliable model within the area 
of training situation for predicting the critical flow.  

� In this study, the critical flow rate and liquid accumulation in gas wells was estimated by the use of neural-
fuzzy method. The applied method is cost-effective, quick and accurate. The correlation coefficient of 
critical flow rate is 1; and the mean absolute error is 0.0466. Therefore, it is suggested to use this method 
for estimating the critical flow rate.  

� The current research shows the efficiency and flexibility of neural-fuzzy model in predicting the liquid 
accumulation and critical flow rate in gas wells. The superiority of this model to other experimental models 
of predicting liquid accumulation is clear.  

� It must be noted that the more the number of training data the better the efficiecny of the network.  
� If the number of data changes, there is no need to recalculate and this shows the flexibility of the network.  
� The provided model has eliminated the necessity of complicated calculations and mathematical models and 

it is used with high accuracy for predicting the liquid accumulation.  
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