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ABSTRACT 

 

This research is an attempt to describe the Electrical Impedance Tomography (EIT) in a different way. EIT is an 

undeveloped medical imaging technique which aims to clear the impedance structure of inside an object based on 

measuring its surface. Currently, using this method in business is not possible due to lack of access carefully 

enough. In this article, ignoring the classical viewpoints on this kind of tomography, the researcher tries to introduce 

new strategies to describe the issue using blocking out the object under study. Therefore, the object is considered as 

a set of similar blocks with a constant impedance that have electronic exchanges with each other and their 

surrounding environment. Then, calculating and simplifying the relations between each of these blocks, a series of 

equations are gained that can help to completely describe the object and tell how to directly solve the EIT issue.  

KEYWORDS: blocking out the equations, Finite Element Method, Forward Problem, Impedance Tomography. 

 

1. INTRODUCTION 

 

In many medical issues, understanding the electrical features of the inside of human body and its changes is very 

important. By electrical features in the above sentence, we mean the electrical conductivity and permeability. Both of 

these two features are very significant in medical applications because on the one hand different tissues of the body 

have different modes of conductivity and permeability, but on the other, identifying this type of electrical features of 

the inside of body are very useful in medical issues like diagnosing Pulmonary embolism or blood coagulation in 

lung. The electrical map of human body can be useful in many other medical issues [1-5]. In practice, in order to 

register the data, some electrodes are attached to the skin around the body of patient and at their other ends, they are 

attached to a data collection unit whose output is plugged in a computer. Then, applying a weak current to the body, a 

series of potentials will be developed in other electrodes.  

Since these applied currents select the circuits according to the impedance to flow through, the way this 

electrical circuit flows through the body (potential distribution among other electrodes) will be based on conductivity 

distributions. However, this changes reconstructing the image to a non-linear issue that can be tackled using several 

methods [1, 5, 7]. The result will be called Electrical Impedance Tomography (EIT) [2, 3, 5-9]. In the above sentence, 

the term Impedance is used with the same electrical concept that expresses the voltage ratio of both ends of an 

electrical element to the ampere [10-12]. Since the resistivity of different tissues ranges widely from 0.65 ohm meter 

in cerebrospinal fluid to 166 ohm meter in bone, it is possible to image every sections of the body and EIT, in fact, 

specifies the distribution map of electrical impedance of a specific section of the body. By now, different models such 

as continuous model have been suggested to describe and analyze the EIT issue each of which has unique features.  

 

2. MATERIALS AND METHODS 
 

In solving the two-dimensional EIT through blocking method, it is suggested that the object under study is a 

two-dimensional rectangular composed of m*n blocks of the same size (Figure. 1). In addition, it is suggested that in 

each of these blocks, all the parts have similar electrical impedance as in all the parts of a block, a linear electric 

field will be made due to applying the circuit to the object.  
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Figure 1- Ageneral design of a blocked-out object with a desired block of the object. 

 

It is clear that as m, n→∞ increases; it is truer to suggest that the electrical impedance distribution inside the 

object is in a block form. As it is shown in figure 1, each block is described according to its position in relation to 

the point O, Cartesian coordinates with two horizontal and vertical components of i and j as Bij where i and j are 

changed from 1 to m and from 1 to n respectively. For each Bij block, a special electrical conductivity is defined 

equal to σij that is similar for all parts of that block according to the suggested hypothesis. In this series, each block 

has electronic exchanges with adjacent blocks or injecting electrodes. Here, the hypothesis is that alternating current 

densities of J3[i, j] and J1[i, j] enter to the left and below dimensions of Bij respectively and the alternating current 

densities of J4[i, j] and J2[i, j] exit from its right and above dimensions (Figure 2). Since the object is two-

dimensional, the unit of measuring density is determined as ampere to the length (e.g. meter). Another important 

hypothesis, that will be considered in the block analysis of EIT, is the monotonicity of the current densities of each 

block and their linear changes in relation to the current flow direction. In other words, in each desired block of 

Bij(Figure 2): 

��[i, j] = J
[i, j] + �∆�
∆�

(J
[i, j] − J�[i, j])       (1)                  

��[i, j] = J�[i, j] + ��
∆�

(J�[i, j] − J�[i, j])(2) 

Where Jx[i, j] and Jy[i,j] are respectively the horizontal and vertical components of current density of a part of 

block Bijthat are located at the distance x of the left dimension and y of the below dimension of the block (Δx and Δy 

are the sizes of horizontal and vertical dimensions of each block respectively). J1[i, j], J2[i, j], J3[i, j] and J4[i, j] are 

the corresponding current densities of the block Bij identified before.  

 
Figure 2- A desired block in the blocked-out object with the densities of input and output currents. 

 

As suggested before, the special conductivity of each block is considered equal for all its parts; therefore, using 

ohm’s law, j= σE, the voltage of every desired part inside of the block can be obtained as the following:  

��[�, �] − ��[�, �] = − � �
���

�
 !�[�, �]"# = − �


 ($%[&,']$([&,']
���∆)

)#
 − $([&,']
���

#(3) 

�*[�, �] − ��[�, �] = − � �
���

*
 !*[�, �]"+ = − �


 ($,[&,']$-[&,']
���∆.

)+
 − $-[&,']
���

+(4) 

In the above equations, the expression ex[i,j] - e1[i, j] shows the potential difference between the node e1[i, j] of the 

block Bij and a node at the distance x located at the same height. Similarly, the expression ey[i, j] - e3[i, j] shows the 

potential difference between the node e3[i, j] of the block Bij and a node at the distance y located on the same vertical 

line (Figure 2). Since the quantity of the potential is scalar, we can obtain the potential difference of both desired 

points inside the block using these equations. Other parameters have been identified before. Regarding the equations 

3 and 4 and considering figure 2, the following results can be achieved: 

��[i, j] − �/[i, j] = �
0 ∆�(�$([1,2]34%[1,2]

���
)(5) 

�/[i, j] − �
[i, j] = �
0 ∆�($([1,2]3�4%[1,2]

���
)(6) 

��[i, j] − �/[i, j] = �
0 ∆*(�$-[1,2]34,[1,2]

���
)         (7) 
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�/[i, j] − ��[i, j] = �
0 ∆* 5$-[1,2]3�4,[1,2]

���
6 (8) 

In the above equations, the expressions e1[i, j], e2[i, j], e3[i, j] and e4[i, j] are respectively the potentials of the 

middle nodes of left, right, below and above dimensions of block Bij and eO[i,j] is the potential of the central node of 

block Bij. By solving the above coordinates according to the current densities, the following equations can be 

obtained: 

J�[i, j] = σ12
�(7([1,2]78[1,2])(78[1,2]7%[1,2])

∆�
                 (9) 

J
[i, j] = σ12
�(78[1,2]7%[1,2])(7([1,2]78[1,2])

∆�
   (10) 

J�[i, j] = σ12
�(78[1,2]7,[1,2])(7-[1,2]78[1,2])

∆�
   (11) 

J�[i, j] = σ12
�(78[1,2]7,[1,2])(7-[1,2]78[1,2])

∆�
   (12) 

Now that the KCL law is true, the sum of input currents in the common dimension of the block must be equal to 0; 

therefore, referring to the equations (5-12) and regarding the fact that in the common dimensions of the blocks, since 

the level of current flow is equal, the sum of currents is equal to sum of densities equal to 0, a set of equation is 

obtained as the following: 

∀� ∈ [1, < − 1], ∀� ∈ [1, =]: !?[�, �] ≜ !
[�, �] = !�[� + 1, �](13) 

∀� ∈ [1, <], ∀� ∈ [1, = − 1]: !A[�, �] ≜ !�[�, �] = !�[�, � + 1](14) 

On the other hand, regarding the block model of the object, one can see that all the nodes in the adjacent dimensions 

are common with each other and thus, the following relations can be defined: 

∀� ∈ [1, < − 1], ∀� ∈ [1, =]: �?[�, �] ≜ �
[�, �] = ��[� + 1, �](15) 

∀� ∈ [1, <], ∀� ∈ [1, = − 1]: �A[�, �] ≜ ��[�, �] = ��[�, � + 1](16) 

Simplifying the set of equations 11-14, n(m – 1) + m(n – 1) equations can be defined: 

∀� ∈ [1, < − 1], ∀� ∈ [1, =]: 
�?[�, �] = 4

3
σ12e/[i, j] + σ(13�)2e/[i + 1, j])

σ12 + σ(13�)2
− 1

3
σ12eE[i − 1, j] + σ(13�)2eE[i + 1, j]

σ12 + σ(13�)2
 

     (17) 

∀� ∈ [1, <], ∀� ∈ [1, = − 1]: 
�A[�, �] = �

�
σFG78[1,2]3σF(GH()78[13�,2])

σFG3σF(GH()
− �

�
σFG7I[1,2�]3σF(GH()7I[13�,2]

σFG3σF(GH()
(18) 

In addition, regarding the KCL law, the sum of input currents applied to each desired block should be equal to 0 and 

thus, another set of equations will be formed:  

∀� ∈ [1, <], ∀� ∈ [1, =]: !�[�, �]. ∆� + !�[�, �]. ∆*= !
[�, �]. ∆� + !�[�, �]. ∆*(19) 

Simplifying this set of equations leads to n.m other equations as the following: 

∀� ∈ [1, <], ∀� ∈ [1, =]: �K[�, �] =  MN[&,']3MN[&�,']3MO[&,']3MO[&,'�]
� (20) 

In order to reduce the volume of calculations in the future, the central node variables will be eliminated by including 

the equation (20) in other equations and this leads to new equations as the following: 

∀� ∈ [1, < − 1], ∀� ∈ [1, =]: 
�?[�, �] = 1

2
Q&'(�A[�, �] + �A[�, � − 1]) + Q(&3�)'(�A[� + 1, �] + �A[� + 1, � − 1])

σ12 + σ(13�)2
 

(21) 

∀� ∈ [1, <], ∀� ∈ [1, = − 1]: 
�A[�, �] = 1

2
Q&'(�?[�, �] + �?[� − 1, �]) + Q(&3�)'(�?[�, � + 1] + �A[� − 1, � + 1])

σ12 + σ1(23�)
 

(22) 

3. RESULTS 

 

As it is described in the electrical impedance tomography theory, a current is applied to the object through 

electrode arrays; this means that the surrounding blocks of the object and thus the surrounding nodes of the object 

have their own KCL relations. 
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Figure 3- Calling the applied currents to surroundings of the object in analyzing the electrical impedance 

tomography via blocking method. 

 

If we suppose that the currents jϵ[1, n] and IT[0, j] are applied to the blocks of the left part of the object through 

electrodes and the currents jϵ[1, n] and IT[m, j] exit from the electrodes of the blocks of the right part of the object 

(figure 3). Also, if we suppose that the currents jϵ[1, n] and IN[i,0] are applied to the blocks of the below part of the 

object and the currents iϵ[1, m] and IN[i, n] exit through the electrodes of the blocks of the above parts of the object 

(figure 3). Referring the equations (9-11), 2(n+m) relations will be formed as the following: 

∀j ∈ [1, =]: R?[0, �] = R�[1, �]. ∆�= Q&' . (3(�?[0, �] − �K[1, �]) − �K[1, �] − �?[1, �]))(23) 

∀j ∈ [1, =]: R?[<, �] = R
[<, �]. ∆�= QT' . (3(�K[<, �] − �?[<, �]) − �?[< − 1, �] − �K[<, �]))    (24) 

∀i ∈ [1, <]: RA[�, 0] = R�[�, 1]. ∆*= Q&' . (3(�A[�, 0] − �K[�, 1]) − �K[�, 1] − �?[�, 1]))(25) 

∀i ∈ [1, <]: RA[�, =] = R�[�, =]. ∆*= Q&U. (3(�K[�, =] − �U[�, =]) − �A[�, = − 1] − �?[�, =])) (26) 

In the above expression, eN[i,n], eT[m,j], eN[i, 0] and eT[0, j] are the meddle nodes of parietal dimensions of some 

blocks of the object located in its membranes. As the order shown in figure 3, the applied currents of IT[0, j], IN[m, 

j], IT[m, j] and IN[i, n] enter and exit from and to the object through these nodes. The above relations can be changed 

according to these nodes as the following: 

∀� ∈ [1, =]: �?[0, �] = �
�

VN[ ,']
���

+  �
� �K[1, �] − �

� �?[1, �](27) 

∀� ∈ [1, =]: �?[<, �] = − �
�

VN[T,']
�W�

+  �
� �K[<, �] − �

� �?[< − 1, �](28) 

∀� ∈ [1, <]: �A[�, 0] = �
�

VO[&, ]
���

+ �
� �K[�, 1] − �

� �A[�, 1] (29) 

∀� ∈ [1, <]: �A[�, =] = − �
�

VO[&,U]
��X

+ �
� �K[�, =] − �

� �A[�, = − 1]    (30) 

Central node variables of these equations will be eliminated by including the equation (20) and a new series of 

following equations will be formed:  

∀� ∈ [1, =]: �?[0, �] = �



VN[ ,']
���

+  �

 �A[1, �] − �


 �A[1, � − 1](31) 

∀� ∈ [1, =]: �?[<, �] = − �



VN[T,']
�W�

+  �

 �A[<, � − 1] − �


 �A[<, �](32) 

∀� ∈ [1, <]: �A[�, 0] = �



VO[&, ]
���

+ �

 �?[�, 1] − �


 �?[� − 1,1]                (33) 

∀� ∈ [1, <]: �A[�, =] = − �



VO[&,U]
��X

+ �

 �?[�, =]   +  �


 �A[� − 1, =] (34) 

 

Now, considering the above formulae, when the EIT issue is studied from block point of view, there will be three 

kinds of potential nodes in the blocked-out object:  

1. Horizontal nodes of jϵ[1,n], iϵ[0, m] and eT[i, j], N= n(m+1) 

2. Vertical nodes of jϵ[0,n], iϵ[1, m] and en[i, j], N= m(n+1) 

3. Central nodes of jϵ[1,n], iϵ[1, m] and eo[i, j], N= m*n 

Therefore, regarding eliminating the potentials of central nodes in the above equations, the general number of all our 

unknown nodes will be equal to m*(n+1) + n*(m+1), one of these nodes is the reference node whose potential is 

considered equal to 0; thus, the goal of solving the EIT issue is to obtain the m(n+1) + n(m+1) potentials of other 

nodes. On the other hand, referring to the equations (21-22) and (31-33), we will see that the number of these 
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equations will be equal to m*(n-1) + n*(m-1) + 2*(m+n) = m*(n+1) + n*(m+1). One of these equations is related to 

the reference node and according to the explanations offered in analyzing the nodes of electrical circuit, that 

equation will be ignored; thus, the number of other equations will be equal to the number of unknown quantities. All 

these equations are linear and independent. Hence, we can obtain all the unknown quantities of the problem 

including the potentials of horizontal and vertical nodes through the common methods to solve the linear equation 

system. Then, based on the potentials of these nodes and using the equations (9-12) and (20), all densities of the 

currents between the blocks- inside object- and the potentials of the blocks’ central nodes will be calculated. In order 

to solve the above linear equation system, we can use different analytic methods such as the inverse matrix method 

or iterative methods like Gauss- Seidel Iteration Method. So, we can see how a current is distributed through a 

desired object by solving the equation system.  

In this section, the process of direct solving the EIT issue was studied to see how the methods to solve it functions 

and the currents are distributed throughout an object. Therefore, a desired m*n matrix is considered as a special 

conductivity matrix of a given object. Here, the amount of each element of this matrix is considered as the special 

conductivity of a corresponding block of that element in the object. Thus, a pattern for impedance distribution was 

reconstructed by this matrix. Then, regarding the fact that some certain currents are applied to the object membrane 

through special points, all the currents and internal voltages of the object- the potentials of the given nodes- were 

calculated by solving the aforementioned problem through the inverse matrix method.  

 
Figure 4- An image of how the current is distributed- the voltage inside the object in  

electrical impedance tomography. 

 

The result has been shown in figure 4. This image, regarding applying 100-ampere currents, shows how the 

currents and voltages distribute throughout the object. The points of applying the current are marked by black 

arrows and the vectors in the picture indicate the distribution and the size of input currents. The continuous lines in 

the picture are the symbols of potential curves and their corresponding values are written on them. The background 

picture implies the impedance structure of the given object. The reference node is located on the top right corner of 

the object.  

 

4. Conclusion  
Electrical impedance tomography through the block method is a new approach to this technique that tries to 

change this problem to analysis of small elements rather than adopting the old methods that were mainly based on 

solving potential equations so that it would be possible to find the unknown quantities of the problem using only 

common simple precise solutions for linear equation system with n unknown quantities without any need to the old 

complex imprecise solutions, such as solving potential equations. In addition, we can increase the clarity by the 

optional increasing the number of given blocks of the object. As it was observed in the simulation process, this 

technique is a very efficient and quick method to directly solve the EIT issue, i.e. studying the current distribution in 

an object under electrical impedance that offer acceptable solutions. Therefore, the created equations system, and 

thus the block method, can describe the object under electrical tomography completely and precisely and calculate 

all its electrical features in each current application. The block method can also find the way to distribute the 

current-voltage in every environment. That is why this method can provide an inverse solution for the EIT issue too. 
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