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ABSTRACT 

 

     ANNs have contributed tremendously towards time arrangement expectation coliseum, yet the 

vicinity of anomalies that as a rule happen in the time arrangement information may pollute the 

system preparing information. Hypothetically, the most widely recognized calculation to prepare 

the system is the backpropagation (BP) algorithm which is in light of the ordinary least squares 

(OLS) estimator as far as mean squared error (MSE). Be that as it may, this calculation is not 

absolutely vigorous in the vicinity of anomalies and may bring about bogus forecast of future 

qualities. Subsequently, in this paper, we actualize another calculation which exploits firefly 

calculation on the firefly algorithm on the least median of squares (FA-LMedS) estimator for 

manufactured neural system nonlinear autoregressive (BPNN-NAR) and simulated neural system 

nonlinear autoregressive moving normal (BPNN-NARMA) models to provide food the different 

degrees of peripheral issue in time arrangement information. In addition, the execution of the 

proposed vigorous estimator with correlation to the first MSE blunder capacity utilizing 

reproduction information, taking into account root mean squared lapse (RMSE) are likewise 

examined in this paper. It was found that the robustified backpropagation learning calculation 

utilizing FA-LMedS beat the first backpropagation learning calculation. 

KEYWORDS: ANNs, Time Series Outliers, Backpropagation, Firefly Algorithm, Least Median 

Squares 

 

1      INTRODUCTION 

 

The backpropagation calculation is in view of the feed forward multilayer neural system for 

an arrangement of inputs with indicated known characterizations. The calculation permits 

multilayer feed forward neural systems to take in info yield mappings from preparing specimens 

[1]. Once every section of the specimen set is introduced to the system, its yield reaction will be 

analyzed by the system as for the example information design. The yield reaction is then 

contrasted with the known and sought yield and the blunder quality is computed, where the 

association weights are balanced. The backpropagation calculation is in light of Widrow-Hoff 

delta learning tenet in which the weight conformity is done through mean square mistake (MSE) of 

the yield reaction to the specimen info [2]. The arrangement of these specimen examples are over 

and again displayed to the system until the blunder worth is minimized.  

Despite the fact that ANNs have effectively caught the premium and worry of numerous 

specialists in numerous fields because of its widespread capacity as capacity approximator, the 

surely understood backpropagation learning calculation which is in view of the mean's 

minimization square mistake (MSE) expense capacity, is not vigorous in the vicinity of exceptions 

that may bring about lapse in information preparing procedure [3]. MSE is a blunder measure 

between the real and coveted yield that is utilized as a part of the well known backpropagation 

learning calculation of multilayered feed forward neural systems (MFNNs) preparing. [3] concur 
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that this prevalent calculation is not totally strong in the vicinity of anomalies. Indeed, even a 

solitary anomaly can demolish the whole neural system fit [4].  

Essentially, acquiring great information is the most entangled piece of guaging [5]. In this 

manner, accomplishing finish and smooth genuine information are very nearly zero likelihood. 

Anomalies are information seriously going astray from the example set of the larger part 

information. It has been accounted for that the event of anomalies reaches from 1 percent to more 

than 10 percent in common routine information [6][7]. Taking into account past studies [8-10] the 

presence of these anomalies represents a serious risk to the standard or traditional slightest squares 

investigation.  

In time arrangement examination, the investigators need to depend on information to 

recognize which point in time are anomalies to assess the suitable remedial moves to be made so 

that the abnormal occasions can be evaluated precisely. Hypothesis and practice are larger part 

worried with straight systems, such ARMA and ARIMA models [11]. Then again, numerous 

arrangement display design which can't be clarified by a liner system which trigger the need of 

non-direct models, for instance bilinear models [12] and non-straight ARMA models (NARMA) 

[13]. 

2      PROBLEM FORMULATIONS 

 

Where determining is worried, there rise different models in copious endeavors around there. 

In a present study, Padhan [14] checks that the SARIMA model is performs the best determining 

in bond creations in India. Notwithstanding, numerous different past studies have demonstrated 

something else; the Neural System is said to have beated established anticipating procedures and 

other factual technique [15-17]. To epitomize this, Kaastra & Boyd [15] have executed BPNN and 

ARIMA to anticipate what the future volumes would be, and built up the NN estimating as the 

measuring stick to the ARIMA model. Meanwhile, Franses and Griensven [16] find that ANNs 

have a tendency to beat straight models in the figure of trade rates once a day. Next, month to 

month development materials estimates have been created in a Malaysian setting by [18][19], 

utilizing both SARIMA and ANN procedures, where inevitably ANN was observed to be 

unrivaled. Despite the fact that ANNs is a standout amongst the most encouraging application in 

the region of anticipating, however the systems are dependably not powerful in taking care of 

information with anomalies which as a rule happen, in actuality information.  

In the field of vigorous insights [9][20], numerous routines to manage the issue of exceptions 

have been proposed. They are intended to act appropriately when the genuine basic model goes 

astray from the presumptions, for example, ordinary lapse conveyance. Robust routines recognize 

and evacuate remote information before the model is manufactured, however a greater amount of 

them, including vigorous estimators, ought to be effective and solid regardless of the fact that 

exceptions show up. At the same time, they ought to perform well for the perceptions that are near 

the accepted model.  

The easiest thought to make the customary neural system learning calculation more powerful 

to exceptions is to supplant the quadratic mistake with another symmetric and constant misfortune 

capacity, bringing about the nonlinear impact capacity. Such nonlinearity ought to decrease the 

impact of substantial mistakes. Vigorous misfortune capacities can be in view of the strong 

estimators with demonstrated capacity to endure diverse measures of peripheral information. 

Supplanting the MSE execution capacity with another strong capacity results in powerful learning 

strategy with the decreased effect of exceptions.  

In this study, the issue of strong preparing of backpropagation neural systems (BPNN) time 

arrangement models in light of using the measurable powerful estimators is tended to. ANNs is 

picked in this exploration in light of the fact that they have been utilized with accomplishment as a 

part of numerous zones of logical and specialized orders including software engineering, building, 

medication, automated, material science and psychological sciences. The most well-known zone in 

which feed forward neural systems have discovered broad application is capacity close estimation 

because of its capacity as a widespread capacity approximator [3]. The greater part of past 
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endeavors enhanced just on feedforward adapting so as to neurocomput for the most part the M-

estimators [21].  

One of the first vigorous learning calculations, the LMLS (Slightest Mean Log Squares) 

system, was presented by [8]. He proposed the logistic mistake capacity, got from the lapses' 

presumption produced with the Cauchy circulation. This commitment was considered as 

referential by different creators who attempted to develop more productive capacities. The thought 

of supposed M-estimators [20] was connected by Chen and Jain [22] in utilizing the Hampel's 

hyperbolic digression as another blunder rule. For this execution capacity extra scale estimator β, 

characterizing the extent of residuals suspected to be anomalies, was likewise presented. Hector et 

al. [4] observed that a hearty calculation for nonlinear autoregressive (NAR) models utilizing the 

summed up most extreme probability (GM) sort estimators beat the minimum squares technique in 

taking care of anomalies. In a study by [23], the toughening plan was connected to diminish the 

estimation of β with the advancement of preparing. There were additionally approaches with 

execution capacities in view of the tau-estimators [24] and the LTS (Slightest Trimmed Squares) 

estimator, while starting information examination with the MCD (Least Covariance Determinant) 

estimator was proposed [25]. [3] have exhibited the Reenacted Toughening for Minimum Median 

of Squares (SA-LMedS) calculation, applying the recreated tempering procedure to minimize 

execution measured by the median of squared residuals. A few endeavors to make the learning 

techniques for spiral premise capacity organizes more vigorous, after the methodologies for the 

sigmoid systems, have been additionally made [26]. The latest vigorous learning systems to be 

said are hearty co-preparing in view of the authoritative connection examination proposed by Sun 

and Jin [27], and powerful versatile learning utilizing direct network disparity methods [28].  

In a paper by [21], another hearty learning calculation in view of the iterated Slightest 

Median of Squares (LMedS) estimator was displayed. The novel methodology is a great deal more 

powerful and fundamentally speedier than the SA-LMedS technique [3]. It accomplishes 

additionally better imperviousness to wrong preparing information. To make the preparation 

transform more powerful, change was made on the execution capacity as well as uproot iteratively 

information suspected to be anomalies. Also, an estimated system to minimize the LMedS slip 

basis was proposed. Meanwhile, Shinzawa, Jiang, Iwahashi and Ozaki [29] proposed molecule 

swarm improvement on minimum median squares (PSO-LMedS) as a hearty bend fitting 

technique for optical spectra. They found that, contrasted with standard bend fitting utilizing 

slightest squares (LS) estimator, the proposed strategy can effectively decrease undesirable 

impacts of sign to-commotion (SN) proportion and can yield more precise fitting results.  

In the in the mean time, Xin-She Yang in 2007 from Cambridge College built up another 

metaheuristic calculation, in particular firefly (FA) calculation [30-35]. The firefly calculation was 

found to perform better contrasted with molecule swarm streamlining in taking care of abnormal 

state of clamor [36]. In this study, we acquaint another methodology with robustify the 

backpropagation learning calculation of nonlinear neural system time arrangement models 

utilizing FA-LMedS estimator. This paper intends to think about the execution of LS, M-

estimators, ILMedS, PSO-LMedS and FA-LMedS in backpropagation calculation of both BPNN-

NAR and BPNN-NARMA models. Whatever remains of this paper is composed as takes after. 

The related literary works are given in segment 2, and the foundation of information utilized as a 

part of this study is portrayed in the accompanying area, segment 3. Under segment 4, the 

technique review is additionally given, with the strategy used to examine the information is 

clarified. Besides, the exploratory settings and results are displayed in segment 5. At last, segment 

6 finishes up the paper, in addition to a proposal for future attempt is additionally given. 

 

3      DATA BACKGROUND 

 

In this research, there were three different simulation data were used. 

Background Noise Data points were selected at random and then substituted with probability 

δ with a background noise uniformly distributed in the specific range. 
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Case 1- In order to test our algorithm on the 1-D approximation task, the function by [8] was 

considered in this research, as also employed by previous works such as [3][21-23][37]. 

3
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Fig. 1. Plot of data points from the function in Case 1 with no outliers, δ=0 

 

The data used for this experiment consist of N=400 points that were generated by sampling 

the independent variable in the range of [-2, 2] with interval 0.01. 

Case 2- Another 1-D function to be approximated was as considered in many articles [21-23] 

defined as: 

x
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Fig. 2. Plot of data points from the function in Case 2 with no outliers, δ=0 

 

The data used for this experiment consist of N=1500 points that were generated by sampling 

the independent variable in the range of [-7.5, 7.5] with interval 0.01. 

Case 3- The second approximation was as suggested by [3] and [21] which can be defined as: 

xxexy −−=
2

2

2

1

1                                                  (3) 

 
Fig. 3. Plot of data points from the function in Case 3 with no outliers, δ=0 
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The data points were created by sampled function on the regular 16 x 16 grid. Here, the data set 

were generated by sampling the independent variables, x1, x2∈[-2, 2] with interval 0.01. 

 

4      METHODOLOGY 

 

In the examination flowchart in Figure 4, the exploration procedure can be plainly seen. 

Here, the current hearty estimators on backpropagation neural system were actualized. To answer 

the fundamental goal of the study, the conceivable half breed powerful estimators in nonlinear 

autoregressive (NAR) and nonlinear autoregressive moving normal (NARMA) of neural system 

time arrangement were done utilizing MATLAB R2012a. At this stride, MATLAB scripts or 

codings were composed parallel to the numerical detailing done before. After that, the execution of 

the proposed robustified neural system models were analyzed utilizing reenactment information; 1-

D and 2-D utilizing the standard execution measure, root mean square lapse (RMSE). At that point 

the powerful BPNN-NAR and BPNN-NARMA technique were tried on benchmark information. 

The near results were attracted those strides. 

 

4.1      Robust Backpropagation Algorithm 

The most important part of the study is the mathematical formulation improvement part of 

backpropagation neural network algorithm using statistical robust estimators. To make robust the 

traditional backpropagation algorithm based on the M-estimators concept for reducing outlier 

effect, the squared residuals 
2
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where N is the total number of samples available for network training. We are deriving the 

updating of the network weights based on the gradient decent learning algorithm. To prevent the 

loss of generality, a feedforward neural network with one hidden layer will be implemented in this 

study. The weights from the hidden neurons to output neurons, Wj,i are expressed as 
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where α is a user-supplied learning constant, Oi is the output of the ith hidden neuron, Oj=fj(netj) is 

the output of the jth output neuron, netj=
i

i

ji OW∑
 is the induced local field produced at the input of 

the activation function associated with the output neuron (j), and fj is the activation function of the 

neurons in the output layer. In this work, a linear activation function (purelin) will be used in the 

output layer’s neurons. The weights from the input to hidden neurons Wj,i  are updated as 
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where Ii is the input to the ith input neuron, netj=
i

i

ij OW∑ ,

is induced local field produced at the 

input of the activation function associated with the hidden neuron (i), and fj is the activation 

function of the neurons in the hidden layer. We have the intention to use the tan-sigmoid function 

as the activation function for the hidden layer’s neurons because of its flexibility. 

The least-median-of-squares (LMedS) method estimates the parameters by solving the 

nonlinear minimization problem: 

                       

2
min iimed ε

                                                  (8) 

 

That is, the estimator must create the littlest quality for the median of squared residuals 

processed for the whole information set. It creates the impression that this strategy is extremely 

strong to false matches furthermore to anomalies attributable to terrible limitation [6]. Not care for 

the M-estimators, on the other hand, the LMedS issue can't be moderated to a weighted minimum 

squares issue. It is maybe not feasible to scribble down a direct equation for the subordinate of 

LMedS estimator. Thus, deterministic calculations will most likely be unable to capacity to 

minimize that estimator. The Monte-Carlo strategy [6][38] has been polished to take care of this 

issue in some non-neural applications. Stochastic calculations are additionally recognized as the 

improvement calculations which utilize irregular hunt to accomplish an answer. Stochastic 

calculations are in this way generally moderate, however probability it will locate the worldwide 

least. One entirely well known streamlining calculation connected to minimize a LMedS-based 

system slip is reenacted toughening (SA) calculation. SA is a wonderful calculation in light of the 

fact that it is moderately broad and it has the propensity not to get stuck in either the neighborhood 

least or most extreme [3]. Then again, [21] finds that iterated LMedS (ILMedS) has a tendency to 

beat the SA-LMedS.  

 

4.2      Firefly Algorithm (FA) 

The FA was developed by Xin-She Yang at Cambridge University in 2007 based on the 

flashing pattern of tropical fireflies [30][32], and cuckoo search algorithm which was inspired by 

the brood parasitism of some cuckoo species [31]. In the simplest case for maximum optimization 

problems, the brightest, I of a firefly for a particular location, x could be chosen as )()( xfxI ∝ . 

However, the attractiveness β is relative and it should be judged by other fireflies, hence it will 

differ with the distance rij between firefly i and firefly j. In addition, light intensity decreases with 

the distance from its source, and light is also absorbed by the media, thus the attractiveness is 

varied with the varying degree of absorption. In the simplest form, the light intensity I(r) varies 

according to the inverse square law 

        
2

)(
r

I
rI s=

                                                     (9) 

where Is is the intensity at the source. For a stated medium with a fixed light absorption 

coefficient γ, the light intensity I varies with the distance r. That is  

 
reII γ−= 0                                                     (10) 
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where I0 is the initial light intensity. In order to avoid singularity at r = 0 in the expression 

Is/r2, the combined effect of both the inverse square law and absorption can be approximated as the 

following Gaussian form 

     

2

0)( reIrI γ−=
.                                                (11) 

 

Since the attractiveness is proportional to the light intensity seen by other fireflies, the 

attractiveness β of a firefly can be define as 

  

2

0exp

r
e

γββ −=
                                               (12) 

 

where βo is the attractiveness at r = 0. Since it is often faster to calculate 1/(1+r2) than an 

exponential function, the above function can be approximated as 

  
2
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These attractiveness expressions define a characteristic distance Γ=1/γ over which the 

attractiveness is changing significantly from βo to βoe-1 for the βexp function and βo/2 for the βinv 

function. In the real time implementation, the attractiveness function β(r) can be monotonically 

decreasing functions such as the following generalized form 
                      

  
).1(;)( 0 ≥= − mer
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For a fixed γ, the characteristic length becomes 
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                                     (15) 
 

On the other hand, for a specific length scale Γ in an optimization problem, the parameter γ can be 

used as a typical initial value. That is 

     

.
1
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The distance between any two fireflies i and j at xi and xj, respectively is the Cartesian 

distance, 
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where xi, k is the kth component of the spatial coordinate xi of ith firefly. In 2-D case, the 

distance between any two fireflies i and j can be written as  
              

  
.)()( 22
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                                (18) 

 

The movement of a firefly i is attracted to another brighter firefly j is determined by 

  
,)(*

2
,

0 iij

r

ii xxexx ji ∈+−+= − αβ γ

                           (19) 

where the second term is due to the attraction and third term is randomization with α being 

the randomization parameter, and i∈ is a vector of random numbers being drawn from a Gaussian 

distribution or uniform distribution. For example, the simplest form is i∈ can be replaced by rand -

1/2 where rand is a random number generator uniformly distributed in [0, 1]. For most 
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implementation, usually βo=1 and 
]1,0[∈α

[30]. It is important pointing out that xi is a random 

walk biased towards the brighter fireflies. If βo=0, it becomes a simple random walk. Furthermore, 

the randomization term can easily be extended to other distributions such as Levy flights [30]. The 

parameters γ now characterizes the contrast of the attractiveness, and its value is crucially 

important in determining the speed of the convergence and how the FA algorithm behaves. In 

theory, 
),0[ ∞∈γ

, but in actual practice, )1(0∈γ  is determined by the characteristic length Γ of 

the system to be optimized. Thus, for most applications, it typically varies from 0.1 to 10 [30][35]. 

The descriptive measures for model selection was root mean square error (RMSE) which can 

be written as 

   

( )
N

t
RMSE

N

t∑ == 1

2ε

.                                         (20) 
 

Comparable the same number of past exploration endeavors illustrated, it is conceivable to 

prepare the FNNs with median neuron information capacity with inclination based calculations 

[21]. In these systems, basic summation in the neuron info is supplanted by the median 

information capacity, which likewise causes non-differentiability of the system mistake capacity. 

The RBP learning calculation was produced to take out the impact of moderate union for the low 

slope greatness brought about by the level areas of sigmoid actuation capacities. This is the 

motivation behind why the calculation is more suitable to the LMedS lapse capacity, just 

essentially on the grounds that legitimate estimation of the slope's indication is more probable than 

fitting estimation of its precise worth [21]. The progressions of the estimated RBP calculation for 

the LMedS slip criteria can be composed as takes after:  

 

Step 1: Utilization backpropagation to figure subsidiaries of the MSE execution capacity, εmed  

Step 2: Upgrade the system weights  

Step 3: Adjust components of information with foundation commotion  

Step 4: Calculate the network LmedS performance εmed 

Step 5: If the LMedS execution is minimized to the expected objective, or the quantity of ages 

surpasses the most extreme number of ages, quit preparing. Generally go to the first step 

 

The basic NAR-ANN formulation can be represented as below;       
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The finalized NARMA-ANN formulation can be represented as below;        
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where  

H(x) is the estimated model,  

x(t-1), x(t-2),…, x(t-ny) are lagged input terms,  

ε(t-1), ε(t-2),…ε(t-nε) are lagged residual terms, and the lagged residual terms are obtained 

recursively after the initial model (based on the input and output terms) is found.  

Hence, ε(t) are the white noise residuals. 

l is the input neurons with index i 

m is the hidden neurons with index j 

n is the output neurons with index k  
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5      RESULTS AND DISCUSSIONS 

 

In light of the Tables 1, 2 and 3, the customary calculation delivered the best results in view of 

the littlest RMSE values for the perfect information without anomalies. This result is parallel with the 

case that MSE blunder capacity is ideal for the information without anomalies by [3][21][39].  

On the other hand, the circumstance is changed for the information containing falsely 

produced anomalies where the MSE-based technique totally loses its effectiveness. This can be 

demonstrated by the strategy's breakdowns as indicated in Tables 1, 2 and 3. The strong 

calculations of FA-LMedS perform essentially better contrasted with MSE-based expense capacity 

with the most minimal RMSE values in every one of the three cases, as indicated in Tables 1, 2 

and 3. This is perhaps because of the reason that firefly calculation perform better for larger 

amount of clamor [36] and when it fused into backpropagation neural system preparing calculation, 

it focalize at quicker rate with least feedforward neural system outline [40]. As said by [32], the 

fireflies calculation is the uncommon instance of quickened molecule swarm streamlining 

calculation. FA-LMedS keep up to endure with little mistakes for the information comprising 

anomalies more than 60 percent, as demonstrated in Tables 1, 2 and 3.  

Taking into account the experimental consequences of this exploration, there are three 

general conclusions can be drawn concerning the tried calculations:  

 

i. The learning calculation taking into account the MSE capacity works best when the 

information are spotless or not defiled by exceptions.  

ii. The FA-LMedS calculation appears to beat the MSE expense capacity for the 

information with gross slips.  

iii. The hearty NARMA-ANN strategy performed the best by means of FA-LMedS 

contrasted with the powerful NAR-ANN technique. 

 

6      CONCLUSIONS AND RECOMMENDATIONS 

 

In this paper we displayed novel adjusted backpropagation neural system learning calculation 

taking into account the half breed firefly calculation with slightest middle of squares, otherwise 

called FA-LMedS. Our calculation is not just vigorous to the vicinity of different measures of 

anomalies additionally quicker and more precise contrasted with the first backpropagation calculation 

which is in view of MSE expense capacity. The execution prevalence of our system in correlation 

over different calculations, in the vicinity of distinctive level of exceptions, was exactly illustrated.  

For the perfect information or the information which don't experience the ill effects of 

exceptions issue, the traditional backpropagation in light of the MSE calculation performed 

extremely well. In addition, for information comprising gross mistakes and exceptions up to 70 

percent, it can be presumed that the model manufactured by the system prepared with the FA-

LMedS learning calculation is more exact than for the conventional strategy. This implies that the 

new proposed hearty stochastic calculation in view of the LMedS estimator has shown even 

enhanced heartiness over the first mistake capacity, whereby it figured out how to endure up to 70 

percent exceptions while keeping up an exact model on both reproduction information.  

The proposed hearty calculations for preparing neural systems can likewise be utilized as a 

part of uses other than capacity rough guess and framework distinguishing proof, for example, 

design acknowledgment, framework ID, machine learning, counterfeit consciousness, monetary 

danger administration, automated, and in addition quality control and streamlining.  

In future endeavors, a few options might be contemplated in this examination, which are:  

 

i. To build the quantity of cycle number and swarm size molecule FA-LMedS further watch the 

execution.  

ii. To find quicker and more capable different options for minimize the LMedS slip model 

capacity, e.g. by controlling the upgraded adaptations of the RBP technique.  
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iii. To apply other quicker preparing calculation into the system and further analyze the 

outcomes, for example, traincgf [3] and trainlm [39].  

iv. To apply other existing factual strong stochastic estimators and soon half and half them with 

quick deterministic calculations.  

v. To train the system utilizing diverse enactment capacities as said by [1].  

vi. To further enhance the backpropagation learning calculation utilizing enhanced rendition of 

slightest trimmed squares (LTS) such those as proposed by [39][41][42].  

vii. To test the new FA-LMedS calculation on close estimation undertaking of a 2-D winding as 

recommended by [21], and in addition Information set 4 to Information set 14 as proposed by [39]. 

viii. To analyze the normal time execution (in seconds) for all the tried calculations in 

reproduction studies as indicated by [21].  

ix. To analyze the new vigorous neural system technique with the direct improved neural system 

routines utilizing molecule swarm enhancement [43][44].  

x. To further cross breed neural system with enhanced form firefly calculation such the one 

proposed by [45], called Half and half Transformative Firefly Calculation (HEFA).  

xi. To further investigate diverse mix of system parameters, for example, number concealed 

hubs, number of information slacks, number of yield slacks.  

xii. To think about the execution of the proposed calculation with the current ones, for example, 

M-estimators, iterative slightest middle squares (ILMedS) and molecule swarm on minimum 

middle squares (PSO-LMedS).  
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Fig. 4. Flowchart of proposed robust BPNN-NAR and BPNN-NARMA 
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Table 1. The RMSE scores for test function in Case 1 
Max Lags 

of inputs 

Ny) 

Max Lags 

of errors 

Ne) 

Hidde

n 

Swar

m Size 

Iteratio

n 

Percentage 

of Outliers 

δ) 

Algorithm 

MSE FA-LMedS 

NAR NARMA NAR NARMA 

2 2 5 5 5 0 0.0165 0.0144 0.0006 0.0006 

2 2 10 5 5 0 0.0317 0.0232 0.0009 0.0009 

2 2 20 5 5 0 0.0559 0.0373 0.0010 0.0009 

2 2 5 5 5 10 2537.2571 2243.7403 0.0073 0.0055 

2 2 10 5 5 10 7806.4086 6968.4181 0.0040 0.0048 

2 2 20 5 5 10 3197.1237 2696.4526 0.0024 0.0013 

2 2 5 5 5 20 2691.9232 2483.4234 0.0005 0.0069 

2 2 10 5 5 20 2681.6996 1561.1672 0.0041 0.0073 

2 2 20 5 5 20 3837.5206 3669.8813 0.0092 0.0026 

2 2 5 5 5 30 3436.0919 4352.2928 0.0003 0.0050 

2 2 10 5 5 30 3483.9997 3468.8221 0.0047 0.0056 

2 2 20 5 5 30 8194.4084 9399.368 0.0068 0.0071 

2 2 5 5 5 40 4842.7778 3768.5752 0.0060 0.0024 

2 2 10 5 5 40 12529.716
5 

12785.6565 0.0042 0.0018 

2 2 20 5 5 40 2616.636 2040.8494 0.0023 0.0020 

2 2 5 5 5 50 4613.7007 4797.0081 0.0028 0.0070 

2 2 10 5 5 50 6696.0732 7111.9116 0.0071 0.0073 

2 2 20 5 5 50 5870.884 7450.8175 0.0007 0.0028 

2 2 5 5 5 60 6304.1263 5309.1228 0.0037 0.0034 

2 2 10 5 5 60 15210.334
1 

19075.8857 0.0005 0.0039 

2 2 20 5 5 60 2440.4538 3412.5697 0.0266 0.092 

2 2 5 5 5 70 5608.1938 5209.1128 0.0561 0.0530 

2 2 10 5 5 70 5159.2982 5390.3442 0.0445 0.0937 

2 2 20 5 5 70 3338.7296 4171.1588 0.0182 0.0149 

3 3 5 5 5 0 0.2266 0.9105 0.0331 0.0381 

3 3 10 5 5 0 0.1888 0.5777 0.0704 0.0363 

3 3 20 5 5 0 0.8679 0.3433 0.0756 0.0610 

3 3 5 5 5 10 2422.4903 2354.6119 0.0631 0.0243 

3 3 10 5 5 10 2961.5131 2019.4265 0.0733 0.0626 

3 3 20 5 5 10 1703.9431 1457.9506 0.0702 0.0752 

3 3 5 5 5 20 2782.5779 2530.3214 0.0629 0.0421 

3 3 10 5 5 20 4023.1339 2749.3138 0.0740 0.0395 

3 3 20 5 5 20 2388.1344 3923.2193 0.0390 0.0408 

3 3 5 5 5 30 2340.4295 2597.6883 0.0995 0.2822 

3 3 10 5 5 30 2565.6173 2779.8586 0.0981 0.0690 

3 3 20 5 5 30 8138.588 10017.3766 0.0137 0.0487 

3 3 5 5 5 40 3929.4474 4579.1315 0.0687 0.0609 

3 3 10 5 5 40 3069.3175 2993.2578 0.0176 0.0983 

3 3 20 5 5 40 3252.8795 3788.1158 0.0870 0.0507 

3 3 5 5 5 50 4103.3899 3686.9169 0.0843 0.0731 

3 3 10 5 5 50 3213.4135 3489.5679 0.0251 0.0554 

3 3 20 5 5 50 2344.8786 2746.5734 0.0076 0.0121 

3 3 5 5 5 60 4979.5091 4377.9622 0.0736 0.0320 

3 3 10 5 5 60 4662.0489 47763.665 0.0452 0.0295 

3 3 20 5 5 60 7100.6318 8801.7551 0.0989 0.0926 

3 3 5 5 5 70 1786.7835 1608.6392 0.0020 0.0019 

3 3 10 5 5 70 2300.8852 2439.9802 0.0312 0.0362 

3 3 20 5 5 70 3513.0521 4485.2789 0.0628 0.0402 
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Table 2. The RMSE scores for test function in Case 2 
Max 

Lags of 

inputs 

Ny) 

Max Lags 

of errors 

Ne) 

Hidden Swarm 

Size 

Iteration Percentage 

of Outliers 

δ) 

Algorithm 

MSE FA-LMedS 

NAR NARMA NAR NARMA 

2 2 5 5 5 0 0.1288 0.1202 0.0297 0.0252 

2 2 10 5 5 0 0.1782 0.1824 0.0392 0.0982 

2 2 20 5 5 0 0.2366 0.2595 0.0456 0.0751 

2 2 5 5 5 10 1592.8770 1801.0386 0.0284 0.0803 

2 2 10 5 5 10 2793.9951 2639.77614 0.0473 0.0025 

2 2 20 5 5 10 1788.0502 1642.0878 0.0349 0.0092 

2 2 5 5 5 20 1640.7081 1575.8881 0.0339 0.0031 

2 2 10 5 5 20 1637.5895 1249.4667 0.0506 0.0231 

2 2 20 5 5 20 1958.9590 1915.6934 0.0431 0.0159 

2 2 5 5 5 30 1853.6698 2086.2149 0.0748 0.0664 

2 2 10 5 5 30 1866.5475 1862.4774 0.0197 0.0036 

2 2 20 5 5 30 2862.5877 3065.8388 0.0298 0.0016 

2 2 5 5 5 40 2200.6312 1941.2818 0.0331 0.0074 

2 2 10 5 5 40 3539.7339 3575.7036 0.0218 0.0069 

2 2 20 5 5 40 1617.6019 1428.5830 0.1915 0.1705 

2 2 5 5 5 50 2147.9526 2190.2073 0.2086 0.1941 

2 2 10 5 5 50 2587.6771 2666.8167 0.1862 0.1792 

2 2 20 5 5 50 2422.9907 2729.6185 0.3065 0.2302 

2 2 5 5 5 60 2510.8019 2304.1533 0.1941 0.1647 

2 2 10 5 5 60 3900.0428 4367.5949 0.3575 0.0967 

2 2 20 5 5 60 1562.1951 1847.3141 0.1428 0.1400 

2 2 5 5 5 70 2368.1625 2282.3480 0.2190 0.0242 

2 2 10 5 5 70 2271.4088 2321.7114 0.2666 0.2622 

2 2 20 5 5 70 1827.2190 2042.3415 0.2729 0.2027 

3 3 5 5 5 0 0.2388 0.2379 0.2304 0.0171 

3 3 10 5 5 0 0.1973 0.2071 0.4367 0.4006 

3 3 20 5 5 0 0.1596 0.1596 0.1847 0.1636 

3 3 5 5 5 10 1556.4351 1534.4744 0.2282 0.2005 

3 3 10 5 5 10 1720.9047 1421.0652 0.2321 0.0266 

3 3 20 5 5 10 1305.3517 1207.4562 0.2042 0.0561 

3 3 5 5 5 20 1668.1068 1590.6983 0.2379 0.0445 

3 3 10 5 5 20 2005.7751 1658.1054 0.2070 0.0182 

3 3 20 5 5 20 1545.3589 1980.7118 0.1596 0.0331 

3 3 5 5 5 30 1529.8462 1611.7345 0.1534 0.0704 

3 3 10 5 5 30 1601.7544 1667.2908 0.1421 0.0756 

3 3 20 5 5 30 2852.8210 3165.0239 0.1207 0.0631 

3 3 5 5 5 40 1982.2833 2139.8905 0.1590 0.0733 

3 3 10 5 5 40 1751.9467 1730.1034 0.1658 0.0702 

3 3 20 5 5 40 18035.7409 19463.0826 0.1980 0.0629 

3 3 5 5 5 50 20256.8258 19201.3461 0.1611 0.0740 

3 3 10 5 5 50 17925.996 18680.385 0.1667 0.0390 

3 3 20 5 5 50 1531.2996 1657.2788 0.3165 0.0995 

3 3 5 5 5 60 2231.4813 2092.3580 0.2139 0.0981 

3 3 10 5 5 60 2159.1776 2185.4899 0.1730 0.0137 

3 3 20 5 5 60 2664.7010 2966.7752 0.1946 0.0687 

3 3 5 5 5 70 1336.7062 1268.3214 0.1920 0.0176 

3 3 10 5 5 70 1516.8668 1562.0435 0.1868 0.0870 

3 3 20 5 5 70 1874.3137 2117.8477 0.1657 0.0843 
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Table 3. The RMSE scores for test function in Case 3 
Max Lags 

of inputs 

Ny) 

Max Lags 

of errors 

Ne) 

Hidden Swar

m Size 

Iteratio

n 

Percentag

e of 

Outliers 

δ) 

Algorithm 

MSE FA-LMedS 

NAR NARMA NAR NARM

A 

2 2 5 5 5 0 0.0226 0.0252 0.0371 0.0224 

2 2 10 5 5 0 0.0436 0.0497 0.0307 0.0244 

2 2 20 5 5 0 0.1112 0.1186 0.0569 0.0672 

2 2 5 5 5 10 4359.7566 8641.6380 0.057 0.0636 

2 2 10 5 5 10 1079.2603 1365.1487 0.0525 0.0466 

2 2 20 5 5 10 3988.2749 4121.7564 0.1150 0.0153 

2 2 5 5 5 20 3717.8782 3244.3472 0.0756 0.0550 

2 2 10 5 5 20 3073.1547 2446.1292 0.2471 0.0209 

2 2 20 5 5 20 5694.1254 6723.3495 0.0424 0.0272 

2 2 5 5 5 30 5730.2224 6368.4176 0.0517 0.0494 

2 2 10 5 5 30 5256.0255 4664.3883 0.1019 0.0236 

2 2 20 5 5 30 11503.8636 11533.4735 0.0969 0.0136 

2 2 5 5 5 40 7562.8682 5504.5465 0.1372 0.0378 

2 2 10 5 5 40 2471.0467 3209.0136 0.1727 0.0490 

2 2 20 5 5 40 4243.4113 2721.2212 0.0336 0.0046 

2 2 5 5 5 50 5179.6874 4948.2608 0.0696 0.0075 

2 2 10 5 5 50 10196.5565 12361.8442 0.0269 0.0201 

2 2 20 5 5 50 9697.4329 11364.5493 0.0248 0.0174 

2 2 5 5 5 60 13726.6642 13780.5056 0.0156 0.0136 

2 2 10 5 5 60 1727.7562 3490.8264 0.0366 0.0290 

2 2 20 5 5 60 3368.2453 4460.2079 0.0435 0.0376 

2 2 5 5 5 70 7393.3438 8065.0819 0.0346 0.0321 

2 2 10 5 5 70 9217.7368 14128.0656 0.0939 0.0530 

2 2 20 5 5 70 5306.5654 8367.3694 0.0376 0.0271 

3 3 5 5 5 0 0.0937 0.1255 0.1278 0.1174 

3 3 10 5 5 0 0.0749 0.0933 0.0204 0.0113 

3 3 20 5 5 0 0.0381 0.0379 0.0479 0.0102 

3 3 5 5 5 10 3636.3138 4549.1711 0.0711 0.0287 

3 3 10 5 5 10 6106.0489 4076.2713 0.0745 0.0399 

3 3 20 5 5 10 2437.9512 2242.0911 0.1014 0.0085 

3 3 5 5 5 20 6265.6872 6059.5287 0.0388 0.0097 

3 3 10 5 5 20 7522.1978 7795.0577 0.0373 0.0028 

3 3 20 5 5 20 4214.6130 5269.1885 0.0295 0.0053 

3 3 5 5 5 30 3956.8955 3710.3527 0.0513 0.0086 

3 3 10 5 5 30 4083.2797 3841.2332 0.0763 0.0303 

3 3 20 5 5 30 2822.7018 2875.1272 0.0566 0.0292 

3 3 5 5 5 40 6906.748 9012.3312 0.0884 0.0391 

3 3 10 5 5 40 4870.0912 5275.4700 0.0484 0.0050 

3 3 20 5 5 40 6093.7314 6934.9149 0.2715 0.0970 

3 3 5 5 5 50 9831.8046 8903.4344 0.0432 0.0059 

3 3 10 5 5 50 5076.8150 4965.6695 0.0480 0.0275 

3 3 20 5 5 50 7313.6695 5727.4593 0.1195 0.0193 

3 3 5 5 5 60 55470.641 7144.9387 0.1076 0.0114 

3 3 10 5 5 60 11215.7927 12026.7402 0.1389 0.0704 

3 3 20 5 5 60 13201.5013 12719.1829 0.2692 0.0156 

3 3 5 5 5 70 2128.2096 2340.6143 0.0410 0.0835 

3 3 10 5 5 70 3316.8333 3011.2852 0.0623 0.0719 

3 3 20 5 5 70 5455.9473 8776.2548 0.1008 0.0036 
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