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ABSTRACT

Optimal homotopy asymptotic method (OHAM) is used to obtain the semi-analytical solution of singularly

perturbed differential equations arising in biology. The effectiveness of OHAM is ensured by its applicability in

various problems of singular perturbed differential equations. Results are found to be in a good agreement with

the exact solution. The tested problems for the various effect of perturbed parameter is discussed and displayed

through tables and figures.
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1. INTRODUCTION

The class of singularly perturbed two point differential equation is
—ey"(x) + p(x)y'(x) + q(x)y(x) = f(x) (1)
with conditions y(0) = a,y(L) = b, where 0 < € < 1 and p(x), q(x)and f(x) are known functions, they
are continuous and bounded in (0,1) [1].The perturbed differential equations have gain its popularity due to
enormous applications in adverse areas of science and engineering, such as modelling of spindling, population
biology, bifurcation, stability of travelling waves, neuronal modelling for oscillation, blood flow in collapsible
arteries, chemical reactor theory and reaction diffusion problem [2,3].

Various method have been proposed and implemented to solve perturbed boundary value problems.
Kadalbajoo and Patidar [4] used a numerical technique to solve the perturbed differential equation. Surla and
Stojanovic [5] use tension parameter and Surla et al [6,7] used difference scheme using spline to estimate the
solution. Kalbajoo and Bawa [8] used variable mesh difference method, Rashidinia et al [9] used splines method
for both singular and non-singular problems. Mohanty et al [10] used a family of uniform mesh tension spline
for two point singularly perturbed differential equations. Lin et al. [1] used B-spline collocation method for
numerical treatment of the problem for very small perturbed parameter.

There is an interesting fact that in the thin layer problem, solution exhibits multiscale character. It
behaves rapidly near the thin layer and normally away from the layer. So numerical techniques presented in
literature suffer a difficulty to obtain the precise solution. Hence a semi-analytical technique can play a vital role
for obtaining the accurate solution.

Following the pioneering work of Marinca et al. [11,12] Several authors applied OHAM to the various
complex problems modelled as differential or integral equations arising in science and engineering [13,14].
OHAM has proved it applicability, generalization and effectiveness to obtain semi-analytical solution of various
problem [15-19]. The major goal of present paper is to provide a precise solution of singularly perturbed
problem. Various aspects of solution regarding perturbed parameter has been discussed and displayed through
graphs and figures.

2. OHAM formulation
OHAM was introduced by Marinca et al [11,12]. Here we are presenting its modified form for the
perturbed differential equations:
The general two point governing equation in perturbed form is
—ey ' (x) + p()y (x) + )y (x) = f(x)
with conditions y(0) = a,y(L) = b, .
First we construct the homotopyy (x; q): [0, L] X [0,1] = R, which satisfy the following equation
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(1 - @) (=ey ") + p@)y () - f(x))
—H(g, c)(—ey (1) + ()Y (1) + 4y () — f())

whereq € [0,1] is an embedding parameter and H (g, ¢;) is a series of auxiliary parameters, H(0) = 0 for g # 0,
the series can be written as

H@(x;q),q) = 2

H(q,c) = Z q’H;(q,c)
Here the parameters c; help to control the convergence of the solution. Using the Taylor series expansion, we
have

Y q,¢) = yolx) + Z yie(xe)g®,  i=123,... (3)
k=1
The above said series converges for ¢ — 1. Using in (2), we have the approximate solution
) =)+ ) wlsedg®, =123, 4
k=1

Substituting in (1), we have the residual of the problem

R(x,c) = €3 () + pGOy ) + q(OF(x) — F () (5)
The exact solution occurs, when R = 0, otherwise, we will optimize the approximate solution using auxiliary
parameters. This can be done by calculating the values of these parameters by either of the techniques namely;
Galerkin method, Least square method and Ritz method etc.

3. Numerical treatment
To demonstrate the efficiency and applicability of presented technique, we have considered three cases of
singularly perturbed differential equations arising in biology.

3.1 Example 1
The convection dominated problem [1] arises when p(x) = 1,q(x) = 1 and f(x) = 1 for the domain set 0 <
x < 1 with boundary conditionsa = b = 0. The exact solution of the perturbed problem is y(x) = ((ef —

De™)/(e% — ef) + (1 - e9)ef*)/(e* — ) + 1, where ¢ = E D ang g = E2009),

Table 1. Optimal values of c; for different value of € using third order OHAM solution

/€ e=108 =102 €=0.01 € =0.0015
c -0.94061705 0.86692395 -0.8552525 0.0015325
c, -0.00115418 -0.00563309 0.00520673 0.0001202
c; 0.0002240 0.00038186 0.00054846 -0.0879556

To find the solution of the problem, the value of c; for different values of € is calculated and tabulated in
Table 1. The absolute pointwise error of the convection dominated problem is presented in Table 2. It is quite
evident from Figure 1 & 2 that OHAM produced a reliable solution for large and small values of the perturbed
parameter €. The results are also compared with [1] and showed significant improvement as shown in Table 3.

Table 2:Pointwise error for differente using third order OHAM solution

x/€ €=08 €=0.2 €=0.01 € =0.0015
0.0 1.84570 x 10~%° 2.18196x 1017 8.68596x 10715 6.87261x 10715
02  3.96166x 10~° 5.67675% 1078 3.35689x 1076 1.12068% 10~°
04  6.05812x 107° 7.51894x 1078 2.33935% 107° 1.71098x 10~*
0.6 1.33342x 10~° 1.59763x 1077 5.16407x 1077 9.80745x 107°
0.8  3.32494x 107° 1.59324x 1078 1.19808x 1076 3.26467x 107+
1.0 4.55191x 107*° 2.55351x 1071° 420712x 10715 1.00012x 10715

Table 3: Comparison of pointwise error of [1] with OHAM

x/€ €e=038 €=0.2 € =0.01
_1 3" Order OHAM b= _1 3 Order OHAM = 1 3" Order OHAM

128 128 128
0.0  0.0033 1.8457x 10715 0.0062  2.18196x 10717 ~ 0.0073  8.68596x 10715
0.2 | 0.0029  3.96166x 10™° = 0.0059 = 5.67675x 10~ = 0.0069 = 3.35689x 10~°
0.4 0.0022 6.05812%x 10~° 0.0061 7.51894% 1078 0.0061 2.33935% 107°
0.6 | 00014 = 133342x10™° = 0.0054 = 1.59763x 1077 = 0.0054 = 5.16407x 1077
0.8 0.0019 3.32494% 10~° 0.0025 1.59324%x 10-8 0.0037 1.19808x 10~°
1.0 0.0034 = 4.55191x107'° = 0.0092 | 2.55351x 1075 | 0.0033 = 4.20712x 10715
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Fig 1: Comparison of exact solution of Example 1 with third order OHAM solution.
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Fig 2: Comparison of exact solution of Example 1 with third order OHAM solution.
3.2 Example 2

The neuronal models of oscillation [1]is for p(x) = p,q(x) = 1 and f(x) = cos(mx) for the domain set 0 <
x < 1 with boundary conditions @ = b = 0. The exact solution of the perturbed problem isy(x) = a cos(mx) +

_ p (1+e™™ _
and f§ = o PR and B =

en?+1
p2m2+(em?+1)>2

B sin(mx) + Ae¥* + Be "0~%) | where a =

(1+e77)

P Moreover y < 0 &n > 0, the values of a and 8 can found from the real roots of —€A* + pA+1 =0

Table 4. Optimal values of c; for different value of € for p = 10~° using 2"! order OHAM solution

/€ e=108 e=02 € =001 € =0.0015
1 -0.2643132 -1.00112322 -1.0000306 -1.0
c, -0.5412349 -1.261x 10~° 0.0 0.0

To find the solution of the problem, the value of c¢; for different values of € is calculated and tabulated in Table
4. The absolute pointwise error of the example 2 is presented in Table 5. It is quite evident from Figure 3 & 4
the OHAM produced a reliable solution for large and small values of the perturbed parameter €. Table 6

represents the absolute error of approximate solution for € = 0.0015 and for different values of p.

Table 5: Pointwise error for different values ofeand p = 10~ °using third order OHAM solution

x/€
0.0
0.2
0.4
0.6
0.8
1.0

e=0.8
2.77550x 10~17
8.15321x 107
4.66641x 10716
5.08274x 1071°
8.39606x 10~1°
2.77556x 10717

e=0.2
1.11022x 10~
6.93886x 10~%7
8.32667x 10717
7.63278% 10~
1.38778x 10~
1.19070x 10~

€ =10.01
1.11022x 10~%7
6.66134x 10716
2.27596x 10715
1.66982x 1071°
2.22045x 10716
2.76186x 1071°

€ =0.0015
1.11022x 10717
1.11022x 10717
0.0
5.55112x 10717
0.0
0.0

Table 6: Pointwise error for different values of p at € = 0.0015 second order OHAM solution

x/p
0.0
0.2
0.4
0.6
0.8
1.0

p=10"*
3.44169% 1015
2.21141x 10710
2.23121x 10710
2.23127x% 10710
2.21407x 1071°
3.55227% 10715

p=10"°
3.77476x 10715
1.30342x 1073
3.69704x 10~
3.70259% 10~*
1.30342x 10713
3.77475% 10~%°
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Fig 3: Comparison with exact solution of Example 2 at p = 107°.
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Fig 4: Comparison with exact solution of Example 2 at p = 107°.
3.3 Example 3
A non-homogenous perturbed equation is p(x) = 0,q(x) = 1 and f(x) = — cos?(mx) — 2em? cos(mx) with

the domain set 0 < x < 1 and boundary conditions a = b = 0. The exact solution of the perturbed problem is

x-1) -x
e Ve teVe
yx) =——=—

1-eVe

—— — cos?(mx) [5-9]. The approximate results are obtained by second order OHAM solution

and compared with exact solution and results of various authors [5-9] and proved its authority over other

methods as presented in Table 7.

Table 7: Error comparison of solutions obtained by [5-9] with 2" order OHAM
N =16 [8]
7.09 (-3)
5.68 (-3)
4.07 (-3)
6.97 (-3)

€ N=16[5] N =16][6]
1/16 8.06 (-3) 4.14 (-3)
1/32 7.11 (-3) 3.68 (-3)
1/64 6.58 (-3) 3.45(-3)
1/128 6.36 (-3) 343 (-3)

4. Conclusion

(@)
(b)
(©
Table 3.
(d)
p=107°.

(e)
¢

0.0015.
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N =16[7]
1.20 (-4)
1.28 (-4)
1.60 (-4)
2.34 (-4)

N=1619]
4.07 (-5)
2.00 (-5)
5.45 (-5)
1.83 (-4)

When € decreases from 0.8 to 0.0015, then error increases in examples 1.
There is small error at the boundaries of the domain in example 1.

In example 3, OHAM proves its reliability over other techniques [5-9].

OHAM
729 (-7)
8.49 (-6)
2.07 (-5)
1.78 (-4)

The result provided by 3™ order OHAM is much better than results by [1] at h = 1;_3’ as presented in

It is seen that pointwise error of example 2, when € decreases from 0.8 to 0.0015, is almost steady at

It is also worth mentioning that error decreases as p varies from 10~* to 107 at the fixed value of € =
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