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ABSTRACT 
 

Aim of this study was investigating a truck scheduling problem with uncertainty in both inbound and outbound problems. 

Scheduling authorities at cross-dock should consider these uncertainties and propose a scheduling & sequencing plan 

which is robust against these uncertainties. As we know, trucks don’t necessarily assign to receiving or shipping doors and 

should wait a while till a proper dock door is free and ready to service. The objective of this study is to minimize these 

waiting times by proper assignment and sequencing trucks. This schedule should be ready before trucks enter the cross-

dock terminal and thus we must use expected arrival times of trucks. And since these expected arrival times may differ 

from real arrival times of trucks, scheduling should be performed in a way to include these differences. If the difference 

between real and expected arrival time of a truck is less than its waiting time, no difference is made to the scheduling. But 

if the lag time is greater than waiting time, the schedule would be inefficient. As a result, it’s necessary to schedule in a 

way that these waiting times be at most the size of difference between real and expected arrival times of trucks to make it 

useable and efficient. Moreover, this paper considers uncertainty in mathematical model of the problem by use of chance 

constraints to consider uncertainty and tackle it and also multi-product model and product assignment between inbound 

and outbound rucks. 

KEYWORDS: Cross-dock, scheduling-assignment, stochastic, uncertainty, scheduling with chance constraints.  

_________________________________________________________________________________________ 

1. INTRODUCTION 

 

Products are transferred rapidly in today’s customer-oriented economy and cost efficiency creates a competitive 

advantage for organizations. Organizations have understood that cross-dock operations have a great role in their 

distribution model to achieve this advantage which can replace current warehousing policies or to be merged with 

traditional models. As a result, organizations have planned to use cross-dock operations in their distribution models to 

reduce costs and hence achieve this competitive advantage. Cross-docking is a special warehousing policy which products 

are transferred directly from inbound trucks to outbound trucks without a temporary storage in between [1]. 

Use of cross-docks in a supply chain can be profitable for organizations through rapid transshipment of products and 

reduction of inventory costs. Internal processing operations of a cross-dock consist of unloading products from inbound 

trucks at inbound doors, sorting, temporary storage, consolidation and loading them to outbound trucks at outbound doors. 

Cost reduction and better efficiency can be achieved through improvement of these processes [2]. 

Cross-docks are intermediate nodes in a distribution network which are assigned particularly to loading trucks. Cross-

dock in distribution warehousing dictionary includes trucks and doors at two sides (inbound & outbound) with minimum 

storage area. Cross-dock name describes the process of unloading products from inbound doors and then transshipment to 

outbound doors. A cross-dock mainly is a consolidation point in a distribution network where smaller shipments can be 

consolidated to achieve economy of scale in transportation. 

Proper integration of inbound and outbound trucks plays a great role in efficiency and effectiveness of cross-docks 

systems and also in whole supply chain. Truck scheduling operation considers assignment of inbound trucks to inbound 

doors where shipments are unloaded and assignment of outbound trucks to outbound doors where shipments are loaded. 

Scheduling strategies can affect the efficiency of cross-dock operations because they change delivery and waiting times. 

Moreover congestion or truck failure often result in fluctuation in truck arrival times [3]. This uncertainty in truck arrival 

times makes it irrational and inappropriate to use scheduling policies based on predicted truck arrival times [4]. 

Therefore we will consider a simultaneous inbound and outbound truck scheduling problem under uncertainty in 

truck arrival times. The purpose of this study is to handle a truck scheduling problem under uncertainty which consists of 

both scheduling and sequencing of inbound and outbound trucks to achieve an efficient transshipment time, reduced truck 

waiting time and to ensure the on-time delivery of shipments. In this study inbound truck arrival times are assumed 

uncertain which is a rational assumption in a real world situation. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

At the beginning cross-dock operations were used in transportation industry of United States in 30’s and since then are 

used in less-than-truckload (LTL) operations. The U.S. army began to use these operations in 50’s and Walmart is also 

utilizing it since 80’s. No products are stored in these warehouses and items are transshipped in less than 48 hours. The use 

of cross-dock facilities in Wal-Mart have led to decreased inventory costs through implementing full-truckload (FTL) 

policy besides reduced transportation costs [3]. 

As mentioned before, cross-dock scheduling decisions determine the allocation of resources through planning horizon. 

These decisions for truck service types are taken in a way to ease the transshipment of products from inbound to outbound 

doors and mostly consider the doors as a constraint which means the number of available dock doors exceeds the number 

of trucks. Therefore detailed scheduling and sequencing is presented for minimizing waiting time of trucks and shipments. 

Truck scheduling can be completed at the beginning of planning horizon or a dynamic forward scheduling which is 

updated during the planning horizon which are called offline and online scheduling respectively. Most of the previous 

papers focused on operations of the facilities which is independent of location and layout of cross-docks. As  

Agustina et al. [5] have mentioned: cross-dock operations include product allocation (choosing products to be 

transferred by cross-dock), dock service mode (assignment of dock doors to destinations), vehicle routing, transshipment 

and scheduling. 

Chen & Lee [8] considered a cross-dock problem as a two-machine flow-shop. Their objective is to determine 

sequence of inbound and outbound trucks to minimize the make span (the time from starting the unloading of first inbound 

truck till finishing the loading of last outbound truck). They assumed that all the trucks are available at time zero. 

Unloaded shipments can be held in a temporary storage area until a proper outbound truck enters the shipping dock. The 

authors have proved that their model is strongly NP-hard and thus proposed a meta-heuristic approach based on Johnson’s 

rule. 

Van Belle et. al. [7] classified the truck scheduling problem into three categories. First category defines a simple cross-

dock with one inbound door and one outbound door. Scheduling in this case reduces to sequencing inbound and outbound 

trucks. Cross-docks with multiple inbound and outbound doors are discussed in second category but only inbound or 

outbound trucks are subject of scheduling. In the third category, simultaneous inbound and outbound truck scheduling is 

considered in a multiple inbound and outbound door cross-dock.  

Yu et. al. [8] studied a truck scheduling problem of first category. They proposed a mixed-integer programming model 

to minimize the makespan. They developed a heuristic algorithm to solve the problem. Later on Zandieh (2011) [9] have 

developed several meta-heuristic algorithm to solve the same model.  

Li et. al. [10] also studied a problem in the third category to maximize the transshipped products within planning 

horizon. If a shipment can’t be loaded and delivered in a planning period, it will be handled at the next period. An 

intelligent genetic algorithm (IGA) is developed to solve the problem. 

Larbi et. al. [11] considered the scheduling of internal operations in a single door cross-dock under three policies. Then 

they compared the performance of system under each policy. In the first policy it is assumed that we have full information 

about incoming shipments and the content of inbound trucks. In the second and third policies, we have assumed that no 

and partial information is known from incoming trucks. In this paper different solution approaches for scheduling 

outbound trucks in a cross-dock is presented. 

Knour and Golias [12] studied truck scheduling problem in a multiple dock door cross-dock with uncertainty in arrival 

times of trucks. Thus a time window is considered for entering time of trucks and genetic algorithm (GA) is used to solve 

the model. The objective of this study is to minimize the average of total service and tardiness costs in the situation which 

cost of truck services are varied. This study formulates the scheduling problem as a bi-objective bi-level optimization 

problem. 

They also used three approaches to determine the strategic planning while there is no extra information about cross-

dock operations: deterministic, optimistic and pessimistic approaches. They formulated a bi-objective bi-level optimization 

for optimistic and pessimistic approaches. The objective is to achieve a proper approach for truck scheduling problem at a 

cross-dock with uncertainty in truck arrival times [13]. 

Miao et. al. [14] studied both inbound and outbound truck scheduling problem in a multiple dock door cross-dock for 

the first time. They assumed that each dock door while it’s available, can be used both as an inbound or outbound door and 

also trucks enter the cross-dock terminal at a per-defined time. 

Van Belle et. al. [17] scheduled both inbound and outbound trucks. They considered the time needed to transfer 

shipments between cross-dock doors and delay of trucks based on pre-defined entering and leaving time of trucks.  

  

3. Problem description 

 Truck scheduling is one of the operational problems of cross-docks which is related to assignment of trucks to cross-

dock doors [15]. These doors are considered resources that should be scheduled through planning horizon. 

In this study we consider sets of inbound trucks (R) pairing with inbound doors (K) and sets of outbound trucks (S) 

pairing with outbound doors (L) in a multiple door cross-dock. We assume that type and quantity of products coming from 

inbound trucks and needed in outbound trucks are known beforehand. Different types of products t N∈  can be transported 

by each truck.
 ikr is the amount of product type k N∈ which is initially loaded on inbound truck i I∈ and 

jts is the amount 

of product type t N∈ to be delivered by outbound truck j J∈ . Truck changeover time just like most papers is assumed 
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to be constant (D). Each shipment’s quality will be examined electronically after unloading then sorted, consolidated and 

transferred to shipping dock doors. Transferring process is dependent to the product type and related inbound and 

outbound trucks. As a matter of fact, the distance between inbound door k and outbound door l defines the transfer time of 

each shipment. This time is represented by klt . Objective of the problem is to minimize the probable waiting time of 

inbound and outbound trucks due to uncertainty in entering times which is calculated by sum of waiting times in receiving 

and shipping dock doors separately. 

Following notations are used to formulate the mathematical model: 

Sets: 

R Number of inbound trucks 

S Number of outbound trucks 

N Types of products 

L Number of receiving dock doors 

K Number of shipping dock doors 

Parameters: 

ijtf  Number of products type t to be transferred from inbound truck i to outbound truck j 

itr   Number of products type t initially loaded on inbound truck i 

jts    Number of products type t to be loaded on outbound truck j 

klt    Transfer time of products from receiving door k to shipping door l 

D    Truck changeover time 

ia    Expected entering time of inbound truck i to dock terminal 

jb    Expected entering time of outbound truck j to dock terminal 

Continuous decision variables: 

ˆ
ia    Real entering time of inbound truck i to dock terminal 

ˆ
jb    Real entering time of outbound truck j to dock terminal 

ir    Time which inbound truck i starts unloading at a receiving dock door 

ie    Time which inbound truck i leaves receiving dock door 

js    Time which outbound truck j starts loading at a shipping dock door 

jf    Time which outbound truck j leaves shipping dock door 

Continuous decision variables: 

ikX  1, if inbound truck i is assigned to receiving door k; 0, otherwise. 

jlY     1, if outbound truck j is assigned to shipping door l; 0, otherwise. 

ijV     1, if any product is transferred from inbound truck i to outbound truck j; 0, otherwise. 

ijp    1, if inbound truck i precedes inbound truck j in inbound trucks sequence; 0, otherwise. 

ijq    1, if outbound truck i precedes outbound truck j in outbound trucks sequence; 0, otherwise. 

In this study, waiting time of trucks is considered as a negative factor in scheduling trucks. Thus the problem should be 

scheduled in a way to minimize any probable waiting times. We use   and   to represent waiting times of inbound and 

outbound trucks respectively. We define   and   as the beginning of unloading and loading operations of inbound truck i 

and outbound truck j respectively, then the waiting time of inbound and outbound trucks are calculated as follows: 

i i iZ r a= −  (1) 

j j jZ s b= −  (2) 

With the above explanations, mixed-integer programming model with the objective of minimizing waiting times is can be 

described as follows: 

1 1

 

R S

i j

i j

Min Z Z

= =

+∑ ∑  (3) 

s.t:  

          i iP Z T i Rρ≥ ≥ ∀ ∈    (4) 

          j jP Z T i Sρ ≥ ≥ ∀ ∈   (5) 

1

=1          

K

ik

k

X i R

=
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jl
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Y j S

=

∀ ∈∑  (7) 

1

=r           ,

S

ijt it
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=
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          , , ,  ijk l jlZ Y i R j S k K l L≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ (12) 
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{ }, , , , 0,1          , ,ik jl ij ij ijX Y V p q i R j S k K∈ ∀ ∈ ∀ ∈ ∀ ∈
 

(24) 

ˆˆ , , , e , , f 0         ,i j i i j ja b r s i R j S≥ ∀ ∈ ∀ ∈
 

(25) 

Equation (3) is the objective function of minimizing total makes pan. Equations (4) and (5) show the uncertainty of model. 

Equations (6) and (7) state that each truck is only assigned to one dock door which prevents the twice processing operation 

of trucks or more. Equation (8) ensures that number of products of type t transferred from each inbound truck to outbound 

trucks are exactly equal to the number of products of type t in that specific inbound truck. Equations (10)-(12) ensures the 

correct relation between variables  ,   and  is set. Sequence of inbound and outbound trucks are shown in equations (13)-

(16). Starting time of unloading inbound trucks and loading outbound trucks are shown in equations (17)-(20). Equations 

(21) and (22) state the finish time of loading outbound trucks. Equation (23) shows the finish time of outbound trucks in 

relation to entering time of related inbound trucks which is greater than start time of all related inbound trucks plus transfer 

times from receiving docks to shipping dock plus unloading time of all the products transferred between related inbound 

trucks and that specific outbound truck. 

Starting time of un/loading operations is after arrival of trucks to cross-dock terminal. If dock doors are occupied when a 

truck enters the cross-dock, it should wait until one door is free. Thus start time of each truck according to equations (17) 

and (18) is after finish time of previous truck. As a result, two equations are obtained from equations (17) and (18) and also 

(19) and (20): 

{ }m a x , .( )j j ij ir a p e D= +  (26) 

{ }m a x , . ( )j j i j is b q f D= +  (27) 

And equations (22) and (23) formulate the finish time of outbound trucks as follows: 

1 1 1 1

m a x , V . .

N L K N

j j j t i j i i j k l k l i j t

t l k t

f s s e Z t f

= = = =

   
= + + +      

∑ ∑ ∑ ∑  (28) 

 

4. Scheduling With Chance Constraints 

Goal of chance-constrained mathematical programming (CCMP) is to find the optimal solution of problems which 

probability of events in it have deterministic bounds. This concept was first used by Charnes Luward. They used the 

deterministic equivalent of the problem to solve it.  

Perkopa [31] studied combination of CCMP with independent random variables and proposed an equivalent deterministic 

problem which is convex on right hand distribution parameters under deterministic conditions. 

Luedtke et al. [32] showed that for most statistical distribution functions, average of sample approximation is suitable to 

reach a good and feasible solution. 

Zhang et. al. [33] studied a scheduling model with multi-level chance constraints and verified the equivalent deterministic 

model and observed that decomposition algorithm is proper for large scale problems. 

 

5. Solution Approach with Chance Constraints 

To solve the uncertain model by scheduling with chance constraints, equivalent deterministic constraints are made by 

methods describe in last section. Thus equations (1) and (2) are replaced with the following ones: 

104 



 

J. Appl. Environ. Biol. Sci., 6(7S)101-109, 2016 

 

 

i i iP a Tα ρ− ≥ ≥    (29) 

( ) ( )var var

i i i i i

i i

a T T T
P

T T

α
ρ

 − − − ≥ ≥
 
 

 (30) 

( )var

i i i

i

a T
P Z

T

α
ρ

 − − ≤ ≥
 
   

(31) 

In the standard normal distribution we have: 

( )E ρΦ =  (32) 

( )
[ ]

var

i i i

i

a T
E

T

α − − Φ ≥Φ
 
 

 (33) 

( )( )var 0i i i ia T E Tα − − − ≥ (34) 

The same approach is used for equation (2): 

( )( )var 0j j j jb T E Tβ − − − ≥

 

(35) 

 

6. Meta-Heuristic Algorithm 

Exact approaches cannot find the optimal solution of large scale problems (see section 5). To overtake this difficulty, a 

meta-heuristic algorithm namely variable neighborhood search (VNS) is used. 

6.1 Variable Neighborhood Search Algorithm 

VNS algorithm was proposed by Hensen and Mladenovi´c [41] which is a meta-heuristic approach to solve combinatorial 

optimization problems. Systematic change of neighborhood structure in a local search is the basic idea of this algorithm. 

Basically, a local search method searches a limited portion of solution space. VNS is a simple and effective method based 

on systematic change of neighborhood through the search operation. This method escapes from local optimum by changing 

the neighborhood structure. It starts from an initial solution and uses two involute loops to continue the search. In the first 

loop, shaking operator creates a solution at the neighborhood of current solution. This random solution is the key to avoid 

getting stuck in local optimum. In the second loop, it uses the random solution found at last step to do the local search and 

the local optimum. The local search, seeks an improved solution in the neighborhood of current solution while shaking 

relocates the solution to a new neighborhood structure. Local search is applied until the solution keeps improving or a 

stopping criterion is met. After finishing the inner loop, outer loop creates a solution which is used by inner loop for the 

next iteration. This continues until the stopping criterion of the whole algorithm is met. Because neighborhood structures 

play an important role on the performance of VNS algorithm, it is crucial to choose these structures wisely to achieve an 

efficient algorithm. 

Main steps to implement the VNS algorithm are as follows: 

1. Start: a set of neighborhood structures Nk(k=1,…, kmax) is defined. k=1 and an initial solution x is defined and a 

stopping criterion is selected. 

2. Shaking: a random solution x ′  is generated from the kth neighborhood of x. 

3. Local search: a local search method is applied to x ′  to find the local optimum, x ′′ . 
4. Move: if x ′′  is better than the current solution x , current solution is replaced with x ′′  and k=1. Else, k=k+1. 

5. Stop: if the stopping criterion is not met, algorithm continues on step 2, otherwise it stops. 

Solutions gained by VNS algorithm are highly dependent to factors like initial solution, chosen neighborhoods, local 

search methods and the sequence of neighborhoods. 

 

6.2 Initial Solution of the Algorithm 
A random initial solution is considered for the VNS algorithm. Each inbound or outbound truck is assigned randomly to a 

receiving or shipping dock door. Then a random sequence is assigned to the trucks that are assigned to a same dock door. 

The algorithm uses this solution to continue the search. 

 

6.3 Neighborhood Structures 

In this study we consider four neighborhood structures as follows: 

1. Replacing the door of two inbound trucks together: in this structure, two inbound trucks are selected and their 

assigned door are replaced with each other. 

2. Replacing the door of two outbound trucks together: in this structure, two outbound trucks are selected and their 

assigned door are replaced with each other. 

3. Changing the assigned door of an inbound truck: in this structure, one inbound truck is selected and is assigned to 

a different receiving dock door. 

4. Changing the assigned door of an outbound truck: in this structure, one outbound truck is selected and is assigned 

to a different shipping dock door. 
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6.4 Stopping Criterion 

Stopping criterion for VNS algorithm in this study is the number of iterations between two improvements in the solution. 

This means that if in 70 consequent iterations no improvement is reached, algorithm stops. 

 

7. Computational Results 

Instance problems were generated in two groups with small and large scales and were solved by mentioned method. Scale 

of each problem is defined by number of inbound and outbound trucks, number of receiving and shipping dock doors and 

number of product types which for each size, five instances were generated. The results of small-scaled instances were 

compared to optimum results gained by exact solution method. For this, relative error of algorithm is calculated by 

following equation. Optimum solution in this equation is calculated by GAMS software. Also in cases which no optimum 

solution is gained, the best solution gained by our algorithm is used. 

Solution of algorithm-optimum solution
Relative  error percentage 100

optimum solution
= ×

 
 

7.1 Computational Results In Small-Sized Instances 

In this section the performance of algorithm in small-sized instances are check. To do this, 10 problem sizes are defined 

and in each size, 3 instances are generated and each instance is solved 5 times by VNS algorithm. Compared results from 

exact solution and our algorithm are shown in table 1. 

Table 1 shows the performance of the algorithm in average, worst and best cases. From the 8th size on, GAMS software 

couldn’t solve the problem in a reasonable time. As could be observed, relative error increases with increase in problem 

size but this growth doesn’t have a specific trend. the relative error of the algorithm compared to optimum solution is 

acceptable. Fig 1 illustrates the performance of algorithm in small scales by means of relative error percentage. 

In the following section performance of algorithm is evaluated by time elapsed till end of algorithm compared to GAMS 

software. In the table 2, information of problem sizes, time of GAMS software to reach optimum solution and VNS 

algorithm time are shown. Because stopping criteria of algorithm is the iterations between two improvements, two 

different times is reported for this algorithm; the time when algorithm reached the best found solution for the first time and 

also the finish time of it. 

As observed in table 2, CPU times for small sizes are near zero and it gradually increases by increase in problem size. This 

trend in CPU time increase is shown in figure 2. The finish time of proposed algorithm is illustrated in figure 3 and it 

shows that the same trend for increase in CPU time to reach the best solution for the first time also exists in the finish time 

of algorithm. 

 

Table 1. Relative error percentage of proposed algorithm in small scales 
Size 

No. 

No. of 

receiving 

doors 

No. of 

shipping 

doors 

No. of 

inbound 

trucks 

No. of 

outbound 

trucks 

No. of 

product 

types 

Error 

Variable neighborhood search 

Worst Mean Best 

1 2 1 2 2 2 0.00031 0.00031 0.00031 

2 3 3 4 4 2 0.00027 0.00027 0.00027 

3 3 3 4 5 2 0.00016 0.00016 0.00016 

4 3 3 6 6 3 0.00011 0.00011 0.00011 

5 3 3 7 6 3 4.9913 2.1436 0.00018 

6 4 4 7 6 3 6.1126 5.4593 5.3384 

7 4 4 7 8 4 11.8374 7.1127 5.1123 

8 4 4 8 8 4 7.1923 5.8923 5.4190 

9 4 5 8 9 4 12.1107 10.7293 9.1035 

10 5 5 9 9 4 12.1020 6.4210 3.0384 

Average error 5.4347 3.7759 3.0012 

 

 

 
Figure 1. Average error of proposed algorithm compared to GAMS results in small scale 
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Table 2. Time elapsed by proposed algorithm compared to GAMS software in small scale 
Size 

No. 

No. of 

receiving 

doors 

No. of 

shipping 

doors 

No. of 

inbound 

trucks 

No. of 

outbound 

trucks 

No. of 

product 

types 

Solution time 

GAMS VNS 

Best time Finish time 

1 2 1 2 2 2 0.524 0.0568 0.5301 

2 3 3 4 4 2 0.598 0.0943 2.9782 

3 3 3 4 5 2 1.929 0.0934 2.6509 

5 3 3 6 6 3 5.947 0.1951 3.8997 

5 3 3 7 6 3 11.703 0.2574 5.0803 

6 4 4 7 6 3 870.228 1.6161 10.694 

7 4 4 7 8 4 665.023 1.4643 10.19 

8 4 4 8 8 4 1385.930 2.9716 12.511 

9 4 5 8 9 4 2473.245 9.9325 28.237 

10 5 5 9 9 4 2849.307 15.7602 39.0856 

 

 
Figure 2. Time to reach the best solution for the first time by proposed algorithm in small scale 

 

 
Figure 3. Finish time of proposed algorithm in small scale 

 

7.2 Computational Results In Large-Sized Instances 

After evaluating the performance of VNS algorithm in small-sized problems, we solve large-sized problems with our 

proposed algorithm. Just like last section, we defined 10 sizes and for each size, 3 instances were generated and each 

instance was solved 5 time by VNS algorithm. Considering that GAMS software is unable to solve these large-sized 

problems, the best solution found by algorithm is considered as the optimum solution to evaluate the overall performance 

of the algorithm. Table 3 shows the performance of the algorithm based on objective function in large-sized problems. 

As could be observed, VNS algorithm performs well from the relative error percentage viewpoint. This algorithm has 

2.29% error in average compared to best results obtained. Also its performance remains acceptable in last three sizes which 

are very large problems. Figure 4 shows the relative error percentage of this algorithm in large scale. Now we consider 

CPU times to reach the solutions of the algorithm. As seen in table 4, time elapsed to solve the problem increases as the 

problem size increases which in the largest problem it takes 2300 seconds to report the solution. 

Figure 5 shows the CPU time to find the best solution by proposed algorithm for the first time in large scale problems. 

Time growth trend is almost linear proportional to increase in problem size. 
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Table 3. Relative error percentage of proposed algorithm in large scale 
Size 

No. 

No. of 

receiving 

doors 

No. of 

shipping 

doors 

No. of 

inbound 

trucks 

No. of 

outbound 

trucks 

No. of 

product 

types 

Error 

VNS 

Worst Average Best 

1 6 6 10 10 2 0.0023 0.0023 0.00 

2 6 7 12 12 2 5.0389 1.8325 0.00 

3 7 7 12 14 3 0.9285 0.3309 0.00 

5 8 8 15 15 3 1.019 0.4902 0.00 

5 8 9 15 18 3 0.8927 0.1108 0.00 

6 10 9 20 18 4 5.9028 1.7905 0.00 

7 10 10 20 25 4 8.2173 3.9088 0.00 

8 10 10 25 25 4 14.770 5.0378 0.00 

9 10 12 25 30 5 10.743 5.0923 0.00 

10 12 12 30 30 5 7.9374 4.3190 0.00 

Average error 5.4347 2.2915 0.00 

 

 
 

Figure 4. Average error of proposed algorithm in large scale 

 

Table 4. Time elapsed by proposed algorithm in large scale 
Size 

No. 

No. of receiving 

doors 

No. of 

shipping 

doors 

No. of 

inbound 

trucks 

No. of 

outbound 

trucks 

No. of 

product 

types 

CPU time 

VNS 

Best time Finish time 

1 6 6 10 10 2 0.9031 25.6821 

2 6 7 12 12 2 9.1147 46.4875 

3 7 7 12 14 3 40.8819 78.9901 

5 8 8 15 15 3 63.385 125.1145 

5 8 9 15 18 3 106.1092 339.5118 

6 10 9 20 18 4 336.1203 771.069 

7 10 10 20 25 4 669.5992 1002.001 

8 10 10 25 25 4 840.0127 139.0818 

9 10 12 25 30 5 1716.3124 2090.473 

10 12 12 30 30 5 1828.0175 2310.8509 

 

 

 
 

Figure 5. Time to reach the best solution for the first time by proposed algorithm in large scale 
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8. Conclusion 

In this study we considered a truck scheduling problem with uncertainty in both inbound and outbound problems. 

Scheduling authorities at cross-dock should consider these uncertainties and propose a scheduling & sequencing plan 

which is robust against these uncertainties. As we know, trucks don’t necessarily assign to receiving or shipping doors and 

should wait a while till a proper dock door is free and ready to service. The objective of this study is to minimize these 

waiting times by proper assignment and sequencing trucks. This schedule should be ready before trucks enter the cross-

dock terminal and thus we must use expected arrival times of trucks. And since these expected arrival times may differ 

from real arrival times of trucks, scheduling should be performed in a way to include these differences. If the difference 

between real and expected arrival time of a truck is less than its waiting time, no difference is made to the scheduling. But 

if the lag time is greater than waiting time, the schedule would be inefficient. As a result, it’s necessary to schedule in a 

way that these waiting times be at most the size of difference between real and expected arrival times of trucks to make it 

useable and efficient. Moreover, this paper considers uncertainty in mathematical model of the problem by use of chance 

constraints to consider uncertainty and tackle it and also multi-product model and product assignment between inbound 

and outbound rucks. 

To implement and evaluate the results of the model, some problem instances were generated based on number of 

inbound and outbound trucks, receiving and shipping doors and also product types. Each problem in small and large scales 

were solved by our proposed algorithm. The results show that by increasing number of trucks and iterations per problem, 

CPU times will increase and the objective function gets worse. It’s notable that increase in number of dock doors will 

smoothen the flow of products and also the assignment of trucks and thus lead to improvement in objective function but at 

the other hand it will increase the volume and time of computations.  
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